An

introduction to

 logic$$
\begin{aligned}
& \text { Horace William } \\
& \text { Brindley Joseph }
\end{aligned}
$$

AN INTRODUCTION TO

 LO G I C

 LO G I C
 日v

H. W. B. JOSEPH

VEILOE AND TUTOR OD NEW COILDNR

OXFORD

HENRY FROWDK, M.A.
pobievin to twe onivasart of oxpond
10Y DOX, EDIMmusoh
MEW TORX AND TOMONTO
J. E. J.

ERRATA

PLoE 48, notea 1 and 2, for Mod M. read Met Z. 90, L 82, for ouproy read egrot
140, note 1, 1. 8, for propietas med proprietan
201 , nole, 1. 6 , for movaruî̀ read powani!
215, 1.20 , for converted read permuted
$2 \$ 1,1.28$, for If all is P raad If all M is P
256, 1.20, for affirmative read particular
256, L. 82, for diatributed read undletributed
281, 1. 20, omit reference to note at ind ef line
201, note 2, insort at ond (10)
272, 1 16, for O read B
282, L .25 , for B is A read C is A
286, note I, for Dialect, rad Dlalectlo,
291, IL. 9, 11, 18, 23, for Barbara read Colarout
298, 1. 32, for Some B read Some C
825, noto 8, 1. 4, for $169^{\circ} 16$ racd $158^{\circ} 16$
897 , note 2, 1. 18, for $79^{\circ} 20$ read $79^{\circ} 80$
850, 1. 9 , for the verb racd the pacalve verb
864, last Une, for Roman rood Greek
365, first line, for Greok road Roman
894, 1. 27, for aro not rolated reed aro related
401, note, I. t, iacert comma after roczoning
414, 1. 18, for concidence rad colncldence
500,1 2, for x rady y
618, 1. 11, for altributing it to read attributing to it 6e4, for Zabarolla, Cardinal, read Zabarolla, Count,

PREFACE

Ir an apology that precedea it could mitigate an offence, I ahould be inolined to convert my profice into an apology for prabliehing this book. Progress, and the hope of progreen, in logical inventigntions, have hin perhape during the lact three generations chiefly in two directions, either of analysing more closely the proceses of thought exhibited in the aciences, or of determining what knowledge is, and the relation of the knowing mind to what it knows. Though I have been compelled to deal in some degree with the first of these quentions, I am well aware that it demande a acientific knowledge which I do not possess ; the aecond I have not attempted syotematically to discoses. The aim of the following book is more modeat. There is a body of what might be called traditional doctrine in Logio, whioh is not only in fact used by itealf as an instrument of intellectual discipline, but ought also to be in come degree mastered by those who would proceed to the higher and abetruser problems. It is of this traditional doctrine that Benjamin Jowett is recorded to have said, that Logic is neither a science, nor an art, bat a dodge. I could perhape best deecribe the motive with which this work was began, as the deaire to expound the traditional Logio in a way that did not deserve this accuastion. The socusation wes doubtlees provoked by the attempt to force into a limited number of forms processes of thought, many of which can ouly with pretence and violence be made to fit them: an attempt, it may be added, st least as aharacteristio of 'Inductive Logia' as of any other.

In the course of centuries, the tradition has become divergent, and often corrupt. In this difficalty, I have ventured, like one or two other modern writers, to $g \circ$ beek largely to its cource in Aristotle. Problems of thought cannot in any caee be stadied without careful regard to their terminology, and their terminology
cannot be understood without reference to ite history. The terminology of Logic owes more to Aristotle than to any one else; bat there is this further reason for attention to what he said, that much prevalent faleehood or confusion in the tradition is a corruption of truthe expresed by him. At the same time, I have not pretended to believe in the verbal inspiration of his writings.

I have in particalar been anzions to teach nothing to beginners which they abould afterwarde have merely to unlearn. They may of course come to diment from the positions here taken up; but only, I hope, because they think I have the worst of the argument on a proper isaste, and not because, as meat for babea, I have been dogmatically expounding acknowledged fictions

While dealing largely with the more technical parts of logical tradition and terminology, I have done my beat to avoid a saperfluity of technical terms; and the subjecta discuseed have been for the most part discussed in detail, and the principles involved in them debated. The dryness with which the more formal brapches of Logic are often charged apringe, I think, in part from their being presented in too cat and dried a manner; those who go beyond the jejune ontline, and get into an argument, often find the subject then firat begin to grow interesting. At any rate I have tried to secure this remalt by greater fullness, and attention to controversial issaen. In every etudy there must be comething to learn by heart; but Logic abould appeal es far as posible to the reason, and not to the memory. Thue such a question as the 'reduction' of, syllogisms has been dealt with at length, not from any wish to overrate the importance of ayllogirtic reasoning, or barden the student with needlem antiquarianism, but because the only thing of any real value in the subject of reduction is juat that inveatigation of the natare of our processes of thinking which is involved in asking whether there is any justification for reducing all syllogiams to the first figare.

Topice whose main intereet is obviously bistorical or antiquarian have been eithar relegated to footnotes or pleced in closer type and between brackets; and as I have followed the advice to tranalate what Greek I quote, I do not think that there ie anything in these
discuseions which a reader need be altogether precluded from following by ignorance of that language. I have also pat between brackets in closer type other pareages which, for one reason or another, might be omitted without apoiling the argament; among the matters so treated is the foorth figure of syllogism; for I have reverted to the Aristotelian doctrine of three figures, with the moode of the fourth as indirect moods of the first.

I hope that I have sufficiently acknowledged all detailed obligstions to previous writers in the places where they oecur. But I owe here a more comprebensive acknowledgement both to the published work of Sigwart, Lotze, Mr. F. H. Bradley, and Profeasor Boasnquet, and to the instraction received in private discussion with various friends. Among these I should like to mention in particular Mr. J. Cook Wilson, Fellow of New College, Wykeham Professor of Logic in the University of Orford, whose reluctance to write is a source to many of serions disappointment and concern; Mr. J. A. Smith, Fellow of Balliol College; Mr. C. C. J. Webb, Fellow of Magdalen College; Mr. H. H. Joachim, Fellow of Merton College; and Mr. H. A. Prichard, Fellow of Trinity College, Oxford. To the last three of these, and also to Mr. C. Cannan, Secretary to the Delegates of the University Preas, I am further indebted for the great kindnese with which they read large portions of the work in MS. or in proof; without their anggeations and corrections it would be even more imperfect than it is. Lastly, I have to thank my eister, Misa J. M. Joseph, for the belp she gave me in reading the whole of the proof-sheets and in undertaking the laborious and ungrateful task of checking the inder.

CONTENTS

CEATIR PaOE
I. Ot tei Germil Cbumatisa of the Eiquity 1
II. Ot Theig, afd thene Pancipal Dietinctions 12
III. Of the Catigonits 85
IV. Or tar Pazicablies 58
V. Oy thi Rules of Difinition aid Divigiox: Clagai- mation and Dichotomy 97
 121
VII. Ot the Phopoortion on Judonicist 148
 164
IX. Oy tie Digtatbution of Thris in the Judomient: and of the Opfogition of Judarimkis 192
X. Or Inomiditi Infiniticte 209
XI. Or Byllogly ix Gratian 225
XII. Or teiz Moods and Figuess or Bylloaibm 280
XIIL. Oy fai Reduction of thi Impzefict Sylloaigtio Fiavims 264
XIV. Oy the Painciplas of Billooletic Inftagncz 272
XV. Of Hypothetical and Dienurctive Reaboning 808
XVI. Op Exthymini, Sorutes, and Diliona 828
XVII.' Ot the Foim axd Matitib or Inferencz 888
XVIII. Or Induction. 850
XIX. Of the Phibuppogitione of Inductive Rragonino: ter Law of Caubation 870
XX. Oy the Roles by weich to judaz oy Cataze and Efricts 892
XXL. Ot Oftrittons pheliminaiy 70 tex Application of thi Fonzooing Rulibe 422
XXII. Or Nom-becipbocatimo Cadeal Rehatione 441
XXIII. Or Explanation 466
XXIV. Of Induction ay Surpli Enumbation and thi Arounent prom athlooy. 488
XXV. Op Mathmatical Reloomino. 508
XXVL Op the Mrifodoloat or the Scierces 518
XXVII. Appzidix on Faluacizs 525
Index 559

CHAPTER I

OF THE GENERAL CHARACTER OF THE ENQUIRY

Ir is a common practice to begin a treatise on any science with a diecuasion of ite definition. By this means the reader's attention is directed to the proper objects, and to thooe features of them, with which the ecience is concerned; a real advantage, when, as in the case of Logic, those objecte are not epprehended through the senses, and for this reacon ordinarily attruct little notice. But the same reseon which makee a definition of Logic at the outaet neeful, makes any controverny about ite definition uselean at auch an early stago. The reader is too unfamiliar with the subjeot-matter of his scienoe to be able to judge what definition bent indicates its nature; he cannot expect thoroughly to underntand the definition that is given, until he has become familiar with that which is defined. The definition will at firat gaide more than enlighten him; bat if, as be proceede, he finde that it belpe to bring unity into the different enquiries upon which he suocessively enters, it will so far be justified.

Logic is a science, in the rease that it soeks to know the principles of some aubject which it studies. The different aciences differ in the subjeots which they so stady; satronomy stadies the movements of the heevenly bodies, botany the structure, growth, history, and habite of plants, geometry the properties of figures in eppece; bat each attempts to diecover the principles underlying the facts with which it has to deal, and to explain the grest variety of facts by the help of one set of principles. These principlea are often apoken of as lawn; and in the physical sciences that deal with change, as 'laws of nature'. The phrase may raggear that ' nature' is not the sum of things and of events in the phymical universe, bat a sort of power preseribing to these the rules which they are to follow in their behaviour; an the King in Parliament prescribee rales of conduct to his people. That, however, is
[crap.
not what we have to understand in acience by a 'law'; a law in science is not, like human laws, a rale enjoined but sometimes disregarded; it is a principle illastrated-and existing only in the necessity of ite being illustrated-in the department of fact to which it belongs. There are therefore no breachee of scientific lew, or of a knw of nature ${ }^{1}$; if events are observed which do not conform to what we have hitherto called a law, we conclude not that the law is broken, bat that we were ignorant of the true law ; if whter, for example, were observed to boil on the top of Mont Blape at a lower temperature than 212° Fabr., we should infer not that the law that water boils at 212° Fahr. was broken bat that it is not a lew of nature that water boils at 212° Fahr.,-that there are other conditions which have to be fulfilled, if water is to boil at that temperature; and the 'law' is that it should boil only when those conditions are fulfilled. Such lawe, the general principles to which objecta in their properties and their behaviour do actaally conform, are what the phyrical eciencee eeek to discover, eech in its own department, and if Logic is a acience, it must have a department of ite own, in which it aeeks for principles and lawe.

That department is thought, bat thought is alwaye thought about something; and thinking cannot be stadied in abstraction from anything thought about. But yet in the eame way that we may otady the lawe of motion, as they are exemplified in the movement of all bodies, withoat stadying all the bodies that ever move, so we may stady the laws of thought, as they are exemplified in thinting about all sabjecte, withoat studying all the sabjecte that are ever thought of. This comparison may be pushed further. Just as we must have experience of moving bodies, before we can investigate the laws of their motion, so we must have exparience of thinking sbout things, before we can investigate the principles of thinking; only this means, in the case of thinking, that we must ourselocs think about thinge first, for no one can have experience of thinking except in his own mind. Again, although, in studying the laws of motion, we do not atady every body that moves, yet we muat always have before our minds some body, which we take as representing all poesible bodies like it; and in the same way, when we investigate the principles that regulate our thinking, though we do

[^0]
1] GENERAL CHARACTER OF THE ENQUIRY

not need to study all subjects ever thought of, we must have before our minds eome rubject thought of, in order to realize in it how we think aboat it and all possible anbjects like it. For example, it is a general principle of our thought, that we do not conceive of qualitien except as existing in some arbject; and that neverthelese the aame quality is regarded as existing in many sabjeots; green is a quality, which exists not by iteelf, but in grase and leaves of trees and so forth; at the amme time, green may exist in many different leaves or bledes of grase. The general principle which is thus illustrated in the case of the quality green is readily underatood to be true of all possible qualities; but unlees we were able to think of some particular quality to illustrate it, we could not understand the general principle at all.

What has been now said will eerve to remove an objection which Locke brought against the study of Logia. 'God,' mayz Locke!, 'has not been so epparing to men, to make them barely two-legged creatures, and left it to Aristotle to make them rational.' He is urging that men thought rationally, or logically, i. e. in accordance with the principles that Logic diecovers to regulate all mound thought, long before those principlea were recognized; and that thin is atill the case with each of na; we do not therefore need Logic to teemh us how to think. That is quite true, and would be a pertinent criticiam against any one who pretended that no one could think ntionally without etudying Logic; but it is not the object of Logio to make men rational, bat rather to teach them in what their being rational consista. And this they could never learn, if they were not rational first; just as a man could never stady (ayy) the principles of voluntary motion, if he wha not first aceustomed to move his limbes as he willed. Had God made men barely two-legged creatures, Aristotle would in vain have tanght them to be rational, for they would not have understood his teaching.
1 Logic, then, is the ecience which stadies the general principles in accordance with which we think about things, whatever thinge they may be ; and so it presupposes that we have thought about thinga. Now our thought about them is expressed partly in the daily conversation of life or musings of our minds; partly and most syetematically in the various sciences. Those aciences are the bent examples of human thinking, the moat carefin, clear, and coherent,
${ }^{1}$ Ereay, Bk. IV. c. xvii. $\$ 4$.
that exirt. In them, therofore, the logician can beet atady the laws of men's thinking; and it is in this sense that we may accept the old definition of Logic, seiontia seiontiarum. ${ }^{1}$ What 'the coarses of the stars' are to astronomy, what figares are to geometry, what planta are to botany, or the calendar of Newgate to the criminologist, that the other sciences are to the logician: they are the material which ho has to investigate, the particular facte which are given him, in order that he may discover the principles displayed in them. He has to aak what knowledge is as knowledge, apart -so far as possible-from the queation, what it in about; and he must therefore examine divers 'knowledges', and see in what they are alike; and the beat pieces of knowledge that exist, the beat ' knowledges', are the various sciences. But he is not concerned with the detail of any particular science; only with those forms of thinking which are exemplified in all our thinkings-though not necessarily the same in all-bat best exemplified in the sciences.

It is important to understand what in meant by saying that Logic is concerned with forses of thinking; for many logicians who have laid atreas on this, and pointed out that Logic is a formal science, have understood by that expresion more than seems to be true. There is a sense in which Logic in undoubtedly formal. By forme we mean what is the same in many individuale called materially different-the device, for example, on different coine struak from the same die, or the anatomical atracture of different vertebrates, or the identical mode in which the law requires the different Colleges of the University to publish their ecoounte. And all science is formal, in the sense that it deale with what is common to differont individuals. A scientific man has no interest in a apecimen that is exactly similar to one which he has already examined; he wants new typee, or fresh details, bat the mere multiplication of specimens all slike does not affect him.' So the logicisn stodies the forms of thinking, such as that involved in referring a quality to a subject possessing it; but when he has once grasped the nature of this set of thought, he is quite uninterested in the thousand different occasions on which it is performed during the day; they differ only materially, as to what quality is

[^1]referred to what subject ; formally, eo far as the notion of a quality as existing in a subject is concerned, they are the same; and the forms that run through all our thinking about different matters are what he stadies.

But those who have insisted most that Logic is a formal science, or the acience of the formal laws of thought, have not merely meant that Logic is in this like other sciences, which all deal with what is formal or universal in their subject-matter. They have meant to exclude from Logic any consideration of forms or modes of thinking which are not alike exemplified in thinking about absolutely every subject. It is as if the botanist were to regard only those laws which are exemplified in every plant, or the geometer were to consider no properties of figures, except what are common to all figures. They have thought that one might abstract entirely from and diaregard all question as to what he thinks about, and still find that there are certain principles in accordance with which, if he is to think about anything, he will think. But the trath is, that we think in different waye about different kinds of subjecte, and therefore we must, if we wish to study the principles that regulate our thinking, consider to some extent the differences in the matter about which we think. The distinction between form and matter may as it were be taken at different levels. This is plein in the case of a science that deals with some order of sensible things, like zoology. We may sey of all men and all horses that they have severally a common form, that as compared to a man a horse is formally different, bat as compared to one another all horses are formally the same, though each horse in his body is materially different from every other. Or we may consider not the form of horse common to Black Bess and Bucephalus and Rosinante, but the form of vertebrate common to man, horse, eagle, crocodile, \&c.; and now man and horse (as corapared with oysters for axampie) are formally alike. Or we may take the four orders in Cuvier's division of the animal kingdom, vertebrata, coelenternta, radiata, and annuloea, and ragard them as only different examples of the common form of animal; and from this point of view a horse and an oyster differ materially, bat not formally. When however we have reached this stage, and formed the conception of animal, as something exemplified equally in kinds of animal so different, it is clear that we can only under-
stand what animal natore means by eeeing it as it exists in all the different orders of snimals; wheress we can anderstand fairly the nature of a vertebrate animal without eeeing it as it axiste in every genus of vertebratee; still more can we understand the nature of a horse without familiarity with all horses. The higher the level therefore at which in Zoology the distinction between form and matter is taken, the lese can we study the form in isoletion; no example taken from one order of animals, say the atarfiah, will enable us to realize what animal means. It is the aame in studying the forms of thought. The most general forms of thought exist diversely modified in thinking about different matters; and they can no more be fally known without attending to the different mattere in which they appear differently, than animal nature can be fully known withoat attending to the different orders of animal in which it appeart differently. Thus we may take the Proposition, and point out that in every proposition there is a anbject about which something is asid, and a predicate, or something which is aid about it. This is true equally of the propositions, 'A horse is an animal,' ' First-clases railway tickets are white,' and 'Londres is London'. We may if we like, because in all propositions there is formally the same distinction of subject and predicate, take symbols which shall stand for subject and predicate, whatever they are, and ay that all propositions are of the form ' S is P '. But when we ask for the meaning of this form, and in what sense S is P, it is clear that the meaning varies in different propositions. Londres is just the same as London; but a horse is not just the mame as an snimal ; it may be said that 'animal' is an attribute of horse, and 'white' of first-clese railway tickets, bat animal is an attribute belonging to horses in quite a different way from that in which white belongs to first-cless railwey tickets; these might as well be any other colour, and still entitle the holder to travel first-class by the railway; a horse could not cease to be an animal and still continue to be a horse. The meaning of the formula S is P cannot possibly be fully known merely by understanding that S and P are some subject and predicate; it is neceseary to underatand what kind of subject and predicate they are, and also the relation between them, and in what sense one is the other; and if this sense is different in different cases, just as animal is something different in $a \operatorname{dog}$ and \bullet ostarfish, then the
thorough study of the form of thought involves the consideration of material differences in the subjects of thought. But logicians who emphasize the purely formal character of Logic maintain that it can exhaust the form of thought in treating that as one and the same in every possible matter of thought; an impracticable task, becanse the form itself (s in in the above instance of the form of thought which we call a proposition) is modified according to the matter in which it appears. On the other hand, and even although the forms of our thought cannot be atudied apart from the particular sort of matter about which we may think, yet Logic is not interested in the variety of the matters that we think about for their own sake, but only for the sake of the divers forms of thinking involved in them; and ω far an the eame form is examplified over and over again in different particular 'bits' of thinking, the stady of the common form alone belongs to Logic.
[The truth that form cannot be stadied apart from matter might be otherwise expressed by seying, that the general form can only be studied in connexion with the special forms in which it is manifested; and these special forms can only be illustrated in examples that are materially different from one another. The proposition 'Londres is London' is a special form of propoaition equally well exemplified in 'Köln is Cologne'; as Bucephalus is an animal of a special form equally well exemplified in Black Bess. What is important to realize is the need of following the common form out into the differences which it dieplays in different matter.]
. The foregoing discussion will probably become plainer if it be read again at a leter stage, when the reader is more practised in reflecting on his thoughts. A distinction which is readily seen in material objects, like medala from a common die, is not 80 easily seen in immaterial objects, like our thoughts. The natural man thinks much about things, and aske and answert questions about them; but it is by an effort that he comes to see how theee things are only known to him in his perceptions of them and his thoughts about them, and so comes to turn his attention inward upon the nature of the acts of perceiving or of thinking. Nor can these new objects of his atudy be presarved and dissected like a material thing; a man cannot catch a thought and bottle it; be must create it by thinking it, if he wishes to think sbout it; and the task will be found difficult while it is atrange.
[Medineval logicians sometimes say that Logic deals with second intentions; by this is meant what has been pointed out in the last paragraph. The mind intends or directe iteelf at first upon material objects; and these are its firat intentions; it may afterwards intend or direct iteelf upon its own modes of thinking as exhibited in its first intentions; and what it then discovers are its mecond intention. Thus we observe animals, and give them names according to their kind, calling them stag and ox, worm and lobster; and again we obeerve how these kinds agree and differ, and call some vertebrate, and some invertebrate, bat all animals; and all theee names, which are names we give to objects, are names of the first intention. But we may also observe how we have been thinking sbout these animals, as having some properties common to all, and some peculiar to the members of each kind; and we may call the members of each kind a opecies, and the members of the several kinds together a genus; and genus and species are names of the second intention. The unity on the strength of which we call them of one species or of one genns may indeed be something in the animals themselves; and so our names of second intention will signify something real in things. The distinction therefore presents difficulties.]

If now we ask for a definition of Logic, to keep before our minds in the following chapters, perhape it is aimplest and least objectionable to call it the Science, or the Study, of Thought; for to say of the Formal Principles of Thought might imply both that there were aciences which did not seek for principles, and that the form of thought can be studied without reference to differences in the matter of it; neither of which things is true.

It is oometimes held that Logic is rather an art than a science, or at any rate that it is an art as well. In considering this question, we must remember that there are two senses of the word art. We may eay that a man understands the art of navigation when he is akilful in handling a ship, though be may be unable to explain the principles which he follows; or we may say that he understands it, when he is familiar with the principles of navigation, as a piece of book-work, though he may never have navigated a ship. Thus an art may either mean practical skill in doing a thing, or theoretical knowledge of the way it should be done. In the latter sense, art presupposes science; the rules of navigation are based upon a knowledge of the motions of the heavens, the laws of hydrostatics, and the build of ahipa. It is in this sense tbat Logic is called an art; and hence it is clear that if there is an art of

Logic, there must first be a acience, for the study of the nature of sound thinking must precede the giving of instructions for thinking soundly. And even granting the existence of such an art, it remains distinet from the science; so that the name Logic would be used of the two in different senses, and we ought rather to say that Logic means the ecience or the art of thought, than that it is the science and the art thereof. That there is an art of Logic, based on the science of Logic, might be urged on the ground that Logic revesls to us our own ideal of what knowledge about any subject must be, and certain canons of reseoning which no sound argument can violate. But though we may thus precoribe to ourselves the conditions which should be fulfilled in science or in common thought, we are not thereby ensbled to fulfil them; for art, ae a theoretical knowledge of what is to be done, does not alwaye bring the art or practical skill of doing it. An art of Logic would therefore be no infallible means of coming to know about all subjects; it is against that sort of pretension that a protest like Locke's, quoted above, may well be made; and yet the rules and the ideals which the otady of Logic suggesta are not without value in keeping our thoughts sbout thinge straight.

We have anid that Logic stadies the way in which we alreedy think abont things. But a good deal of our so-called thinking is incoherent, and breaks down when we criticize it. That we can discover for ourselves without learning Logic; an economist can correct his own or his predecessors' errors in political economy, a mathematician in mathematics; they could no more wait for the logician to correct than to construct these sciences. ${ }^{1}$ Yet the stady of the thinking, good and bed, which has gone to their construction may give us a more lively conscioumess of the difference between what its character should be and what it sometimes is, or as the Greeks would have said, between knowledge and opinion. Herein Logic may be compared with Ethics. Ethica inveatigates haman conduct; it discusses the judgements of right and wrong, of good and evil, that we pass apon men's acts and them; it tries to determine what we really mean in calling an act wrong, and what

[^2]we really require of a man in saying he should do what is right. All this would be impossible uniess men already acted wrongly and rightly, and made moral judgements; Ethics does not teach men to do that. But it does bring into clearer consciousness the nature of the ideals which we already have, the grounds of the judgemente / which we already make, the frequent discrepancy between what is done and what we recognize ahould be done. To this extent Ethice tells ue what to do, though it doea not enable us to do it. Similarly Logio helpe na to realize what knowledge of a subject means: but it does not enable us to bring our opinions on every subject into the form that knowledge requirea. Both Logic and Ethica are thus in some degree practical; but we do not call Rthice an art, and it is not dexirable any the more to call Logic so ${ }^{1}$.

It is perhaps from a desire to show the practical value of the study of Logic that men have insisted on viewing it as an arto But it would be a mistake to suppose that its practical value can lie solely in ita farnishing rule for 'the conduct of the anderntanding'. The direct help that it can give in this way is not very great. Ita practical value in general education is firatly this : that it demands very careful and exact thinking sbout its own mobjeot-matter, and thus tende to produce a habit of similar carefulness in the atudy of any other subject. In this it only does for the mind whats thorough training in any other acience might do. Secondly, it makes us realize better what the general forms of apeeoh that we habitually use really mean, and familiarizes us with the taak of examining our reasonings and looking to see whether they are conclusive. In this it has an effect which the stady of some special science like botany is not equally calculated to produce. Thirdly, it brings into clearer conecionsness, as aforessid, our ideal of what knowing ia, and so far furnishes us with a sort of negative standard; it makee us more alive to shortcomings in our ordinary opinions. But its chief value

* liee in ite bearing upon those altimate problems, concerning the

[^3]nature of reality, and man's plece and deatiny in the world, from which at first sight it might seem far remote. 'Logic,' ays J. S. Mill, in the Introdaction to his famous work ${ }^{1}$, ' is common ground on which the partigans of Hartley and of Reid, of Locke and of Kant may meet and join hands.' Conserere manm-it is only in this sense that rival schools join hands on the field of Logic. The dream of a Logic that shall be ' neutralized' like the physical sciences will not be fulfilled. These may move securely within the limits of certain well-defined assumptions, which all workers, though they may fight over minor points, agree to respect. Logic, which studiee the principles of our thought about all things, cannot be content to leave unquestioned the aseumptions within the limita of which it thinks : for it is thoee very esenmptions that it investigates. The history of Mill's own work disprovee his anying, for it is on its metaphysical side that it has been most vehemently attecked. Into euch controversies, however, it is not the aim of this book to enter. It would be absurd to pretend that the trestment of many topica in it does not reet upon a metaphysic which some wpuld reject, and of which the rejection would mean the restatement of what is written here. But he would emsay a vain task, who abould attempt to expound the rudiments of Logic with no metaphysical presappositions; therefore it in better not to conceal them; bat though the points at which they are moest important will be indicated, they will not be discuseed as they deserve.

CHAPTER II

OF TERMS, AND THEIR PRINCIPAL DISTINCTIONS

Wee have to study the principles which regulate our thinking about any subject; and these can only be discovered by examining our various particular thoughts. Now the true unit of thought, the simplest complete act of thought or piece of thinking, is the Judgement, or Proposition : between which, if a distinction is ever intended, it is that the proposition is the expression in words of a judgement, and unless a judgement were expressed in words, we could not study it. This does not mean that it need be uttered aloud, or written down, though these may be helps to us in fixing our attention; bat we mast express it mentally to ourselves in words or in a proposition, if it is not to evade us. The judgement being thus the unit of thought, it might be expected that Logic should begin with a discussion of judgement; but it is more usual to begin with the elements of judgement, viz. terms. It is, however, only through its place in a judgement that we can understand what is meant by a term. When that has been explained, it may then be convenient to discuss the doctrine of Terms, before passing to a faller consideration of Judgement.

To judge, in the logical sense of the word, is not to acquit or condemn, but to affirm or deny a predicate of a subject. It is easy, however, to see the connexion between the two wee of the word; for when I judge, in the logical sense, I decide with myself what is, or is happening. 'Vengeance belongeth unto the Lord,' 'Sweet are the uses of adversity,' xalemd̀ rd ̀ кahá, Balbus aedificat, are all judgements. In each I recognize a matter of fact, and what I recognise in each is different. ${ }^{1}$ Bat in the matter of fact there is a distinction seen when I judge, between the subject and the

[^4]predicate; for I recognize something in particular as charactarizing the object of thought already before ma. ${ }^{1}$ Subject and predicate unite with one another in the object, and we are aware that because distinguished they are not separate, as the words that indicate them are in our proposition. Neverthelees, the judgement admits of analysis into those two factors, as has been already said. Subject and predicate (Gr. vizoкeluevoy and кarpropoúpeyov), as the parts into which it is analyred, are called the termet of the judgement. ${ }^{3}$

From this it will be clear that a term is not the same as a word; a proposition may contain any number of words; but one judgement never containg more than two terms. Sabject and predicate may be expressed each in a single word, as in the proposition 'Tastes differ'; more commonly each requires several words, as in 'Dead men tell no talea'; while sometimes, on the other hand, a single word expresses both, Cesest's famous meseage of three words, ' Veni, vidi, vici,' containing as many distinct propositions, each of which may be broken up into the subject-term ' I', the came in each, and a predicate-term which is different. Again, some worde are not normally capable of signifying the terms of a judgement at all; they do not indicate by themselvee any object of thought, but are either used, like an article, in conjunction with some descriptive word, to deeignate an objeot, or like an adverb, to qualify what another word expresses, or like conjunction and prepositions, to indicate a relation between different parta of a com-

[^5]plex object of thought. ${ }^{1}$ Such words are called rynedfecórenáatic (ovyкarnyop \quad uatıxd) because only capable of being nsed along with others in predication; while words which signify what can by itself be a subject or predicate in thought are called categorematic. These, indeed, while capable of being used by themeelves for terme, may also enter into a term as one of the words of which it is composed; thus man is a term in the proposition 'Man hath found out many inventions', but not in the proposition 'The beart of man is deceitful': the sea in the proposition 'The see shall give up its dead', but not in the line 'She left lonaly for over the kings of the sea '. In this line the words italicized are syncategorematic; but eea is not ayncategorematic, because it can stand for a terra, though here it doee not do so. Terms compoeed of word of both kinds have been called 'mixed terms'. It is true that syncategorematic words, though signifying nothing about which anything can be asserted, or which can be asserted of anything, can yet as words be made the sabject of lingaistic or grammatical discussion, as when we say 'Of is a preposition', or 'is the sign of the genitive case in English'. When words which signify no complete object of thought are made objects of our thought themselves as words, it is said to be by a atppositio materialio.?

[^6]Some logicines have preferred to speak of mames, rether than terme, or have been ready to apply to a term Hobbes's wellknown definition of a name. 'A name,' he cays ${ }_{\text {L }}$ ' is a word taken at pleasure to serve for a mark, which may.miso. in our minds \leq thought like to some thought we had before, and which, being pronounced to otbers, may be a sign to them of what thought the spenker had, or had not, before in Bis mind. ${ }^{1}$ This definition adfinisbly expresees the function of a name, though it covers many expresions that contain more than one word; bat it is not equally appropriate to define a term. For the name not is but signifies the term. A term is properly one of the elemonts into which the object of our thought is analysed when wo break up the judgement; s name in the mark which serves to fir and recall these elements in the objeot of our thought. The name belongs to the expreseion of our thought in language; but thought itsalf is not made up of, and is not generally sbout, names. We shall therefore commonly speak of terms, and not of names. Nevertheless, by term will sometimes be meant the name solich signifies the term. For example, when it wae said that in the proposition 'The heart of man is deceitfal' man ontered into the subject-term as one of the words of which it is composed, it would have been more sccarate to say that it entered into the name (or phrase) which signified the subject-term. But we may consult brevity by the other expression without serious risk of confusion; for the name and the object of thought which it signifies are obvionaly different, and it ia ensy to know in which sense 'term' is meant in any context. Usage has annctioned the application of the word 'term' both to the object thought of, and to the verbal expression for it; this usage extends beyond Logic into common speech; and more dificultiee would probably be casued by departing from than by acquiescing in it. ${ }^{2}$

[^7]A term then may most properly be defined as whatover can be thought as the oubject or predicate of a propasition.' But if we mean the name or verbal exprestion signifying what is thus thought, we may define it as a word or combination of words capable of alanding as the andject or pradicato of a propasition. In order to mark the former sense more unambiguously, logicians where the subject or predicate is not an individead ${ }^{2}$ speak sometimes of concepte instead of tarms, the word 'concept' signifying alwaye an object of thought, and never the name of it. What the logician calls s concept is often in common apeech called a conception; my conception of heaven in what I think of when I speak of heaven. But it is desirable to be able to distinguish between the act of conceiving of heaven, and what I conceive it to be; in popular speech 'conception' may signify either the act of conceiving or what is conceived, as 'narration' may signify either the act of narrating or the story narrited, and 'composition' either the act of composing or what is composed; we may any that a man is engaged in composition, or that he has sent hie comporition to the printer. The Greek language distingriahed theee two meanings by different verbal terminations, the act by nouns in - σ (s (like alodnots and \quad of $\eta \sigma t s$), the object or product by nouns in - μ (like alooqnua and $\nu \delta \sigma_{m \mu a}$). It is this distinction which Logic marks, by using the word concept for the object or prodnct of the aot of conception. ${ }^{8}$
[It has been asid that a concept in an object of thought. But it may be anged that the objects of our thought are things themselves; are things then the same as concepts? When we make a judgement, it is posaible to distingaish between (i) the object, reality, or matter of fact which we recognize, and (ii) our thought in recognizing it. If I say 'Gibraltar belongs to the British
predicatee in a proponition, can hardly be called namee at all. Nor would any one speak of the 'middle name' in a ayllogiam, though it is worde which are ambiguous when we have an, 'smbiguous middle? Hence it noems deairable to retain the word 'term' in both the senees mentioned in the naxt paragraph.
${ }_{1}$ Nothing is a term except when it is $e 0$ thought: but when we consider terme in ioolation, the queation is not whether arything is a term in a given judgement-for there is no jodgement given-bat whether it is a torm of a poomible jadgement. Hence in our delenition we mant say ' Whatever cas be thought, \&a' and ' capable of otanding' .

- Technically, in the case of conorete general or of abotrect terma. Cf. infra.
${ }^{\circ}$ On the natare of concepte of. pp. $55-57$ infru.
[Crown', I refer to a rock at the entrance of the Mediterranean, and a fact in its present history. These form the 'first intention' of my mind. But my recognition of this fact about Gibraltar is itself a fect, and the thought in which I recognize it may be considered, and will form the 'second intention' of the mind. If. I consider this recognition, i. a my judgement, I find it involves a recognition of the union with Gibraltar of this relation to the British Crown. These therefore are the terms of my judgement, and its terms are objects or realities reeognized; for 'belonging to the British Crown' is as real as the rock, though not visible or tangible. But I might have thought Gibraltar to belong to the Spanish Crown ; and that relation, though real-it is real for example of Algecins-is not real of Gibraltar. Again, I might have apoken about Atlantis, instead of Gibraltar; and Atlantia never existed except as an object of Plato's or other men's imagination. Inasmuch then as we may think aboat that which does not exist, or think falsely about that which does exist, it is necessary to distinguish objecte of our thought from objecte ecaisting. Terms therefore are alwaye objects of our thought; but they are not slways objects that exist ${ }^{1}$; though in any true judgement they are both. Hence it is possible to say that a term is some reality, or element in the reality, thought of, and it is possible to say that it is merely something thought of; the objects of our thought need not exist, and oven if they do, we need not consider whether they do or not. When concepte, or-more generally-terms as the elemento into which a judgement is broken up, are taken in isolation, we do not ask whether, in thinking of them, we are thinking of an existing object; it is enough that they should be objects of thought; for this purpose, they must not contain elements which cannot be thought of as combined (as in the term 'square circle') ; but they may be incapable of being thought of as combining with what really exista, and yet be objecta of thought just becanse we are ignoring the question of their combination therewith. A concept then is an object of our thoughtor our thought of an object, if that means what we think it to be, and not the fact of our thinking about it-as opposed to an object as existing irreapectively of our thinking about it ; though of an individua, so far as its being goes beyond what thought can .grasp, there is no concept.' Whether any objects exist altogether irrespectively of the knowledge of them is a profound meta-

[^8][physical question; holding that they do not, we muat atill admit that they exist irreapectively of this or that man's knowledge of them. And existence is not necessarily material existence; the objecte of mathematical knowledge exist, though they are not material, like Gibraltar, and no one could moant a battery on them. But there are objects thought of which certainly do not exist except as objecte of thought to the individuals who think of them; these have their being only in and for thought, and are concepts which have to be distingrished from 'things themrelves'.]

Having considered what a term is in general, and distinguished a term as an object of thought from a term as the word or worls signifying it, we must now consider the main kiede of lerms that Logic hae to recognize. The ordinary clasmificatione of terms are clasaificatione of them as words which aignity objects of thought; but the dietinctions are based on differences in what we think of, and in our way of thinking about things.

Terme as objeote of thought are divided first of all into pbetreot and oonarsete: terms verbal ${ }^{1}$ into ebetreot, conorete, and attribative. A concrete term (verbal) is the name of a person pr thing, an abstract term the name of a quality or attribute; © that the distinction between the thing and ite qualities, between substance and attribute, is tho basis of the dirtinction between concrete and abstract terms. Attributive terms will be explained later.

Our notion of a thing involves two elements, which furnish the bssis for a farther division of concrete terms into thoee which are alngular and those which are oommon or general. A thing is, first, an individual, having an existence distinct from that of other individuals; the page, for example, on which these lines are printed is a different page from every other in this book. But secondly, a thing hes a character, which may be the ame in other things; junt as other pages in this book, though individually different, are equally pages. This character, which belongs alike to many individuals, is called sometimes an wniveraal; and they, as so many different cesee or examplea of it, are called particulars: partieulars, as we often say aloo, of a kind.

Now the various particulars of a kind, 20 far es they have the ame oharaoter, may be called by the mame name: oo far as
${ }^{2}$ i. e. termasa $=$ the word σ words nigniffing an object of thougbt.
they are distinct particalars, they will require different namee to distinguigh them. Their names as things of a kind are common or general names: for the name is common to all particulars of the lind, or applies generally to any; soorn, equirrol, file, metal, are gengral namee. Their names as individuals, if they have any, are singralar; like London, Zoroaster, the Matterhorn; sach names as theee we call propar names. A general term is thas one that is prodicable of any mumber of individmale in the same semoe: a singular term one that is prodicable of one individual only in the case wense. Smith for example, an meaning one who works in metal, is a general term, becunse I mean the same by calling Dick or Thomas a amith; if I use it as a proper name, numerons as are the persons who bear it, I do not mean the mame in each use of it. I may refer to the defender of Acre, or to the witty canon of St. Paul's, or to any of a hundred and one others, and in each case my meaning is different.

We are seldom at a lose for some general term by which a particular thing may be denoted; but comparatively fow particulara have singular terms appropristed to them. Many particulars of | a kind-for example, new pennies-are not distinguiahable at all to our senses, except by each occupying (when we see them together) a different place; theme will not have each a different name, for we should never succeed in calling each individual always by its own proper name. In other ceses, though the particulars of a kind might be tolerably distingaishable-for example, lumpe of chalk of varying ahapes and sizes-we have no occasion to refer to them individually, nor to burden our memory with so many namee. We are content to employ a common or general name, and to specify the particular object (from among all those that bear the name) to which we wish to refer, by pointing, or the use of a demonstrativeor posesesive pronoun, or some periphrasis. Thus we say ' the picture there', and point: or 'this year', or 'my great-coat', or 'the buat of Jalize Caesar in the British Museam of which Froude used an engraving for the frontiopiece of his life of. Ceesar'. Such expressions are indeed in a manner singular terme, for they serve to designate particular objecta; they are not however proper names, and they have been conveniently chriatened deaignationa d/f. fli i 1%.

But where particulars of a kind are distinguishable, and we are interested in them aingly and wish to be able to refer individu-
ally to them, we give them 'proper names'. Thus every individaal man has a name of his own, and overy field in the country is named, becsuse the farmer needs to tell his men which particular field to work in; and a railway company names or numbers its various engines and carriages. Though however many particular things have no proper names, all which have proper names have general names also; the 'four-acre' is a field, the 'Corniahman' is a train, William the Silent is a man; and on the other hand any particular thing might, if it were worth while, be distinguished by a proper name. The proper name and the common name thus recognize reepectively the two elementa in oar notion of a thing noted above: the proper name recogaizee its distinct oxistence, the pommon name its character that it shares with other things: nor could our thought abont things axpress iteelf fally without concrete terme of these two kinde.
[This has not indeed been always admitted. Thus James Mill in his Analyvis of the Haman Miod (vol. i. ch. viii. p. 260, London, 1869) writes that it is 'obsious, and certain, that men were led to class solely for the purpose of economizing in the une of namee. Could the purposea of naming and discourse have been as conveniently managed by a name for every individaal, the names of classes, and the idea of classification, would never have exieted. Bat as the limits of the human memory did not enable men to retain beyond a very limited number of names; and even if it had, as it would have required a moot inconvenient portion of time, to ran over in discourse as many names of individuals, and of individual qualities, as there is occasion to refer to in discourse, it was necessary to have contrivances of abridgement; that is, to employ names which marked equally a number of individaala, with all their separate properties ; and enabled us to speak of maltitudes at once'. The position here taken ap by Mill is known technically as that of nominaliem, the doctrine that things called by the same name have only the name in common; a doctrine frequently professed, but not often stated with auch uncompromising clearness as in this passage. We do not however really call different individuals by the same name, except because they have or are believed to have the eame nature; nor is it conceivable that we could name an individnal by a proper name, without at the same time recogrizing in it, however vaguely, some character that, as capable of existing equally in other individaals, might be marked by a general name. General names therefore are not a mere means of abbrevisting discourse, but their existence arises from a necessary festure in our thought about objects. Aristotle's distinction at the
[beginning of his 'Categories' between d μ^{\prime} rova, or things called by the same name having only the name in common, and ovvivyua, or thinga called by the same name having aleo what is meant by the name in common, may be mentioned here: the distinction is nowedays embodied from the side of names instead of things in that between equivocal and anivocal terms (0 . infra, p. 84).]

There are thus two kinds of concrete terms, viz. singular terms, or names of individuals, and common or general terms; singular terms can be further distinguished into proper names, i. o. names permanently assigned to one individual, and desigmations, i.e. phrases which by a pronoun or what not serve to indicate an individual otherwise than by a name of its own. Now it has not been stated in the last sentence, what general terms are the names of. (Are they also the names of individaals, or are they names of the character common to many individuals? The former view seems incomplete, for it does not take accoant of their difference from singolar terms. The letter view soems inconsistent with calling them concrete: for the common character of many individuals, regarded by itself, seems like a quality-something considered in abatraction from the things possessing it.

The importance and difficulty of this problem can only be appreciated in a more advanced study of thought than this volume contains. Here the following solution must suffice; bat we shall come upon the aame isaue again in other connerions.

A general term, being predicable of any number of individuals in the same sense, implies that though they are individually different they have something in common; in other words, that there is something the same in different individuale. This common character is only found realized along with the apecial differences that distingaish one individual from another; the common character of man is found in you and me concreto with all that distinguishes one of us from the other; and man is a concrete term. When on the ground of that common character we are called by the same name, the name is concrete; but when the common character is considered by itealf, and a name is given to that, without regard to or in abstraction from the individuals who manifest it, that name is abetract. Thus kemanity ${ }^{1}$ is an sbstract term, though it is what

[^9]makes each of us a man. The term gold, again, is concrete; we may ay 'this gold' and 'that gold', and 'the gold in the cellans of the Bank of England '; but if we regard the common character of all theee, in abatraction from any particular parcel of gold, we should call it 'goldnees', which would be an abotroot term. The readiest test whether a torm is concrete is furnished by asking' Do I mean by it some person or thing (or some assemblage of persons or things), or only a quality or attribute of such?' Thus animal is a concrete term, but colowr is not; wociety, when we talk about 's society', is concrete; when we say men live together 'in society', it is abstract, for then we mean by the word not men living together in a certain way, bat only the way in which they live together.
[It whe atated above (p. 18) that the dirtinction between concrete and abstract terme rested on the distinction between subatance and attribate; and in the last paragraph it might have been asid with more precision that the test whether a term is concrete was furnished by asking whether it could be used of a substance or assemblage of substances. And the difficulties often felt in determining whether a term is concrete or abstract apring from the difficultien larking in the distinction of substance and attributa. If by substance we mean the fully determinate individual, then what we call the attributes of a substance are elements in its being, and it is not something to which they can be attributed as addends, like an article of clothing; the individual is not substance + attribates, the attribates are rather fectors in the subatance. Any of these attributes, however, can be considered separately or in abstraction from the rest of the nature of the concrete aubstance, and so considered can be as it were repleced in thought in the concrete whole from which it has been abstracted, or be altributed to it. But while sometimes what we thus consider eeparataly is only some comperatively simple feature of a thing, as its colour, or size, or price, at other times we consider in one notion or concept indefinitely numerous features, on the etrength of which the thing is grouped with others in as 'natural kind' (cf. pp. 41-4s inf.). If we gave a name to these features considered in abstraction from what else characterizes the substance, such name would be abstract; but just because they constitute eo much of its being, we give a name only to it as constituted by them, and such a name, like man or gold, is conerete; they are not abstracted from and attributed to the remainder; and therefore we have no name for them considered separately, unless special reacons prompt us, as in the case of 'hamanity'; but ge a rule, where occasion demands abotraction, we use \& periphrasie

ii] TERMS, AND THEIR PRINCIPAL DISTINCTIONS

[like ' the nature of gold', and have not abstract terms like oldness. It is perfectly justifiable to say one abstract term is less abstract -more concrete-than another, in the sense that though we are considering not any substance, but some part of the fall and determinate nature of a substance, yet the part we are considering is more, and more determinate, in one case than in another. Thus the properties of figure and number, which can preeminently be studied in isolation from all else about things, are preeminently abstract.

Language, unfortunately, is apt to mislead us in this matter. Many abstract terms are not commonly used in the plural; and when we find a term used in the plural, we are apt to think it concrete, as predicated of divers individuals. But this is not neceswarily the case. Triangle is not really a concrete term because we can talk of triangles ; 'triangles' is indeed concrete if it refers to things of wood or steel, and so is the singular in like case; but 'triangle' often means the triangularity of every individual triangle, and 'triangles' different modes of such triangularity. And colour is not concrete because we can speak of colours. 'Colours' is concrete if I mean certain slabs of pigment; but if I mean blue, green, and yellow, as qualities, it is abstract.

The distinction of concrete and abstract terms in therefore only really intelligible if we ask ourselves what we are thinking of. If we took alone to terms verbal, it is impossible to tell whether a name is abstract or concrete; for many names are equivocal, being sometimes one and sometimes the other.]

Abstract terms then are the names of qualities or attributes; but we must understand this definition rather widely. It is not only single sensible qualities, like flavours or odours, whose names are abstract terms; all that goes to make the nature of an object, when it is considered merely as qualifying ouch object, is abstract, and its name (where it has any) an abstract term. Moreover, the object in question need not be a single thing (or person) such as a stone or an elephant; it may be an assemblage of what we regard as distinct things (or persons), like a forest, or an army; but if there are features belonging to. this assemblage, though they are not qualities of any one ohjoat in it (as a forest may be extensive and an

product army skilfully or anskilfully disposed), these features considered in themselves are abstract, and their names, 'extent ' or ' disposition', abstract also. Hence animality, discipline, civilization, paternity, are all abstract terms, though it is only by adoubtful extension of language that we could call any of them a quality, like fragrance or sweetness.
[The distinction of singular and general is not applicable to abstrict termse The calling a concrete term general rests upon a consideration of the many different individuals who being of the same kind claim the aame name. But an abotract term is the name of that which is common to many individuals, considered without reference to its repetition in them all. It may be thought that abetract terms ought therefore to be called singular; but neither would that be correct. A singular term denotes an individual; but an abstract term denotes something common to many individuals, something therefore which is ' niversal'.

It is indeed true that whereas general terms are applied to many distinguishable individuala, certain abstract terms are predicated of many distinguishable attribates. Colour is used equally of blue and red and all the öther colours of the spectrum; disease, of measles, whooping-cough, bronchitis, and many other ills that flesh is heir to; whereas we do not distinguish different examples of blue by different names', nor different cases of bronchitis But 'blue' and 'bronchitis' are not for this reason singular terms; the true analogy of the relation of the terms 'blue' and 'colonr' is the relation of the terme 'man' and 'animal', and not that of 'Socrates' and 'man'. Justas no one would say that ' man' is a singalar term because it in one species of animal, 80 we ought not to say thst 'blue' is a singular term because it is one species of colour, nor ' bronchitis' because it is one species of disease; for that would be to confuse the distinction of apecies and genas with the distinction of individual ${ }^{2}$ and universal. 'Socrates' is a singular term because it is the name of an individual having attributes; 'blue' is not a singular term because it is not the name of an iadividual at all, but of an attribute that may belong to many individuals.]

Besides abstract and concrete terms, a kind of terms has been recognized which cannot well be classed with either-viz. adjectives and adjectival terms. These are called attributive terms, e.g. red, beaten, insolvent. They are not the names of qualities, like redness, defeat, insolvency; on the other hand, it is those qualities which furnish their meaning, and not the nature of the verious kinds of object to which the qualities may belong. Thus cloth may be red and so may silk, but we should not explain what is meant by calling them red if we were to explain the nature either of ailk or cloth; and a man may be ineolvent and

1 We may of courre distingaish rarieties of any one colonr by special names, like ily-blue and peacock-blue. But this doee not affect the argument in the text: it would only require na to treat, not blue, but sky-blue or peacock-blue as the abotract term that is applicable only to one uttribute.

8 The individuals of one kind are sometime also called particulare (of. p. 18), in contrast with the wniperal or kind that characterizea them all.
$s 0$ may a company, but to explain what is meant by calling them insolvent we mast explain the nature not of man, nor of a company, but of insolvency. ${ }^{1}$
J. S. Mill held that adjectives are really concrete, on the ground that white is predicated, or is the name, of snow, milk, or linen, and not of their colour; it is an army and not a defeat that is beaten ${ }^{2}$. But it is clear that the subjecte of which an adjective may be predicated can as well be abotract as concrete; and if the adjective is concrete because it is predicated of a thing, it should equally be abatract because it is predicated of an attribute; so that if we say that cabbagea are common, common will be concrete; while if we sey that indolence is common, it will be abstract. The fact is that the diatinction of attribative terms from sbatract and concrete correeponds to no further diatinction in thought; if terms are objects thought of, attributives are not terms at all; we may attribute a quality to a subject, but that in an act of judgement; thing and quality, sabstance and attribute differ as objecta thought of; thing or substance is concrete, quality or attribute abetract, and everything abstract is attributable; but there is no third kind of object thought of to correspond to the attribative term. In language however there are words which, though they can be used as predicates, and therefore satisfy the definition of a term verbal, are not properly name either of a substance or of an sttribute. Adjectives are such words; but no aleo are verbe. Verbe however were overlooked by thoee who erected for adjectives a third clasa, along with abstract and concrete, in the division of terms verbal. For terme are the parts into which a judgement is resolved; in them, taken singly, the act of predication is not eeen; they are as it were dead mambers, which could only have been taken apart because the life of judgement had fled and no longer bound them together. But in the meaning of the verb this life lingers, even if a verb be taken without its aubject. Hence

[^10]logicians, anxious to effect the reaolution of a judgement into its terms, have often preferred to sunder, even in langaage, the word which expresses the predicate from that which expreses its predication: to take the term as it were out of the verb, and any of Lear not, with the doctor ${ }^{1}$, that he 'sleepe still', but that he 'is still aleeping'. Now in such a case the predicate is often adjectival in form; although not always, for the proposition ' He plays cricket' would become, if it were meant that he played habitually, not ' He ia playing cricket' bat ' He is a cricketer'. Such an adjectival predicate is one of the parts into which the proposition is resolved', whereas the verb belonga rather to the unresolved proposition. The whole queation of the separate character of the adjective, or sdjectival word, belongs indeed rather to grammar than to logic. But when 'term' meane name, or tarm verbal, as names are either arbstantival or adjectival, and concrete and abotract names are both substantival, some place is wanted for names adjectival, and so they are classed separately as attributive terms. If their form were to be ignared, and they were to be referred either to concrete or to abstract, they ahould ratber be considered abetract than (ae J. S. Mill would have it) concrete; for their invention impliee the consideration of some quality or character in the thing in abstraction from the rest of the thing's neture.

A special clese of terms is constituted by those which are called oolleotive. Like the other distinctions of tarms recognized in Logic, this is besed on a distinction in things. Individual things or persons may be coneidered singly: they may also, since there are many of them, be considered in groups; and the names of such groups are collective terms. Thus a group or collection of books forms a library; a group of human beings related in certain ways forme a family; related in rather different ways, a tribe; in other ways yet, an army or a club. Any term that denotes a collection of objects, with certain resemblances or relations among them, is collective. Collective terms may be either singular or general ; for we may wish to refer to a group composed of certain specific individuals

[^11](as when we any 'the family of King Henry VIII') or simply to a group of individuale, no matter who or what, that is composed in a certain way, ench an a family or a regiment: bat all colleotive terms are concrete, for they are the names of the individuale taken together, and not of the mode of organization among them. A general collective term is said to be used distributively of the different groupe that it can severally denote, and collectively of the individanls in any one group; thus if we speak of Britiah regiments the term is used distributively of the Guards, the 6oth Rifles, the Sutherland Highlanders, \&c., and collectively of the men in each several regiment.

We may sum up what has been so far mid of the kiode of terme as followe:-Terms as objecta of thought are either concrete or abstract ; as names or terms verbal, concrete abstract or attributive: concrete terms are either singular, and then either proper names or designations, or else general : abstract terms, having no reference to individuala, are not conveniently considered as either singular or general, but always signify something univernal; and some of them are not names of one recognized attribute (or atate or quality or relation) only, bat inclade under themselves divers species thereof. It may be added that attributive terma are obviously general.

We paes now to a fresh division of terms, made from another point of view. As we may give a name to a group of objecta taken together, which would apply to none of them by itwelf, 00 we may give to an object or quality, when we regard it in ite relation to'some other object or quality, a name which would not apply to it considered in itself. Such terms, attribating to one object or quality come definite relation to another, are called rolative terms : and in contraet with them, terme that indicate an object or quality considered in iteelf are called abeolute. It is clear that if one object or quality stands in relation to another, the latter must also stand in relation to the first; and the name applied to it to indicate this reverse relation is 'correlative'; or, since each is correlative to the other, the two together are called correlativee. Instances of relative terms are equal, greater, subject, parent: with their correlstives eqwal, lew, ruler, child; apple, sownd, man are absolute terms.

Belative terms are necesaarily general ${ }^{1}$, like attributive torms;

[^12]for the same relation may be exemplified in many particular instances, and therefore many objects may stand in that relation which the relative term is used of them to indicate. They have this further resemblance to attributive terms, that though meaning a relation, they are applied to a subject atanding in that relation : as attributive terms are to a subject posesesing the attribute which constitutee their meaning; they are not however themselvee necessarily attribative-thas 'contemporary' is relative and attributive, but 'a contemporary' is relative and concrote. The existence of attributive terms is groanded in the fact that the various objects of our thought do possess distinguishable attributes; and that of relative terme in the fact that they do stand in distinguishable relations one to another. It has been contended that all terms are really relative, because every object of thought stands in relation to other objects, and nothing can be abeolute except the totality of existence, beyond which there is nothing for it to stand in relation to. Bat though it is trae that everything stands in relation to other things, things are sometimes considered rather in themselves, and receive names accordingly; and sometimes they are considered in definite relations to another thing, and receive names that indicate that particular relation. And this is sufficient ground for the distinction between absolute and relative terms, though there are cases in which it is hand to say whether a given term is one or the other. Man is clearly abeolute, and falter relative, though mosntain might be disputed; for a mountain is 80 only by its elevation above the plain, and yet in calling it a moantain we have in mind many features beaides this relation.

Terms have been forther divided into pasitive, negative, and pricative. A poaltive term is said to imply the presence of a quality (or qualities), e. g. greed, greedy : a negative term to imply the absence of a quality, e.g. colowrlest, «nfit, anfinear : a privative term to imply the absence of a quality where it has been or might be expected to be present, e. g. deaf, deafness, dericeated.

There is a certain difficulty in the notion of a negative term, and in the account of it just given; for no term can be purely negative, and imply merely the absence of a quality. The Irishman's receipt for making a gan, to take a hole and pour iron round it, is not more difficult to ezecute, than it would be to frame a term whoee meaning consisted aimply in the fact that a particular quality whe not
meant. A term mast have come positive meaning or content, in order to be a term at all.

It is indeed sometimes said that a negative term includes in its meaning whatever is not meant by the corresponding positive term. According to this view, there is no positive term to which we may not frame a corresponding negative; to man there corresponde not man, to book nob-book, to square not-square, to colour motcolour; molman is everything which is not man, and includes therefore not only the other animal apesies, but plants and mizerala, books and institations, birth and immortality; mot-book includes all these but books, and man besides; and so forth. The two 'contradictory' terms (as they are called) comprise between them all that is; nothing can be conceived, of which one or the other is not predicable; and they divide the universe betweon them. What the positive term is, does not matter; for whatever it be, the negative term covers everything else; and therafore it may be expressed by a symbol; let A represent any term, and not- A its contradictory; and we may then say that A and not- \boldsymbol{A} between them make up all that is, or that there is nothing of which one or other may not be predicated. 'Everything is either 4 or not-4.' ${ }^{1}$

Such negative terms as these do not really figure in our thought; they are 'mere figments of logic' ${ }^{2}$; Aristotle long ago pointed out that ovix-dodparos was not properly a name at all ; and be

[^13]perhape extended his countenance too much to it, when he mid that, if we were to call it anything, we must call it a ' name indeterminste' ((\%oua dopiotoy) becuuse, being the name of nothing positive and in particular, it had a purely indeterminate signification; it was applicsble equally to things existent and non-eristent. ${ }^{1}$

The invention of such terms however is explained when we remember the relation of a term to judgement. The latter, as we have eeen, is the primitive and remains the complete act of thought, and terms are got by abetrmotion from it. Now the affirmative judgement 'All flesh is grass' may be resolved into the terms flesh (the subject) and grass (the predicate affirmed of it); bat the negative jadgement ' Man is not a fly' ${ }^{2}$ into the terms man (tho subject) and fly (the predicate denied of it). But since we do therein affirm that man is not a fly, it seeme possible to cay that the predicate, mot a f_{l}, is affirmed of man, as well as that the predicate fly is denied of him. This attempt to reduce negative and affirmative judgements to a common affirmative type, by throwing the negative into the predicate, is not really defensible, for the very reason that the negative term not a fly has no meaning; and hence, as we should not take the troable to afflrm of man nothing in particular, the ouly point of the judgement must lie in denying of
/ him something in particular; so that the measing of the 'infinite' judgement (as it is called) 'Man is not-e-fly' lies in the negative judgement 'Man is-not a fly', and it is clear that we have not resolved the negative into the affirmative form, when such affirmative can only be understood by restoration to the negative. But it is out of such attempts that parely negative terms like 'not-fly' have arisen; and it is only by understauding that the term A has been the predicate of a negative judgement, that we can understand how the term not-A should ever have been formed.

There are however certain negative terms which are not such mers figments of logic as the 'infinite terms' which have been just considered. Where the positivett not a general concrete term but
${ }^{2}$ de Interpr. it. 180 80-83: the technical torm in Latin is nomen infinitum, whence the English phrse 'infinite term' is derived : bat infinits means in this contert indeterminate; and for the ale of perrpicuity, the latter word has been ased in the tert.

Why hath not man a microncopic eje?
For thin plain reason, man is not a fly.
-Pope, Emay on Men, L 198.
is attribative, there the correrponding negative may be quite legitimate; indeed the distinctions of positive, negative, and privetive moot properly apply not to all, bato $\overline{\text { IN }}$ to attributive terms, or to abstract terme founded apon these. ${ }^{2}$ For all attributive tortha finply by their very form a anject of which they may be predicated, and to which they refer that attribate which constitatee their meaning. Therefore even if the term be negative, it still maggeste a sabject which, in the absence of the attribate which the negative term excludes, is poritively conceived a having some other character instead. And here we have a bacis of positive meaning to the negative term; for let A be a positive term; then not-A will signify what a sabject, whiek anight be A, will be if it is not d. Thus intemperate signifiee what a man, who might be temperste, will be if he is not that; wneven ruggesta what a line or surface, such as the surfice of a road, will be if it is not even; mot-blue suggeote what a thing which might be blue (that is, an objeot which must have some colour) will be if it has not that colour. The definiteness of the positive meaning which a negative term thus conveys will vary greatly, sccording to the range of alternative attribate which we conceive possible to a subject that might conceivably have possessed the attribute denied of it; thus intemperate has a more definite meaning than mot-blue, because when temperance is excluded, though there are many degrees of intemperance, yet they have more affinity with one another as contrasted with temperance than the different coloare which remain when we exclude blue; anrufled has a more definite meaning still, for a surfece which is not in any way raffled can only be smooth.?

It has been alleged that 'not-blue' does not necesearily imply - coloured in some other way than blue', nor 'not-even' a surfece of another kind than even; that it is as true to may of benter that it is not blue as of a buttercup, and that larceny is as much not-even as Lombard Street. But such a contention misinterprets our thought. Just as privative terms imply the aboence of an attribate from a subject that pomessed or should have possemed it, and therefore must convey a notion of what the subject consequently is without that attribute, so negative terms (at any rate when they are not

[^14]J mere figments of logio) imply the absence of an attribute from a subject that might conceivably have posmened it, and therefore convey a notion of what the aubject is instead. The attribute which a negative term excludes belongs to a genue of attributes (as blue belongs to the genus colour, or pradence to the genus feature of human character, or equare to the ganua figure); and if a subject is unsusceptible of any attribute within that genas, we should not be at pains to deny of it some particular attribate in the genus; since the soul for example has no figore, we should not say that it is not-square; since furnitare has no feature of human character, we should not call a towel-horse imprudent. The negative term is only used of what must have some attribute within ite genue; and this genus furnishes a subetratum of poritive meaning to the negative term; mot-blue doee mean 'coloured not with blue' and not-soen having a surface which is uneven. ${ }^{2}$

The statement that the distinction of terms into positive, negative, and privative is ooly applicable properly to attribative_or relative terms mas aeem to be contradicted by the fact that many negative terms, sach as injustice, inequality, non-intervention, are not relative or attributive. Bat it will be foand that all such terms are abotracts that presappose the relative or attributive negative term; and are very positive in their meaning. Injustice does not mean whatever is not justice (auch as 'accidence and aljectivee and names of Jewish kingu'), but the quality of being unjust; inequality means the relation of being unequal; nonintervention the conduct of the not-intervening. Abetract negative terms like not-equality or not-colour are as unreal as concrete negative terms like not-Sooratee or not-book.

It may be asked, if all negative terms (and the same is true of

[^15]privative) have a positive meaning, what is the use of the distinction between them? The answer is as follows. First, with regard to the diatinction of poaitive and privative terms; there are some atatee which can only be understood as the privation of a positive state: deafnees would have no meaning, but for our knowing what it is to hear; we cannot think of a body as desiccated, except we think of it an having first contained moisture. ${ }^{1}$

Secondly, with regard to the distinction between positive and negative terms: there is a real difference between a term which aignifies one defnite attribute, and a term which signifien any attribute within a genus except one; the latter is comparatively indeterminate and uninstructive; e.g. vertebrate signifiee a definite anatomical structure; invertsbrate signifies a structare which is not vertebrate, but faile to characterize it further. Positive terms are positive directly and precisely, negative terms indirectly and for the most part ragaely. This distinction is important, and we are therefore justified in calling attention to it; it will be seen for example presently to be one of the rules of definition to avoid, as far as posible, negative terms; and there is no way in which the point of this instruction could be 20 well conveyed as by the belp of the distinction of negative and positive terme.
[The doctrine about negative terms impugned in the foregoing paragraphs furniohes a good example of the dangers that beect a purely formal logic. If we regard only the form of a proposition, Δ in not B, (in which the terms are A and B) we may ' permute' it to the form A is not- B (in which the terms are A and not- B); and we may formally regard A, B and not- B all equally as terma. But whether the proposition A is not- B, and the 'negative term'
${ }^{1}$ These two amanples are not quite parallel. The notion of deafneas can be formed by any one who knowe what hearing in. The notion of dexiocated cannot be formed by any one who tnows what moisture is, but he must also lrow what drynees is. 'Desiccated 'is a privative torm, becavee it means a dryness due to the withdrawal of moisture previonaly present; but 'dry' is just as positive a term as 'moint'. It sometimes happens, with two mutually exclusive alternativen lize dry and moist, that men dispate whether or not both are poritive. Some philoeophers have maintained that pain is merely the privation of pleacure, and ovil the privation of good; others, that pain and evil are juat as poaitive as good and pleasure. In these caeos, it will be also in diapote, whether or not pain and eril are privative terms. But the dispute arisee from our uncertainty how to think about the things ; and so furnishes another illurtution of what bas been pointed out in the text, that logical diatiactions of terme reflect and are based upon diatinctions in the way. we think about thinge.
somind
[not-B, have any meaning or none will depend upon the matter of the proposition-upon what kind of a term B was. Looking at the form, B has a corresponding negative not- B; bat whether such a form of thought, or notion, as not- B is possible cannot be told by considering the form alone.]

We have atill to notice the distinction of anioocal, equivocal, and analogous terms. Univooal terms are terms with only one meaning, so that they are used in the same sense of every subject of which they are used at all: equivocal (or ambiguous) terms are terms with more than one meaning, so that they may be used of different subjects in different sense-e.g. fair, as used of a complexion and of a bargain : analogous terms are terms which have more than one meaning, but the meanings have a certain degree of identity or correspondence-e.g. we apeak of the foot of a man and the foot of a mountaia, meaning different thinge, but in both cases that on which the object etands. We ought in strictness to regard this distinction as one not in terms but in the use of terms; for fair is used univocally of all fair complexions, and is only equivocal when we use it at once in different senses. All proper names belonging to more than one individual are used equivocally of such different individuals.
[The history of the words univocal, equivocal, and analogous wih illustrate the tendency to treat Logic from the standpoint of an affair of names. The Aristotelian distinction already alluded
 Uniocoum and equioocum are merely tranalations of ouvospyon and d μ civvioy, and they were defined in the same way (cf. Crackenthorpe's Logic, Bk IL. c. i. 'Aequivocs ite deacribuntar: aequivocs sunt quorum nomen solum est commune, ratio vero illius nominis est alis atque alia.' c. ï. 'Univoca describuptur in hanc modum : univocs aunt res vel entia quoram nomen est commune, et ratio illius nominis est una at eadem in omnibus quibus nomen convenit'). Similarly, it would have been not the word ' foot', but the man's and the mountain's foot that would have been called analogous. If we remember that terms are not primarily narnes, byt the objects of thought intended by the names, we might still say that equivocal terms are different objects of thought with the same name, rather than the anme name with different meaninge. But in English usage the distinction of names has really displaced that of things: we do not even retain both, like the Latin, when it was said that 'eequivocs' were either 'eequivocantia, ipsse voces aequivocae', or 'aequivocata, res ipsee per illam vocem significatae'.]

CHAPTER III

OF THE CATEGORIES

Ths distinctions between terms discussed in the last chapter are not primarily grammatical, like the distinction betwreen subetantive and adjective (though bere and there, as we asw, the forms of language have affected the mode in which they have been drawn) ; nor do they belong to any special science, like the distinction in chemistry between names in -um, which signify metals, and names in -gen, which signify gases. They belong to all sciences, and are based on certain features that reveal themselves to reflection about any subject whatever; and that is why they are logical. But these differences of form in our thought sbont things correspond to and involve differences in the manner of being of these things themeelves. It is of apecial importance to remember this in considering the Aristotelian doctrine of Categories, out of which some of the preceding distinctions take their rise. The categories present a logical, but they present aloo a real distinction : i. e. a distinction in the nature of the reality about which we think, as well as in oar manner of thinking about it.
The word category, nar η ropla, means predicate ${ }^{1}$; and the categories may be deacribed as a list of predicates, one or other of which defines the mode of being belonging to everything that exista. In the complete list there are ten, viz.

ovola	substantia	substance
тобóv	quantitas	quantity
motob	qualitas	quality
Tpós π	relatio	relation
поิ	$\boldsymbol{u} \boldsymbol{i} \boldsymbol{i}$	place
mord	quando	time
кeîotas	situs	sitastion
8 Cew	Aabitme	state
गouî	actio	activity
Tdoxecy	passio	pasaivity (being acted on)

${ }^{1}$ Or predication: bat the difference is here unimportant, and Aristotle cometimes uses rarmodpqua instead of amroopia in the present sense: v. Bonits, Indax Arietot., a. e. nerpropqua. The Latin equivelent is Procdicamomenn

These Aristotle calle both ' kinde of predicate ', ytom rîp кarmpopề, and 'kinds of being', rivn resy δ orcov. We mart examine the latter phrsee first, if we wish to anderstand hie doctrine.

We heve seen that propositions may be expreseed generally in the form \boldsymbol{A} is B. Bat the predicate doee not eeem equally in all caes to declare what the subject is. A man is an animal, and a man in in the kitchen; Tray is a dog, and Tray is happy now; - musician is an artist, and a musician is breaking my burdygurdy : if we look at theme jadgementa, we ahall admit that the second does not tell us what a man is 20 much as the first; that the third is a fuller answer than the fourth to the question ' What is Tray?'; and that the fifth is a fuller anower than the sixth to the question ' What is a muscian ?'. Now Aristotle would beve said that the first, third, and fifth of them declared what their respective subjecte were caf' aviod, or per e : the second, fourth, and sixth what they were narà cuppe $\beta_{\mathrm{y} \text { adf, or per aceidens. In other }}$ worde, the predicate is in the one cace of the essence of the subject, and the aubject could not arist at all without it being predicable of him; in the other asse it is an accident of the anbjeot. What in predicuted of a subjeot nat' aird tolls you what it in necemenrily,
 you indeed something about it, bat something less neocemary, and perhape unnecoseary, to its being-something of which it could be divented, and atill remain the thing it ia.

The ultimate subject of predication is the concrete iodividual thing-you, Socratee, Bucephalus, or the atose in your signetring ${ }^{\mathbf{2}}$; and if you ack of this what it in, you will have to specify in your angwer, come kind of anbelance ${ }^{2}$; you are a man, Bucephalus is a horse, the stone in your signet-ring is an agate. All

[^16]there-man, horse, agato-are so many different rubetances; in enying what you, Bucephalas, or the stone in your aignet-ring is eventially, or por se, theve are the anowers I must give; their eseential being therefore, is to bersome kind of substances. But If I ank what is a erbetance, I cannot find any more general significant notion under which to bring that, as 1 bring Bucephalus, in declaring what he is, under the notion horse, and bores, in declaring what a borse is, under the notion sabotance. Of substance I can say that it is a kind of being; for sabetances are one kind of things that are; bat it in of no use to treat mere being as a genus, of which subrtances are a species, for to being considered in itaelf, and not as a determinste way of being (a.g. being a subatance), I can attach no meaning.

On the other hand, there are a great many subjects, about which, if asked what easentially they are, I could not possibly asy that they were substances. Large, loud, blue, hearier, here, yesterdsy, fever, horizontal, fighting, ranning, defest, virtae-sll these are something, or they could not enter into true predication: but what are they? Directly or indirectly they all presappose mubstances; if there were no animale, there would be no fever: if no one fought, no one could be defeated. But they are momething incident to sabotances, attributee and not thinge. To eay that they are attributee, however, only declaree their relation to something else, their dopendence ; it does not declare what they are in themselves If we ack that, we shall find oursolves uitimately giving as an answer some one of the othor categoriea.

Thus I may say that ' yeaterdey whe wet': but that doee not tell any one the natare of yesterday in iteelf. Bat if I say 'yeoterday is the day bafore that on which I am now spealing', I explain what yeatorday in itself is. And if next I am asked ' What is that ?', I should reply that it is a certain date or time; and there I must stop. The kind of being then which belongs to yesterdey is not being a substance, but being a time. Similarly blue is a colour, and colour is a quality; loud sleo in a quality, and virtae; so that their being is being qualities; that is what essentiolly they sre Large is a size, i. e. to be large is to be of a certain quantity; to be hesvier is to be in a cortain relation; here is a place; fever in a slate of the body, horizontal a ciluation ; fighting and running are activities, defent a being acted om.

There is nothing then, according to Aristotle, that exists or can be thought of, which is not aither a substance, or a quality, or a quantity, or in aome other of the categories. One or other of them is predicable of everything; and they cannot be farther reduced, or brought under any common head. ${ }^{1}$ A quality in not a quantity, a time not a place, to do in net to be done to, nor any of these s situation: and so forth. It might be thooght that state is hardly distinguiahable from quality, nor sitration from place. But the things are not really the same. A state is momething which characterizes a whole through the condition of its parts. Thus we call a man shod, because he has shoes on his feet; or bealthy, because each part of his body is functioning rightly; bat the healthiness of his body as a whole does not mean that each part of it is qualified slike, nor his being ohod that every part of him has shoee on. A quality, on the other hand, is comparatively aimple, and if it characterize a whole, does mo through being present in the mme way in ite various parts; if a whole aurface in blue, that is because the various parts of it exhibit the same colour, and if a trader's stock is sweet, that is becanse the things it is composed of are severally swoet. The concaption of a state, therefores, is more complex than that of quality; and so it is with nityation and place. 'Upaide down', 'horizontal', 'sitting', 'standing', are in the category of situation-predicates which determine not where a thing is, but ite 'lie' or pooition there. Without place there could be no situation; but you do not determine a thing's situation by assigning ite place.

The categories, therefore, are a list of predicates, one or other of which must in the last reeort be affirmed of any subject, if we

[^17]ask what in itaelf it is. They are yiv rîy xamplopiôy, kinde of predicate, and equally $\gamma^{d} \boldsymbol{m}$ rêv $\delta^{\prime} \nu \tau \omega y$-the kinds of being whic̣ we recognize, the kinds (if we may put it so) of what thinge are, In eaying thimgs here, however, we do not mean things as opposed to their attribater; we mean anything real, and attributes are as real as the substances to which they belong. Neverthelese, the distinction between substance and attribute is prominent in Aristotle's doctrine; for all the other categories are called by him incidental to subetance. And terme in the other categories, while they may be subjecte of predication (as when we say that buie is a colour, or that the wise ame few), are not metaphysically subjecte-are not independently existing, but exist in concrete individuals. There is no blue except the blue of the see or the sky, of a larkspur or a gentian, \&ce.; no wise, except wise men or women. In the category of subotance come all concrete individual things, and these are substances in the strict and fulleat sense. Of these in the hat resort evergthing is predicated. But what is predicated of them is partly itself in the category of subetance, and pertly in the other categories. We have here that distinction between first and second substances which once oceupied so much of the attantion of philosophers and theologiana.

Firat mabatances are individanls like Socrates or Cicero; eecond subatances are predicates like man, horee, peppermint, parsley, which tell what kind of thing an individual ia. The former are never properly predicatee at all; Socratea or Cicero is a subject of predication, but not predicable of anything elee; for what is predicable is universal, i. e. might be predicable of any number of subjecte; but theee are individuals, and singular. The letter are predicates of the former, and are univermal; bat they tell what an individaal essentially is, and oo ere predicates in the category of substance,

[^18]while all else that is said of an individual tells only some quality or atate that chagnctanizea him, his activity or situation, his relation to others, \&c., and is therefore a predicate in one of the remaning categorio.

Undoubtedly it is here that the chief difficalty in Aristotle's conception lies. Bat the difficulties are not sought gratnitocaly; they arise naturally in our reffection upon the nature of things. We naturally incline to think, in considering an individual, that out of all that characterizes it some part is more essential than snother, goes more to make it what it is. This we call ite kind, and Aristotle called it also its substance; and language contains names that are evidence of this, kind-names like man, horse, gold. It is indeed very hard to say exactly what constitates the kind; kind-names, as we shall see later, present apecial obstacles to definition; and a poritive account of the substance of an individual seems beyond us. But negatively there is a great deal which we should say does not belong to the sabotance-the place where the individual is, what it momentarily does or suffers, all in fact that we can refer to other categories All these we tend to think of as attributes which the individual has, but that it can exiot irrespectively of them : whereas, irrespectively of its kind, it mould no longer be at all. And yot the kind is univernal ; it is predicated of more things than one; Socrates, Plato, and millions more are men; the lumpe of iron in the world are uncountable. Hence follow two linee of reflection. ?

First, because the kind, though univeral, is at the same time more substantial than the other predicates of an individual aremore conerete, in fect, than they-the kind, or 'second substance', comes to be thought of a having some special claim to independent existence. Other modes of being, other predicates, dopend on it; but it is thought of as depending on nothing else for ite existence. True that we only find the kind realized in some concrete individual; nevertheless it is not a mere attribute of the concrete individual, as predicates in other categories are. And some have held that these 'second sabstances' are real, whether there be any concrete individual of their kind or not: while others have held that, though only realized in individuals, yet each is one and the aame in all individuals of its kind-man in all men, iron in all iron-and so may be called one subotance, in a different way from
this or that man or lamp of iron, bat just as truly. Eech of these doctrines wes called by the echoolmen realiow ${ }^{1}$, as opposed to the mominalion which denied the realidentity of anything in different individuale bearing the meme kindename.

Bat mecondly, becanes the kind is aniversal, it is predicated of the concrete individual, as predicatea in other categoriee are. And sa the individual is something which has them, so it is something to which ita kind is atfributed. It cannot be identified with ita kind; for then there would be nothing to dirtingaish one individual from another. Man is predicated equally of Soaratee and Plato, and if each as an individaal nabstance were just man, Socrntes would be the same as Pleto. Therefore we murt look elsewhere for what distinguiahes them. If we find it in the other predicates of the concrete individual, and any that he is the kind plas all hie particalar attribates, we revolve the individual into an asemblage of univaroal predientes. If we do not do this, but suppose that hie kind and all his particular attribates 3 well belong to the individual, we are yet quite unable to say what the individual is, to which they all belong. For in mying whet it is, we ahould merely assign to it a freah predicate; whereas we want to get not at its predicates bat at that which 'has' them. This gives rise to a new way of considering the subject of predication. Originally it was the concrete individual, Socrates or Pleto; but of what he is, one part was distinguished as what he is eqgentially, and the reat reduced to be attributee or 'socidenta' of him, not necemeary to his being, and not to be included in an sccount of his emence. Now, what he is cementially is aleo reduced to the position of attribute and mere predicate, and the anbject becomes a mere subject of which as such nothing more can be said except that it exists and is unique in each individual. This mere subject of predicatè, which cannot in iteelf be described as epecifically of this hind or of that, Aristotile called matter.' We only know matter in con- \downarrow junction with form; bricks and timber are the matter or material of which a house is built, but a brick is in turn clay to which a certain form has been given; clay again is matter of a certain form; bat matter by iteelf-that which is found in various forms, but has no

[^19]form of its own-is unknowable. ${ }^{1}$ It mey be quertioned whether Aristotle wan justified in his uee of the conception of matter. The material of anything is alwaye comething of a quite determinate character. Economista know in how many ways the producta of one induatry are 'raw material' to another; but the raw matarial which is rawest, i. a. which has iteolf been least worked up, is still matter of a perfectly definite kind. Timber is the raw material of the carpenter, but trees of the lumberman : pig iron of the ironmaster, bat iron ore of the smelter; and neither trees nor iron ore are any nearer being formless matter than lamber or pig iron. In the one relation, the matter (or material) is a concrete thing, in a different state no doubt from that into which it is worked up, but perfectly familiar to us as existing in that state; in the other, the matter is not a concrete thing at all, is in no state, is quite unfamiliar and indeed incapable of being known to us as anch; and this relation of matter to form hae no real analogy with the retation of matter to what is made ont of it in the arts. ${ }^{3}$ It is true that in using the metaphysical analyais of the concrete individual into matter and form in order to find different subjects of the same form in different individuals, I may not at first sight seem to rely upon the conception of a quite indeterminate matter. The matter of a house, ayy Aristotle, is atonea and timber; the form-what makes the atones and timber the matter of a houseis 'to be a shelter for man and goods'. Stones and timber are determinate material, and different bouse, however olosely otherwise alike, are distinguished by being built of different material. Bat if we ask what distinguinhes the material used in building one house from that used in building another, and do not find it in the kind of material, we shall have either to say that the materials are themselves made out of different material or that they just are different; in the former case we shall be sesuming, in order to acconnt for the difference between determinate materials that are the same in kind, other determinate materials the same in kind but individually different; in the latter, any further analysis into matter and form brings us to an indeterminate matter that furnishes different subjects for the same form in different individuals. The

[^20]proper outcome of this line of reflection would seem to be thut what makes poesible different individuals of the same kind is the matter of which what they are is predicated; and this at times Aristotle aays ${ }^{1}$, and he admits that in one sense matter is substance. But the corollary, that the nature of Socrates, as predicated of this matter, is something that msy be common to another, and universal, he does not drsw ; and it would seem to be his considered doctrine in the Melaphysics (however hard to reconcile with some of his other atetements) that what makes Socrates Socrates is his form, or what he is, and not the matter in which this form is realized. ${ }^{2}$ This form is his subetance; and it is neither marely the specific form of man, nor does it include all that can be predicated of him; but we are not told how to distinguiah it from prodicates in the other categories. We need not pursue the Aristotelian doctrine further; mon has been asid in order to illustrate the difficulty of determining what is in the category of Substance. We may start with the concrete individual, and draw a distinction, among all the things that can be predicated of him, between that which declares what he is essentially, and is his substance, or belongs to the category of subatance, and that which declares about him something not essential, and belonging to one of the other categories. But predicates in the category of subatance seem universal, as in any other; and predicates in the other categories are not essential; hence the tendency to may that what individualizes is naterial subbtance, not universal nor capable of figuring as predicate. If, to avoid this, we snppose that there is something about Socrates which makes him Socrates, less than the anm total of all his predicates, we shall find it imposeible to say what this is. The attempt to distinguish what is from what is not essential to the individual leads us to distinguish the individual both from his emence and from his non-esential attributes; the 'first substance' is alternately regarded as the whole concrete individual and as what is essential in him; while the fact that the posaibility of distinguishing the essential seems first possible when we look for the character which belongs to him as of Ais kind leads to the con-

[^21]ception of an universal essence possessed of a sort of mbatantiality of its own, a sort of 'second substarce'.

We shall be met later with the same difficulty, when we consider the doctrine of the Predicables, and the problem of definition. The metaphysical isme raised is fundamental. But for the present it is enough to have called attention to it. Logical and metaphyrical problems have a common root. We cannot reflect apon the features that characterize our thought about things in general, without asking how things can be conceived to exist; for our most general thoughte about them are just our conception of their manner of existence. And it may readily be shown, with regard to the different categories in particular, that we could not use predicates in them, except so fir as we conceived objects to exist in certain ways. Thus no predicates in the category of quantity can be used of the mind, becsuse the mind is not extended; if it were, it might have a capacity of $\mathbf{8}$ or $\mathbf{8 0}$ cubic feet, and an area and maximum diameter; since it is not, we cannot apply such epithets to it at all; and it is only because the exintence of material thing: is existence in space, that we can call them large or small, three feet square or four feet long. In the same way, if it were not for the fact that the world is spatial, there could be no predicates in the category of place; and space also renders possible predication in the category of aitastion; for it contains the distinctions of up and down, front and back, right and left; and it allows the parte of a body to alter their relations to certain fixed points sbove and below, behind and before, to the left and right of them, while the whole body remains within the same limits. This is what happens when a man lies on the sofa where he was formerly sitting, or when an hour-glas is inverted on the table. And a perfectly homogeneous sphere, though it may change its place, can be situated only in one way; and if we are to distinguish a right and wrong way up in it, we must mark or single out some point in the circumference, whereby it ceases to be perfectly homogeneous; and thio again illustrates how the distinction of categories arises ont of the distinguishable modes of being in things. For it is becanse it is a figure of a certain kind, that such a sphere does not admit of the same rarieties of situation as a cylinder; and because it does not admit of these, they cannot be predicated of it; and if nothing could be perceived or imagined to admit of them, predicstes in the category of situation, and
therefore the category of aituation, would not exirt Again, there are predicates in moceîs and rdoxecu because things act one on another; and the two categories are distinguishable because there are two terms, agent and pationt, in all canal internction. And the different tenses of verbe, which make a difference to a predication in time, thoagh it remains in the aame category of zoctiv or
 otherwise, how could we dirtingaiah the meaninge of iynafver and iylavey, wapmat and rapwlabit, vivit and vrait, sits and sat? Of that which had no continuous existence through differences of time, predication would be possible oaly for a moment in the present. But reciprocally, as we could not predicate in these categories unless objects existed in certain ways-as subetances, with qualities, extended in space, persisting in time, \&o- ∞ we cannot predicate about objects except in one or other category; in other words, not only are they contained in, but they are neoemeng to our thought of any object. ${ }^{2}$ That which wa not conceived as a substance, or a quality, or a state, and $e 0$ forth, would not be conceived at all; and a concrete thing that was no subetance, had no quality or state, and no forth, would be just nothing. And therefore the consideration of these distinctione belongs to logic, eince they chareoterize our thought eboat objeots in gemeral; and though logic is not intereated in the indefinite variety of existing qualities-blue, grean, cour, shrill, solt, dc.-(because an object, in order to be an object, need not have any one of these qualitiee in particular, but only one or other) yet it is interested in the category of quality, or in noticing that an object muat have nome quality or other: in the category of relation, or in noticing that it must stand in reletions to other objects : and so on.

The ides underlying Aristotle's doctrine of Categoriee may be expresed thus-to discover the forms of existence which must be realized in come specific way in the actual existence of anything /

[^22]whatsoever. His clessification may exhibit defecta, but the importance of his ondertaling must be admitted. And many of the distinctions between terms insisted on by those who attach least importance to the Aristotelian doctrine of Categories express an attempt to solve part of the problem which he wis attacking, and are derived from his doctrine. Thoee distinctions, as was pointed out in the last chapter, rest upon certain fundamental featores of the manner in which we conceive thinga to exist. The distinction between singular and general concrete terms corresponds in the main to that between $\pi \rho \dot{r} \eta$ and devedpa oivfa ${ }^{1}$; for the most noticeable of general concrete terms are in the category of sobstance, as man, stone, or beast, though some (whieh might he called substantives of an attributive kind) are in other catagariea, ea, for instance, officer and organiast. The distinction between concrete and abstract terms corresponds roughly to the distinction between objla and the other categories; for abotract terms formed from kind-names are, as we saw, scarce and unnatural. That relative terms are predicates in the category of relation is plain. The attention paid to
 severally, but what they are in certain groupinge or combinations ; and the distinction between quality and state involves the same fact.2 The logical divisions of terms rest on differences in the being of things, as we apprebend them; this is apt to be overlooked when the subject is approached from the side of names; Aristotle's doctrine of Categories has this advantage, that throughout it fixes our attention on things.
[The Aristotelian doctrine of Categories bulks lerge in the history of Logic ; such conceptions are inctruments of thought ; the instruments forged by one generation are banded on to the next, and affect subsequent thinking. On that account alone therefore it is fair to give some attention to it; hat it is still valuable as serving to express and distinguish certain important features in our thought about things. That a quality is not a quantity is a trath which those overlook who think that sound can be a wave-length in the vibration of the air ; they forget that it is not possible to define terms of one category by another. ${ }^{3}$ Moreover a conception of cafegories not very far removed from that of Aristotle has, through

[^23][Kant and Hegel, become one of the chief doctrines of modern metaphysics.

These admissions do not bind as to consider Aristotle's list as perfect. One important remark on it would perhaps hardly have been regarded by him as a criticism. The different categories are not all equally distinct or ultimate. Thus the distinction between move and mort is far more fundamental than that between mocion and ndoxecw. A thing need not have a place because it has duration, nor can any one doubt under which category such predicates as 'at home' and 'belated' respectively fall. But to be acted on implies something acting; indeed, if action and reaction are equal and opposite, for a thing to be acted on implies that it acts itself; and it is often difficult to any to which of these categories a predicate is to be referred. A ship travels: are we to attribute the motion to the ship, and say that she acts, or to the engines, and nay that she is acted on ? or shall we say that the engines in turn are acted on by steam? Aristotle in a measure recognized the mutual implication of these two categories, for in one place he includes them together under the single term кivnots. ${ }^{1}$ Language bears traces of it also, in deponent verbs, which have a passive form with an active meaning, and neuter verbs, which bare an active form with sometimes a passive meaning. We cannot admit, as Trendelenburg end others have maintained, that the distinctions of categories were derived by Aristotle from the grammatical distinctions between parts of speech; but undoubtedly they are reflected (though in an imperfect way) in grammatical forme. Again, as we have seen, the notions of eXec and кeitotal are derivative: stats presupposes the distinction of whole and part, which, in material objects at least, implies the category of morin, and it presupposes also the categories of moteiv and nad σ civ, and of $\pi=1 \delta \nu$; for a whole is in a certain state through the interaction of parts having certain qualities, as when the body is well or ill; or through something done to certain parts of it, as when the body is shod or clad; a situation presupposes the distinction of whole and part also (a point can have place, bat no 'situation'), as well as the categories of moi and $\pi \rho \delta \delta_{5} \mathrm{r}$; for when a thing changes its situation, some part that was formerly above another comes to be below it, and so on. On these two derivative categories Aristotle lays least stress; they are only twice included | in his enumeration. But though derivative, they ace peculiar, and contain something not in the notions from which they are derived; it is quite impossible to treat a state like health as being of the same nature with a -quality like sweetness, or place with situation in that place. Kant made it a ground of complaint against Aristotle that he had included derivative conceptions in his list along with pure or underivative; but it would probably be a fairer

[criticiem, that he had not taken account of all the derivative
conceptions which call for recognition.
A word may perhaps be added upon Kant's doctrine of Categories, and its relation to that of Aristotle, thongh it is very difficalt to put the matter at once briefly and intelligibly in an elementary treatise. Aristotle had sought to ennmerate the linds of being found in the different thinge that were; Kant was interested rather in the question how there come to be for us objecta having these diverse modes of being. He msintained that in the apprehension of them we are not merely receptive and peaive; on the contrary, all apprehension involves on the part of the mind the relating to one another in various waye of the elemente of what is apprehended; if the elements were not so related they would not be elements of one object; and they cannot be related except the mind at the aame time relates them; since relation exists only for conscionemess. Kant called this work of relating a function of synthesis; and he deaired to determine what different functions of sytitheris are exhibited in the apprehension, and equally in the existence for us, of objects. He noted in the first phace, that the mere perception of anything as extended, or as having duration, involved certain pecaliar ways of relating together in one whole the distinguiahable parts of what is extended or has duration. Theee modee of ayntheris we call apace and time. There conld be no permanent objects for me, unless \downarrow I comebow beld together pest and future in an unity with the present; I should not be aware of my own existence as parsisting through time, unlees I realized myself as the rame in momente which I distinguished as different; and I could not do this, unlese I had an object which combined manifold succeesive states into the unity of one and the same thing; here then we have one function of aynthesia. It is the aame with any apatial whole. I must be a ware at once of ite parts as distinct in place, and yet relsted together in apace; spece is a system of relations in which what is extended stands. But these two modes of connecting in an anity the parts of what is manifold Kant attributed to sence, for ressonn whioh we need not now consider ; thinking, the use of general conceptions, did not enter into them; and therefore he did not include them in his list of categories, which were to be the most general conceptions by which in underntanding we connect into an unity the manifold parts of an object, and so make it an object for orrselvea. The perreption of an object involved apece and time; but perception wan not enough. We think of it in certain ways, or conceive it, in apprehending it an an object. Now this conception of an object involved, according to bim, four things : (1) its having qualify : and quality can only exist in degrees, each of which is distinguished from and related to the other degrees of the same quality; heat only exista at a given temperature and blue must be of a given
[shade and asturation: (2) ita having quantity, or being a whole composed of parts: (3) that it should be a substance having attributes, one or permanent through its changing and successive states, and that its changes should be determined according to laws by ita relation to other substances with which it stood in interaction : (4) that every such object conceived to exist should be conceived as connected with every other existing object in a way that knowledge could apprehend, and express in the form of necessary inference. The various peculiar relations involved in these requiremente Kant called Categories; and he pointed out that, in all the material diversity of concrete objects as we know them, these categories or forms of synthesis exemplify themselves. Let something be presented to me; if there is nothing which I can call it, or regard it as being (for the queation is one of thought and not of names), it is so far nothing for me; but if I call it akry-blue, I am thinking of it as qualified; I am asing in a specific way that conception of quality which is one of the notions by which I relate together what different objecta are. Of course it might heve a colour unlike any colour I had seen hitherto, which I had no name to indicate ; but I should still be recognizing it as coloured in a certain way, though I could not name the colour, and therein I should be using the conception of quality. If I call it a aky-blue tassel, I am using in a epecific form the notion of a whole of parta; for to one who could not connect distinguishable parts in one whole a tassel would not be apprehensible as one thing; I am also using the conception of subatance and attribute, when I regard it as a thing, one of whose qualities it is to be sky-blue. I cannot call it woollen, without connecting its existence and causality in a definite way with the life of a sheep; and $\omega 0$ forth: the forms of space and time being presapposed in my apprehencion of it throughout. It is not meant that these notions or categories are abstractly grasped, and guide us consciously in our apprebension and description of objecta, as a doctor who had recognized that height, weight, chest measurement, and state of the teeth were important characters in determining the health of children at a given age, might use these beadings in 2 statiotical description of the children in London achools. We only become aware of the part which tbese notions play in our apprehension of objects by reflection upon the use we have unconsciously made of them; just as we become aware in the abstract of using certain forms of inference, by reflecting upon the concrete inferences we have drawn in divers subjects. But as there would be no men if there were no animals, and no circles if there were no figures, eo we should recognize no colours if we could not conceive qualities; we should never think that a horse pulled a cart, if we could not conceive a substance to have attributes and to determine changes in another substance; we should never call the movement
[of the cart necessary, if wo could not think of the diferent real thinge in the world an en connected that we could infer one thing or distinguishing and connecting, featares and parts of what we apprehend: we are effecting a synthesis in what would otherwise be a mere chaos or confusion of manifold sensations.

Now it will have been seen that Aristotle almo noted that what we recognized as existing were cometimes substances with attributes, cometimee attributee of variona kinds; we recognize the existence of qualities; of quantities in things that are wholes or parts of such and such a size; of relations and positions in place and time; of what things do and have done to them; of their states and situations. But Aristotle approached the matter from the side of the object; he aked what modes of being we can distinguigh in what we recognize to be. Kant approached it from the side of the knowing subject, and asked what were the modes of synthesis on the part of our thought, througb which objects were apprebensible by us as boing the eort of objects they are. If Kant is right in thinking that there could be no objecta known to us, except throagh the mind's activity in relating according to certain principles their manifold differences, then we should expect that when we reflect upon the manner of being which what we recognize to be exhibite, we should find those modes of being which the mind by its synthetio or ralating activity makes possible for itself. And if, while this in the main is trae, there are certain differences between the two lists of categories, yet they can be readily explained. Aristotle's list we have seen. Kant reoognized four classes of category, those of Quality, Quantity, Relation and Modality. Now Quality and Quntity appear in Aristotie's list as well (though in Kant's they are each analywed into three aspecte, or 'momento', which here need not concern us). But in Kant the category of Relation covers the three relations of Substance and Attribute, Cause and Effect, and Intersction (which leat really involves the other two) ; the distinction of anbstance and attribute is present in Aristotle's doctrine, and in roceit ${ }^{1}$ and adoxety ${ }^{2}$ we have the recognition of the relation of canse and effect ; but there is nothing in Kant correaponding to the Aristotelian category of $\pi \rho \delta_{s} r r^{3}$. The resson of this is that all predicates in the category of $\pi p \delta \sigma^{3}{ }^{3}$ really involve some other category as well; larger involves noaby ${ }^{4}$, earlier nord ${ }^{5}$, slave medoxup ${ }^{2}$, farthest mov ${ }^{6}$, and loudent $\pi 0 . \delta v^{7}$; reciprocally, all categories involve relation, and Kant's whole point is that they are different relational fanctions. To Kant, who whe interested in distingrishing these functions apecifically, it would have been abourd to treat the function of relating generically as one of ite
${ }^{1}$ Action.
${ }^{2}$ Pasion.

- Time. \quad Flace. Feraion ${ }^{\text {Quality. }}$
- Belation.
- Quantity.
[own species ${ }^{1}$; or to suppose that there was any other lind of relation involved when 1 say that Socrates was more scrupulous than Crito, or taller than Tom Thumb, than when I any he was scrupulous or four cubits high. All serapulonsnese mast be of mome degree, and all height of some quantity, so that as far as the function of relating in the way of quantity or degree is concerned, it is equally present whether my term is positive or comparative. But from the side of the object, there are terms which relate it particularly to some definite other object; and these Aristotle pleced under the category of apos πt^{2}. It might perhape be objected to him that all terms in the category of aposs

 wers referred to the category of relation not becanse they in volved qualitative or quantitative, spatial, temporal, or causal relations, bnt becanse they determined a tbing as standing in come special relation (of any one of these kindi) to some other thing. nind had their being not so much in themelyes as in relation to comething eleg ${ }^{11}$. Again, terms in noodv, like 'three-foot' or ' year-1 long', involve space or time as well as the relation of whole and part; and Kant thought right to dirtingaish the perceptaal syntheaes of space and time from the conceptaal synthesia of whole and part; hence also he objected to the presence of aov and aord in the Aristotelian list at all. But Aristotle cared only to notics the modes of being that were to be found, the kinds of predicate that concrete thinga had, and wan not interested here to diatingnish the parta whioh senseand thought respectively play in zandering the i apprehension of them possible. Once more, Aristotle incladed the 'derived' notions of lxens and кefortat with the reat, becsase they certainly are different modea of being; Kant, who thought them to involve only the co-operation of functions of synthesis already recognized, gave no place to them. The most considerable difference between the two doctrines is the absence from Aristotle's
${ }^{1}$ The reason why Kant gave the name of Relation to the three gyntheses of Subatance aad Attribute, Cause and Effect, and Interaction was historical. He quite recognized that all his categories were really model of relating a manifold.
Belation Place. Time. *Quality. ©State.
${ }^{11}$ Action. Peation. $\quad{ }^{10}$ Quantily. Situation.
${ }^{11}$ Td mposer are defined fint in Cat. vii. $6^{\circ} 38$ as ' what are called what they are of another '-ira aird direp inriy inipur alvan diyura, and more closely leter in $8^{-} 82$ es that 'for which to be is the rame as to be related in some Way to apother'-oIs rd alvar raírdo iors rè rpos ri rer 'xeup. The implication of appor r with come othor category is recognized by Aristotle in particular cases, bat not stated generally; of. vii. $6^{b} 11, \mathrm{in}. 11^{-} 20-38$, and eap. 87-88,
 aird acrapotpmindas (bevidea, if the same thing happen to be both related and of anch a quality, there is nothing otrange in its boing counted in both kinds).
[of anything at all corresponding to the Kantian categoriea of modality, i. e. to the notions of actual, posaible, and necessary Yas determinations of our thought abont things; but their absence will not gurprise us if we consider that to the question, what essentially a qubject is, no one would ever answer that it was actial, poosible, or neceseary. Speaking generally, however, we may put the relation of the two doctrines in this why, that whereas Aristotle \checkmark had claseified the producta, Kant distingrished the procesees of that synthesis or relating, through which (as he held) objects in all their manifold variety, however much they may materially differ one from another, are all alike objects of knowledge and no far formally the same. Merely to be, esid Aristotle, is not posaible : ov is not a significant predicate? ${ }^{7}$; what is must be in a particular wey, and thereby fall under one or other of the $\gamma^{\prime}\langle\eta \eta$ rôv кarnyopuồ which he enumerated; and all the modes of being characterize in the last resort bome concrete individual thing, which exists in and through them. An object, said Kant, cannot be an object of knowledge, and therefore for us cannot exist, except through being perceived and thought in certain ways: the general ways in which an object is perceived or thought, the forms of perception and conception involved (one or another of them) in every predicate through whioh an object is known, are the 'forms of the sensibility' -viz. space and time-and the 'categories of the understanding' ${ }^{3}$]
${ }^{1}$ ' Onlese indeed it is equivaleat to oivia or Subatance; bat that is one of the categoriea.

I If Kant wan wrong in supposing that the formal character in an object, Whose presence there be secribed to the syathetic activity of the mind, are not merely recognised in it, bat are there to be recognised through the mind's ectivity, yet what hes been said will atill exprem the relation which, from his point of view, aubsists betwoen Aristotle's doctrine and his own

CHAPTER IV

OF THE PREDICABLES

Tes distinctions to which our attention was directed in the last chapter are distinctions of terme according to the nature of their meaning; and if we understand what a term means, we may know to what category to refer it, Fithout waiting to learn the subject of which it is predicated; large, for example, is in the category of rguantity, whether it be predicated of a triangle or of a gooseberry, and jual in the category of quality, whether it be predicated of Aristides or his actions. Such difficulty as may exist in determining the category to which a term is to be referred arisen through defect in the list of categories (i.e. of the conceptions under which we are to classify all poesible predicates), or through the complexity of meaning in the term iteelf, whereby it involves more than one category at once, like a verb with tense; but not through the fact that we are considering the term by iteelf and without reference to the enbject of which in a particular proposition it may be affirmed or denied. And the Aristotelian treatise called the Categorien indicates this when it puts forward the list of ten categories as a division of terme ont of syntac. ${ }^{1}$

In the prosent chapter we have to consider another division of terms, besed upon the relation in which a predicate may stand to the subject of which it is predicated. Aristotle recognizes four such relations, and one of them he subdivides, obtaining five in all; later logicians give five, but their list is in one important reapect different. According to Aristotle, in every judgement the predicate must be either the definition (8pos), the genwe (γ duos), the differentia (8uapopd), a property (Diov), or an accident ($\sigma \nu \mu \beta e \beta \eta \pi \delta s$) of the aubject. The later lint ${ }^{2}$, losing eight of the principle on which the division was

? The Aristotelian list is given in the Topica, a iv. 101^{6} 17-25: the later list pasened into modern Europe through the medium of a little work by Porphyry, the Elaryari or Introduction to Logic, in the Latin verrion made by Bothins. olaфopa is ranked by Aristotle with yiror, as being a modification of that; and as the surplas in apos over rivos, it is known in knowing them. Cf. infro, p. 60.
 therefore as follows-genzs, species, differentia, proprimm, aecidens.

The distinctions are known as the Five Predicables, or more strictly as the Five Heads of Predicablea. The words have paned into the language of science and of ordinary conversation; we ask how to define virtue, momentum, air, or a triangle; we say that the pansy is a species of viola, limited monarchy a species of constitution; that one genus contains more species than another; that the crab and the lobster are generically different; that man is differentiated from the lower animals by the possession of reason; that quinine is a medicine with many valuable properties; that the jury brought in a verdict of accidental death; sud so forth. The fact that the employment of the words is not confined to any special science suggests that the consideration of them may belong to Logic, as expressing features in our thought about all kinds of subject.

A predicable is merely that which can be predicated: viz, that which is universal, not an individual ; all kinds, qualities, states, relations, \&ce., are predicable, and they are universal, as was explained in Chapter II, because they may be exemplified in and belong to more than one individual -subject. All names, therefore, except proper names are classified under these five heads of prodicables; bat proper names are not included here, though they would come in the division of categories as denoting a substance. The Parthenon, for example, is not the name of the genus or species of anything; nor is it that which differentiates any species from another species; nor is it a property or accident of anything. It is a particular building; and the name denotes that building, with all that it is-a temple, Doric, of Pentelic marble, beautiful by the simplicity of its proportions and the magnificence of its sculptures, the work of Phidias and his assistants, the glory of Athens. All these things are predicable about it, and they are universals; for might not another building be a temple, in the same style, of Pentelic marble, and so forth? It, however, is not predicable; nothing else can be the Parthenon. We may ask what kind of thing is the Parthenon, but not of what things is it the kind ${ }^{1}$.

[^24]The distinctions which we have to consider, therefore, do not afford/ a classification of things, but of concepts: and (unlike the categores) of concepts considered not in themselves but in their relation one trinnother.

But things are known to us through concepts; and an enquiry into the relation of concepts is an enquiry into the nature of things, 35 we conceive them to be.

The statement that things are known to us through concepts needs a little explanation. It has been frequently pointed out that the English language uses only the one verb, 'know,' to represent two different acts, which in come languages are distinguished by different verbs ${ }^{1}$: the knowledge of acquaintance with a thing, and the knowledge about it. In Latin, the former is signified by cognowoore, the latter by sire; French uses respectively the cognate words consailice and avoir; German the words kennel and mignon. Knowledge of acquaintance does not come barely through concepts; however mach may be told me about Napoleon, and however clear - conception I may have been enabled to form of his character, I never knew him, and never shall know him, in the sense of being acquainted with him: such knowledge comes only by personal intercourse, and separate intercourse is needed with each individual that is to be known. But knowledge about a thing comes by concepts; and without this there is no acquaintance, though this by itself does not amount to acquaintance. I may know a great deal about a man, without having ever met him: but I may in fact once have met him, without knowing who he was or
 anything about him; and I am no more acquainted with him in the letter case than in the former.

Now most of our knowledge is knowledge about things; things are useful and important to us for the most part not because they are such particular individuals but because of why t they are; this is not equally the cause with persons; and yet with persons too it is very largely the case. 'Wanted, a good coat-hand': it is not Smith, who is taken on, that is wanted, bat only the cont-hand: the master-tailor in satisfied to know that he has engaged a coat-hand, and very often does not desire his acquaintance: if he knows about

[^25]Smith, be can regulate his business accordingly, without knowing Smith.

It will now be underatood in what eense we know things through concepts: we are not thereby acquainted with them \checkmark individually, but we know and think and reason about them thereby. And a concept may be said to differ from a thing in being universal, not individual : an object of thought and not of sanse: fixed and not changing: completely knowable and not partially ${ }^{1}$. Take, for example, the concept of a timepiece: a timepiece is a machine in which the movement of wheels is so atimulated and regulated as to cause a hand or hands to move at an uniform rate (usually twice in twenty-four hours) round a dial, and by pointing to the divisions marked upon the dial to indicate the time of day. That is the concept of a timepiece: it is clearly universal, for it applies to all timepieces; it is an object of thought, and cannot be seen or felt, like the watch in my pocket; it is fixed and unchanging, while my watch wears out or gets broken; and it is completely knowable or intelligible, wherese there ia a great deal about my watch which I do not know or understand: where the metals of which it is made were quarried, and by what series of eventa they came into the hande of the maker: why it loees $10^{\prime \prime}$ to-dey and gaing $18^{\prime \prime}$ to-morrow, and so forth. No one knows the whole history and idiosyncrasy of any particular timepiece, bat he may have a satiofactory concept of what a timepiece is for all that.

It may be asked, is a concept merely an object of thought, with no existence in things (as it is put, outaide our minds)? or does it axist in things ${ }^{\text {a }}$? Mach ink, and even much blood, have been spilt in dispating over this question, to which some reference has already been made in speaking of the opposition between Realism and Nominalism ${ }^{3}$. An elementary treatise must be content to be brief and dogmatic. Concepts, it must be maintained, have existence in things, as well as in our minds. The thing which I can pull out of my pocket, and see and feel, and hear ticking, is iteelf a machine wherein the movement of wheels canses hands to

[^26]tell the time of day in the manner set forth in the concept of a timepiece. What I conceive a timepiece to be, that (if my concept is a right concept) every particalar timepiece is; what I know about things is the nature of the things; nor would it otherwise be they that my knowledge dealt with. But though concepts have existence in things, as well as in our minds', the manner of their existence in the two cases is different, in an important respect. In our minds, each is to some extent isolated; my knowledge of an individual thing is expressed piecemeal in many predicates about it; each predicate expressing a different concept, or a different feature in the nature of the object. But in the thing these features are not isolated. The individual object is at once and together all that can be predicated of it eeparately and succemively (except as far indeed as predicates are true of it successively). In thinking of my watch, for example, I may think of it as a timepiece, as an heirloom, as being two inches in diameter, and $s 0$ on: between these concepts there is no connexion thought of; they are as it were separate from one another; but they and much besides are united in the thing ${ }^{2}$. The individual object is all that can be predicated of it (and there is no end to what might be predicated, if we knew ite whole history); but one thing that can be predicated of it is not another.

An object comee into the room, which I call Tray: what is Tray? it is a dog, an animal, yelping, at my feet, mine; Tray is all these: but is a dog all these? A dog (that is, any dog) is an animal, and a dog yelps; but I cannot esy that a dog (meaning any dog) is mine, or at my feet; and though a dog is an animal it is not equally true that an animal is a dog, or that what is at my feet is mine, or that what is mine is at my feet.

What, then, is the relation of those various concepts to one another, which can all be predicated of the same individual? Are they united in it like atones in a heap, where the stones together are the heap ? or like almonds in a stewed pippin, where the pippin

[^27]is not the almonds? or like links in a cost of mail, where the links indeed are the cost, bat only because they are pecaliarly looped one into another? It is easily meen that none of these analogies is appropriate. According to Aristotle they are related in one of five iways. Take any proposition, ' A is B ', where the subject \underline{A} is pot a proper name, but a general concrete term, or an abotract term. The predicate \boldsymbol{B} must be either definition, genus, differentia, property or accident ${ }^{1}$ of A : one or other of these relations must anbeist between the two concepte A and B, in any individaal characterized by them.

The statement just advanced clearly concerns the nature of our thought about objects generally: the technical terms have yet to be explained, but it is the actual procedure of our thought which they profese to indicate. Logio invented the terms, but it discovered the relatione denoted by them.

If we take any torm that is an univeraal, and not an individual, and make it the sabject of a judgement, then the predicate must be either commengurate with the subject, or not. One term is and to be commensurate with another, when each can be predicated of everything whereof the other can be predicated ${ }^{2}$; equilateral triangle and equiangular triangle are commenaurate tarms, because every equilateral triangle is equiangular, and every equiangular triangle equilateral; but the term equiangular is not commensurate with equilateral, for there are figures equileteral which are not equiangalar. It may be pointed out (for it is important to bear in mind that we have to deal now with the relation between the different 'universals' predicable of the same individual, and not the relation between them and the individual of which they are predicated-with the relation of 'animal' and 'mine', \&cc, to 'dog', and not with the relation of these terms to Tray)-it may be pointed out that when the subject of a judgement is su individual, the predicate is hardly ever commensurate ${ }^{3}$: for the predicate is an univernal, predicable of other subjects besides this individual : mine is predicable, for example, of other subjects than Tray; wherens

[^28]this individual is predicable of none of those: nothing else that I can call mine is Tray. Now where the predicate of a judgement is commensarate with the subject, there it is either the Definition or a Property of it: where it is not commensurate, there it is either part of the Definition, i. a. Genus or Differentia, or an Accident.

The defnition of anything is the statement of its ensence ${ }^{1}$: what makee it that, and not eomething eise. In the following judgements, the predicate claims to be the definition of the subject: 'An organiam is a material body, of which the parts are reciprocally ends and means'; 'a church is a building erected for the service of God acoording to the principles of the Christian religion'; 'momentum is quantity of motion'; 'wealth is that which hes value in exchange'; 'a triangle is a three-sided rectilinear figure'; 'a line is the limit of a superficies'. The predicate atates what it is that makea anything an organiam, a church, a line, a triangle: what constitutes momentum or wealth, as distinguished fromegerything elee, such as apathy ar-arehitecture. In these judgements it is clear that the predicate, in claiming to be a definition, claims to be commensurnte with its subject; if an organism is a material body of which the parts are reciprocally ends and means, then my dog Tray, being an organiem, must be that, and whatever is that must be an organim : for to be such a body is to be an organiam. If wealth is that which hae value in exchange, then gold, having value in exchange, is wealth, and so forth.

The connes is that part of the essence of anything which is predicable sleo of sther things ${ }^{2}$ differing from itin kind ${ }^{3}$. Each of the definitions above given begins by declaring the subject something, which other and different subjects are besides; an organiem is a material body-so is a machine, or a block of atone; a church is a building- $\rightarrow 0$ is a stable; a triangle is a rectilinesr figure-so is a equare; a line ie a limit-so is a point, but of a line; wealth is that which hae value- $\mathbf{~} 0$ is honesty, but not in exchange, for
 may alk the quention ri ion:-what in it ? - f an attributa (like momentam) an woll as a mbetance (like a man or a lobstor); and the answer will bo a definition. In strictnem we can define the oivia of an individual, if at all, only as meaning the kind to which it belongr; cf. the previoun ch, pp. $40-44$.

- 'Thing' here again does not mean a particalar thing;
 poóperov, Ar. Top. a v. 1020 81. The notion of a kind is hero presuppoeed. Some discumion of it will be found below, pp. 77-89.
you cannot trensfer it ${ }^{1}$; momentum is quantity-of motion, but not of matter. These (building, rectilinear figure, limit, \&c.) are the genus, in each case; and the genus, being predicable of other sabjects, is clearly not commensurate ${ }^{2}$. Genus is sometimes explained as a larger class including the class defined within it; figure, for example, as a clasa including triangle, square, and many other subordinate classes besides: building as a class including churches, stables, barracks, and so forth. This explanation cannot be considered a good one, for reasons to be presently stated ; bat it may put some into the way of grasping a better.

The difisarentia is that part of the essence of anything-or, as we may asy, of any apecies-which distinguiahes it from other speciea in the same genua ; it is the diferentia of an organism that its parts are reciprocally ends and means-in this it differs from other material bodies; it is the differentia of a church, to be for the service of God according to the principles of the Christian religionin this it difers from other baildings; and so forth. The genus and differentis (or differentise ${ }^{2}$) betwreen them constitute the species, or make up the essence of that which is defined. The differentis, like the genus, need not be commensurate with its subject. The Book of Common Prayer is for the service of God in accordance with the principles of the Christian religion, but not being a building, it is not a church. On the other hand the differentia is commensurate with the subject of which it is predicated in cases where no genus except that to which the subject belongs is susceptible of the particular attribute which serves as differentia; thus a vertebrate is an animal of a particular structure which cannot exist except in an biaimal;' so that the differentis of vertebrate is commensurate with it. And it is only where this is the case that the ideal of definition is attained.

Those who apeak of the genus as a larger clas containing the species or emaller clase within it sometimes explain the differentia as the attribate, the possession of which marke off the smaller from the rest of the larger clase. If aquares and rhomboids, triangles and
${ }^{1}$ The honest man, however, commands in many aituations a higher price, and so fer come econominte would reckon honeaty ae wealth.
'This must be received aubject to modification from what is asid below as to the genus being in itself indeterminste, and setrally different in each of ite species. Cf. pp. 69-78, 128.

- In the plural if the genus has divers determinable points that have to be specified differently in the different apecies Cf. inf., p. 86.
pentagons, \&c., are all pleced in the class of rectilinear figures because they have that character in common, triangles, on the other hand, are differentiated from the remaining classes included within that of rectilinear figure by possessing the attribute of being three-ided. Provided it is not supposed that the differentis is added to the common character of the 'larger clase' in the same extraneons way that sugar is added to tea, there is no fresh harm in this mode of expressing oneself.

A property is an attribute common and peculiar to a subject ' (and therefore obviously commensurate with it), but not part of ite essence, and eo not incladed in the definition of it. An organiam, for axample, is contractile, irritable, assimilates food, reproduces iteelf after ita kind: these are attributes of every organism, and of nothing else, and tberefore common and pecaliar to the subject organiam; bat they are not in ita definition. A triangle, again, has its interior angles equal to two right angles, and is half the ares of the parallelogram on the amme base and between the same parallels; a line is either straight or crooked (here the alternatives together are common and pecaliar) ; and so forth.

All other attributes of any anbject are cooldents. An eocident may be defined as a non-commensurate predicate not included in the essence: or as an attribate which equally may and may not belong to a subject. The latter is the better definition, because it tells us what an accident is, whereas the former only tells us what it is not ${ }^{2}$. It in an accident of an organiam to be nsed for food; for it may be so used, bat need not. It is an accident of a church to be a cathedral; some churches are cathedrala, and some are not. It is an accident that a contractor should be an honest man, and an sccident that he should be a rogue ; for roguery and honeaty are both compatible with being a contractor.

[^29]The doctrine just illustrated presenta many points for consideration, of which the following are perhaps the mont important:-

1. how to understand the analysis of a definition into genus and differentia;
2. the ground of the distinction between the easence of anything and its properties;
3. the antithesis between accident on the one hand and all the other beads of predicables on the other.
' It will be most convenient to consider the third of these points first.
When we classify the members of a genus or claes, we sometimes, after apecifying as many distinct species as we can think of, add another to include anything that does not fall within any of these; I may arrange my booke, for example, into historical, philosophical, philological, scientific, and miscellaneong-the last division being merely added in order to receive any book which does not fall within the others, though the miscellaneous books have no common character that distinguisbes them all alike from the reat. Now accident is a head of predicables which includes any predicate that is neither definition, genas, differentia, nor property of its pubject ${ }^{1}$; but it is not a heading like ' miscellaneons'; there is a very definite and important difference between the relation of those predicates to their subject which are classed as accidents, and that of those which fall under the other heads; the latter belong to their subject necessarily and universally, the former do not.

Of any individual, as we have seen, an infinity of predicates may be asserted. Some of them are seen to be connected, or (as we may express it) have a conceptual connexion; i.e. if we rightly conceive one predicate, we see how it involves another. Tray, for example, is a dog and an animal; and these predicates are conceptually connected, because the concept of a dog involves that of animal. My watch has hands, and there is a conceptoal connexion between having hands and being a watch, since without hands a watch could not fulfil the task of telling the time, which is part of the concept of it as a timepiece. But there are also many predicates which coincide ${ }^{3}$ in one and the same individual, without being conceptually connected. Besides being a dog, Tray is mine,

[^30]and was born at Bishop Auckland; now there is no reason in the nature or the concept of a dog, why it should belong to me, nor in a thing being mine, why it should be born at Bishop A ackland, nor in being born at Bishop Auckland, why it should be mine, or be a dog. No doubt in the case of this particular dog Tray, there is a reason why he is mine and a reason why he was born at Bishop Auckland; but the reason for the first fact (which may be that he was given me) has nothing to do with the reason for the second (which is that his mother was there at the time); nor has the reason for either anything to do with his being a dog; he would have been a dog atill, if he had never been given to me, or if he had been born at Bishop's Lydeard. Of course with sufficient knowledge the presence of all its attributes in any individual might be explained; bat the explanation would be largely historical; we should need to know the history of that individual, in order to see how it was that so many different and apparently unconnected things all came to be predicable of one and the sarne subject. On the other hand, where two predicates are conoeptually connected, there it is not by knowing the history of an individual that we determine whether, if one is predicable of it, the other will be.

We have here the great difference between acience and hintory : ecience consiats in tracing the connexion of univerala; hirtory in tracing their coincidence in individuals. The two no doubt atilize one another. It is by noticing how attribates are historically found conjoined or disjoined in divers individuals that we learn which are really connected together ${ }^{1}$; while again the discovered connexions of attributes, or the ' laws' which science eatsblishes, help to explain the bistory of individuals. And when the assemblage of historical events is resolved into instances of the connexion between matters which, if we understand their natare, we can see to be involved one in another, bistory becomes ecientific.

That the accidental should be opposed to what is necessary and universal conforms to the reage of common speech. Sir Robert Peel was killed by a fall from his horne, and we eay his death was accidental. Why? be was a man, and for a man it is necessary to die, and for any one who falls in that particular way it may

[^31]be necessary to die; but it is not necessary that a man ahould fall in that way; that is not predicable univerally of man. We sometimes dispute whether there is such a thing as chance in the world, or whother everything has a cause, and happens necessarily. Few people really believe that anything happens without a canee; but chance is not the negation of cause; it is the coincidence of sttributes in one individual, or events in the esme moment, when each has its cause, but not the same cause, and neither helpe to uccount for the other.

If we bear in mir.d this fundamental contrast between the accidental and the necessary, we shall not be inclined to think that Aristotle was engaged in a trivial pursuit when he attempted to claseify the various relations in which a predicate might stand to its subject. Discussions as to what we mean by canse occapy much spece in many modern treatioes. Now the causal relation is also a relation between universals: my dog Tray yelps not becanse be is this individual Tray, but becsuse he is a dog, and unless any dog yelped, it would not be because be is a dog that Tray does no. But when we call one thing ${ }^{1}$ the cause of another, the real relation between them is not always the same; just as when we any that Δ is B, the relation of B to A is not always the asme. It might be supposed that if one thing X is the canse of another Y, then you could not have X without Y, nor Y withoat having hed X. And yet we asy that molecular motion is the cause of heat, that the beat of the sun is the cause of growth, that starvation is sometimes the cause of death, that jealousy is a frequent cause of crime. We should in the first case maintain that the cause and effect are reciprocally necessary; no heat withont molecular motion, and no molecular motion without heat. In the second, the effect cannot exist without the cause, but the cause may exist without the effect; for the sun shines on the moon, but nothing grows there. In the third, the cause cannot exist without the effect, for starvation must produce death, but the effect may exist withoat the canse, since death need not have been produced by starvation. In the fourth case, we can have the cause without the effect, and also the effect without the cause; for jealousy may exist without producing crime, and crime may occur withont the motive of jealousy. It is plain,
${ }^{1}$ Thing being bere again thing of a kind, or univerral, not individual.
then, that we do not always mean the mame thing by our words, when we say that two things are related as cause and effect; and any one who would clesaify and name the various modes in which two thinge may be causally related would do a great service to clear thinking. Now that is the sort of sarvice that Aristotle aftempted in distinguishing the heads of predicablea Many predicates are seserted of the subjeots. Those are secidents, whose cause does not lie in the nature of A as such, or which, when they belong to any individaal of the kind A, do not belong to it because it is A. The rest are in some way or another connected causally with A, and are predicable of any individual becanse it is A. Whether Aristotie's account of the different modes of causal connexion between a subject and a predicato is satisfactory is another queetion, involved principally in that of the value of his acconnt of 'property'. But that the theory of predicables is elosely akin to the question of the varions sensea in which one thing can be the canse of another may be seen by this: whenever acience tries to find the cause not of a particular event, such ae the Frenoh Revolution (whoee cause must be as unique as that event itself ia), but of an event of a kind, soch as consumption, or commercial crisis, it looks in the lest resort for a commenourate cause. What is that exeot atate or condition of the body, given whioh it must and without which it cannot be in a consumption? What are those conditions in a commercial commonity, given which there muat and without which there cannot be a commercial crisis?

The kindred nature of the two enquiries will be further seen, by looking at certain cases where it is disputable whether a predicate should be called an accident of ita subject or not; for an exactly parallel difficalty may arise in determining whether one thing shall be called the cause (or effect) of another or not. An ascident is a predicate, the ground for whose existence in the enbject does not lie in the nature of that subject as such. Hodge drives a plough; and a full knowledge of his history would ahow me why he drivee a plough, and the ground for it therefore lies in the history of the subject Hodge; it is not of him that driving the plough is predicated as an accident. Bat a man driven a plough. That is an accident; for the subject now is not Hodge, but man, and it is not in the nature of man as such that the ground or reacon of driving a plough lies ; else abould we all be at the plough-
tail. And yet no animal bat man can drive a plough : ∞ that it is partly because he is a man that Hodge drives it; and therafore, when it is enid that a man may drive a plough, the relation of the predicate to the subject seems not completaly socidental. Contrast the atatement that a cow may be knocked down by a locomotive. There the nature of the sabject, a a cow, contributee nothing; it in in no wise neceseary to be a cow, in order to be knocked down by a locomotive ${ }^{1}$; and the relation is purely accidental.

If we consider theee two examples, we see that our account of an accident, just given, may be interpreted in two ways. A predicate may belong to the arbject of which it is predicated eccidentally eithor
(1) when the ground for ite exirtence does not lie completely in the nature of that subject ae auch ${ }^{2}$, or
(2) when the ground for ita existence does not lie at all in the natore of that subject an arech ${ }^{2}$.

The first interpretation would rank ac accidents of a subject all predicates that are not either part of ita definition, or elee common and peculiar to that subject, i. e. properties in the atricteat sense; and such, if we take him at his word, is Aristotle's view. But we are then required to aay that it is an accident of money to be valuable, since it would have no value if there were nothing to buy with it: or of coal to barn, cince it would not burn in a vacuum. The second interpretation would refuse the name of accident to anything that could be aid about a subject, however rare and dieconnected the conjunction of circumatances through which it came about, where the nature of the subject as such ${ }^{2}$ contributed anything at all to the result. Thus we could hardly call it an accident that an animal shoald die of overeating itself, since it mast be an animal in order to eat. In practice we make a compromise between these

[^32]extreme interpretations. We call it a property rather than an eccident of belledonna to dilate the pupil, though the revalt depends as much apon the nature of the muscles as on that of belledonna ; we call it an accident rather than a property of the plough to be - favourite sign for country inns, though its neceseary familiarity to countrymen accounts for its aelection. The farther parsuit of these difficulties does not concern us now; but it remains to be shown that they arise in regard to the relation of cause and effect. In the canse of an effect that, given which and without anything besides, the effect follows? in other words, most it contain the whole ground of the effect? then a spark is never the caase of au explosion, for it will produce no explosion without powder. Is the canse anything, bowever alight, without which the effect coald not have occurred ? in other words, is that the cause which contributes anything whatever to the effect? then are cooke the canse of health, since there would be little health withont them.

The antitheris between acoident and the other heads of predicableen needs perhape no farther illurtration. We may retarn to the first of the three pointe enamerated on p. 62, viz. bow to anderetand the analyris of a definition into genus and differentia

It should first be noticed that definition is never of an individnal, bat always of what is universal, predicable of individuals-whether it be what we call their ' kind', or come atate or attribate of them, or relation in which they atand. For what in defined is thereby marked off and fixed in our thought, so that we have a determinate concept of it ; bat the ipdividual is made the individual he (or it) is by an infinity. of attributes; he is as it were the perpetual meeting-plece of concepts; we can neither exheost what is to be said of him, nor makea salection, and declare that this is eseantial to a true notion of him, and that unessantial. Moreover, even if we could, we should atill only have got a notion of what he in fact is, but a second person also might be; for every notion is universal. What makes him this individual and not another we should not have defined, nor could we; for there is something which makes me me over and above what can be predicated of me; elee, what makes me me might aleo make you you; for what can be predicated of me might be predicable of another; and then why does the same character make me me and you you, and not rather make me you and you me, or each of us both ?
We can only define then what is universal, or a concept. But
we have already said that concepts exprese the nature of things; and therefore in defining concepts, we may define things, $\infty 0$ for as they are of a kind, but mot ae individuals. It is sometimes maintained that definitions are not of things, but only of names ${ }^{1}$: that they set forth the meaning ($o r$, as it is aloo phrased, the connotation ${ }^{7}$) of a name, but not the nature of a thing. Yet names are only used to convey information about things; and to explain what the name means, in to explain what the thing is said to be. Definitions then are not really of names; but we shall see later the difficulties which drove men into saying 80.

Now when we define we analyee; and the elemente into which we analyee that which is defined are called, as we saw, genus and differentia These might be called attributes of the subject: it might be said, for example, that rectilinear figure and threo-aided are attributes of a triangle. But the expression is not quite appropriate; for an attribute implies a subject beyond itaelf, to which it belongs ; but the parts of a definition themsel rea make a whole, and coaleace into the unity to which they belong. This may be beat explained by a contrast. We may take any attributee we like-ay far, sour, pink, eoft and circular-and we may give one name to the aggregate of these. But they do not form one notion; they remain obetinately five; nor by considering a thing as far, sour, pink, soft and circular, can we construct the concept of omo thing. If we took a single name to signify the possession of thees attributes, we could explain the name as meaning that anoemblage, bat we should feel that in so doing we were merely explaining a name, and not defining anything. But when we analyse into genus and differentin, this is otherwise; then we feel that the two together really make a single notion. They have such a connexion in their own nature as makes one fit the other, so that they constitute the esence of one thing, or state, or quality, or relation. And the reason for the parts of a definition being one ${ }^{a}$ is this : that they are not attributes independent but coincident, but the genus is the general type or plan, the differentia the 'specific' mode in which that is realized or developed. Let us take again the

[^33]definition of a triangle. It is a rectilinear figure; but that by itself is an incomplete notion. There cannot be a rectilinear figure without a definite number of sides, though any definite number will do; and if the number in a triangle is three, then three-sidednesa is the epecific mode in which the general plan, or as we may say the potentialities, of rectilinear figure are realized in the triangle. We may eay that the genus and differentia are one, because they were never really two. Three-sidednese can only be realized in a figure, rectilinear figare can only be realized in a definite number of sides. The genus therefore never could exist independently of a differantia, as soft may of bour: nor the differentia of the genas. It may be said perhaps that though three-sidednees can only exist as the form of a figure, reotilinear figarehood exists independently of three-sidednees in the equare, the pentagon, dc. But it is not quite the ame thing in the square or pentagon as it is in the triangle. So intimately one are the differentia and the genus, that though we refer different species to the same genus, yet the genue is not quite the same in each; it is only by abotraotion, by ignoring their differences, that we can call it the same. Triangle and aquare and pentagon are all rectilinear figures; but in the sense in which they actually are such, rectilinesr figure is not the same in them all. Thus the differentis modifies the genus, and the genus also modifies the differentis. It might be aaid that threo-sidedness is not confined to the genus figure; for a triangle is a three-aided figure, and N is a three-sided letter. And doabtleas, so far as the genus is the same in two opecies, the differentia may be the same in the species of two genera. But three-sidednese is plainly different in the figure, where the sidea enclose a apace, and in the letter, where they do not; and the genus as it were fusee with the differentia, so that each infeota the other throngh and through.
For this reeson the genus is not well deacribed as a larger class inoluding the amaller clase or species within it. For the word claes suggente a colleotion, whereas the genus of anything is not a collection to which it belongs but a scheme which it realizes, or a unity connecting it with things different from iteelf. It may seem at first plain-apeaking, without any metaphyaical nonsense, to say that a genus is a clese of thinge that all have certain features in common; and that ite species is a smaller class composed of some of thoee things, which all possess not only the features commor to the
whole genus, bat others not belonging to the other members of it. But what is really meant by being included in a clem? The phrase is sometimes put forward as if it were simple, and presented no difficulty; bat such is not the cage. The words 'to be within', or ' to be inoloded in', have many meanings, and we must know what meaning they bear in the phrase ' to be included in a cleanse', before we can know what that phrase signifies. We may distinguish in particular two meanings, which are quite inapplicable to the relation between a genus and its species ; bat they are more easy to grasp than the meaning in which the species cam be said to be included in the genus, because they can be in a manner represented to the senses; whereas the relation of genie to species can never be reproseated to the senses, but only apprehended by thinking. Because one of these inapplicable meanings is readily suggested to the mind, when we are told that the genus of a thing is a elves in which it is included, we fancy that the expression helps us to understand what a genus is; for these inapplicable meanings are easily understood. But as they are inapplicable, they help us not to understand but to misunderstand the logical relation of genus and species. ${ }^{1}$

In the first place, one thing may be included in another as a letter is included or enclosed in an envelope, or
 es Mr. Pickwick and the wheelbarrow were enclosed in the pound. In this case, all that is included may be removed, yet that in which it when included will be left. Such is clearly not the sense in which species are included in a genus; for there would be no genus left if the species vanished. Yet the logical relation is often represented by a diagram, which inevitably auggente this sones. Two circles are drawn, one enclosing the other; the genus being represented by the outer and the species by the inner circle. It is not impossible to use such diagrams without being influenced by their obvious suggestions; yet their obvious suggestions are false, and to avoid them is difficult.

Secondly, a thing may be included in an aggregate, which is constituted by that and all the other things included along with it.

[^34]In this sense a cannon-ball is included in a heap, and a particular letter in the pile on my table. We do aotually use the word clam on some occasions to indicate a total formed in this way; in a achool, for example, a claee is a certain number of boys tanght together, and when a boy is moved from one clase to another, he is sent to do his work with a different set of boya. Here we have a notion which is so far nearer the logical notion ${ }^{1}$, as that the clame would disappear upon the disappearnce of what is included in it. Bat a litule reflection will ahow that the logical relation of genus to species is no more like that of an aggregate to ite members than it is like that of an envelope to its contenta.

If Tom Smith is in the first class in his school, I should look for bim among the boys in a partionlar clese-room; bat if a triangle is in the oleae figare, or a Red Admiral in the class lepidoptera, that doee not mean that I should book for either in a collection of figares or of lepidopters ; it is true that a collection of these objecte would include specimens of the triangle or the Red Admiral ; but they do not belong to their reepeative geners because they are in the collection; specimens of them are pleced in the collection because they belong to the geners. Were it otherwise, I could not asy that a triangle is a figure, or that a Red Admiral is a lepidopteron, any more than I can eay that Tom Smith is the first cleses; I could only any that an Tom Smith is in the firat clacs, $\infty 0$ a triangle is in the claen figare, and a Rod Admiral in the claee lepidoptora; wherese it is characteristic of thin to $b e$ a lepidopteron, and of that to be a figare.

The 'clese' to which species (or individuals) are referred is apt not to be thought of as something realized in ite various members in a particular way; but the genus in something realized in every speciea (or, if it is preferred, in the individuals of every species) belonging to it, only realized in each in a special way. The differentis carriea ont as it were and completes the genus Individuals are not incladed in one genns because agreeing in certain attributes, and then in one species within the genus because agreeing in certain other sttributes that have no connexion with the first; as you

[^35]might include in one island all men who had red hair, and then rail off separately within it those of them who had wooden legs; wooden-legged could not be a differentia of the genus red-haired; it mant he eome modification of red hair itself, and not of the men having it, which could aerve as a differentia to that genue. It is therefore a phrace that may mialead, to say that the differentia arded to the genus makes the apecies, or makee up the definition. For adding anggests the arbitrary juxtaporition of independent units; bat the differentia is not extraneously atteched to the genus;
,) it is a particular mode in which the genus may exist. And hence, When we distingiisit the various species of one genus, in what is called a logical division ${ }^{1}$, aseigning to every apecies the differentia that marks it off from the rest, our several differentiee must be themselves homogeneous, variations, as it were apon one theme and, because each cognate with the same genus, therefore sograte with one another. If triangle, for example, is regarded as a genus, and one species of it is the equilateral, the others will be the isosceles and the scalene: where each differentia specifies certain relations in the length of the sides; if one species is the right-angled, the others will be the obtase- and the acnte-angled: where each differentia specifies certain relations in the magnitude of the angles. The principle that the differentiae must be thas cognate is technically expressed by saying that there must be one fundamentum divinionis; this, however, has ite proper plece of discussion in the next chapter.

To define anything then per genus el differentiam is to pat forward first a relatively vague notion and as it were the leading idee of the thing, and then to render this definite by stating in what way the leading ides is realized or worked out. And the differentive are of the easence of the things, because they belong to the working out of this leading idea. In the definition of organic species (inorganic kinds we will consider later) this is what we aim at doing. We start with the general notion of an organized body, and clasaify ite various forms in such a manner as to show how this scheme is realized in successively more complex ways. Our first division is into unicellular and multicellular organiams (protozon and metazoa) : the former obviously admit of no composite cellular structare; in a multicellular organism there must be a method of constructing the system of parts. Hence we proceed to differentiste

[^36]these secording to the principal modes of structure which they exhibit; on this basis is founded for example the division of the metaroe in the animal kingdom into coelentera and coelomata; of coelomata into a number of 'phyle' ($\phi \hat{v} \lambda a)$, the platyhelmia or fist-worme, annelide or worms, arthropoda, mollusca, echinoderms and chordata; of chordata, eccording to the form which the nervecord aesumes, into hemichords, urochords, cephalochorda and vertobrata; and of vertebratee, according to the different forms which the general principle of vertebrate stractare may assume, into fish, dipnoi, amphibia, reptiles, birds and mammals. When it is said that we start with the general notion of an organized body, it is not of course meant that historically, in our experience, that is what we fint become acquainted with. We first become scquainted with individual plants and animals; and we are familiar with their various species-with horses, dogs, and cattle, oak and apple and elm-long before we have settled with ourselves what is the leading iden, and how it is developed and worked out in them all, 80 as to make them the kinds of things they are. The genus is that with which, when we have acquired an insight into the nature of these varions kinds, we then atart; it is first in the order of our thought about them when we understand them, not in the order of our acquaintance with them when we perceive them. According to the
 apórepov: firat or fundamental in the nature of the thing, and in the order of our thought, but not what strikes na first. And Arietotle aleo expressed ita function by asying that the genus is, as it were, the matter, $\bar{\lambda} \lambda \eta$, of the species or kind.
In saying that a genus is related to its apecies as matter to form,
${ }^{1}$ The extent to which, in sabordinating epecies and genera to as superior genus, a common type or plan can be definitely traced through them all, may vary at different stagee of a clamification. The asme functions of animal life are diversely provided for in protoros and metasos; and within the comparitive complexity of metazos, in coelenters and coelomata; but it would be difficult to give any one diagrammatic representation of the atructore of all theee, or even of all metazou. Such representations are given for coelenters in general, and coelomsta in general ; yet they are a mere oatline, in which even the principal orgens of many important types are ascrificed. On the other hand, for each eeparate phylum among the coolomatee roologista can give a reprementation, in which a place is found for overy principal orgen that all the apecies of that phylum, though with manifold rariation of development, at come atage of life or other alike exhibit; and for the aubdivisions of the vertebrata this can be done more adequately than for the subdivicions of the chordata.
the relation of matter to form is conceived an that of the less developed to the more developed, the potential to the actual. A word of caution in necessary here. We often compare two particular objects, say a 'bone-abaker' and a modern bicycie, and observing that one carries out more completely certain features imperfectly present in the other, call them respectively more and lese developed. The aame thing may be observed in the arrangement of a picture gallery, where the pictures are placed in such an order as will exhibit the gradual development of an artist's style, or of the style of some school of artists : and in a museum, where the development of the art of making tint implements is illustrated by a succession of apecimens each more perfect than the last. Now in all these cases, the more and the less developed epecimens are all of them concrete individuals: each hee an actual axistence in apece and time. But with genus and apeciee it in otherwise. They are not individuals, but universals; the genus does not exiet side by side with the species, as the bone-shaker exists side by side with the beat bicycle of the present day; and you cannot exhibitigenus and species separstely to the sensea. It is our thought which identifies and apprehends the generic type, eay of vertobrate, in the different species, man and horse and ox; and in thinking of them, we may sany that the single type is developed in so many divers ways; but genus and species do not exist in local or temporal succession, the less developed first, and the more developed leter, like the specimens which illustrate the development of a type or style. Obvious as these remarke may seem, they are not (superfinous, if they help to grand against the ides that a genue $>$ is something independent of ite species.
[It would be travelling too far beyond the limits of an elementary work to enquire into the meaning of arranging individuals in an order of development: whether (like plants and animala) they proceed one from snother in a true genealogical series, or are manufactured independently, like bicycles or arrowhesds. A criticism of the conception of development is however of great importance ; for the complacent application of the notion to disparate subjecte, under the influence of the biological theory of evolution, by writers like Herbert Spencer bas diffused many fallacies. Perhaps it may be suggested that, if we wish to know what we mean when we apply the conception of greater and less development to the relation between individual objects, we ahould frat examine what we mean
[by the conception in the relation of genus and speciea. We cannot throw any light on the relation of genus and apecies by comparing it with what subsists between individuale at different atages of 'evolution'; but we may get come light upon the conception of evolution from reflection on our conception of the relation of genus to species. For the 'evolution of species' is generally cupposed to be not mere change, but development; yet it is often suppoeed also to involve nothing of the nature of parpoee, or denign. Now unlees we find, in considering individual objects, that there is a plan, parpose, or ides suggented to us in what we call the less developed, but not adequately exhibited there as we conceive it, and that this same plan, purpose, or ides ia more sdequately exhibited in what we call the more developed objeot, we heve no right to call them more and lose devaloped at all. The relation therefore is not between the objecte as individual, but between their charncters; we cannot identify with the lese developed individual the plan, purpose, or idee which is leveloped in it; there is the same plan at different levels of development in each individual ; and the evolationary history of individuals must be a manifestation of a plan or of intelligence in them, unlese we are to esy that there is no real development in them, bat only change, and that to call this change development is to read into things a fancy of our own.]
[In the fint chapter, the antitheris of form and matter was employed in explaining how a common character might belong to divers objects. Two shillings, for example, may be said to be of the anme form, while the matter in them is different: and two propositions to be of the same form, so far as each asserte a prodicate of a subject, while their matter-i.e. the actual subject and predicate in each-varies. Bat in anying that genus is related to apecies ae matter to form, it is implied, as between two speciea, that their common genus, the 'matter', is that in which they agree: while the specific form aesumed by this matter in either is the basis of the distinction between them. Indeed, the phraee 'apecific differences' implies that their differences constitute their form. It may seem strange that whereas in one sense matter is that which is different in thinga of the mone form, in another it is that which is the game in thinge of different form.

A little consideration will show that the common notion in both these uses of the term matter is the notion of something undeveloped. With regard to the phreee that calla the genus the matter of the opecies, this point has already been illnatruted. And when we contrast, in a shilling, the matter (silver) with the form, this is still the casc. We regard a shilling as an object having a certain form (that might aloo be stamped in gold or copper) impresed upon
[a certain matter, silver : and say that both are necessary to its being a shilling. Now the matter here is really silver at of no shape. A disk of silver may be put into the die and stamped: but such disk is not the mere matter of which a shilling is made; it is the matter in a different form : but because the silver may have the form of a shilling, and may have the form of a plain disk, it is possible for us to distinguish between the silver, which is present alike in the diak and in the shilling, and the form which the silver assumes in the minting. The matter of a shilling is thus not silver in another shape, but silver without regard to its shape: the metal as it is present equally in the disk and in the shilling ; now silver does not actually exist except in a particular shape; and in thinking of it in abstraction from its ahape, our thought of it is incomplete. As the genus only exists in the species, so the matter, silver, only exists in some form. It is bowever true that there is no special relevance between the nature of silver and the shape of a shilling, wheress the apecific form of man can only be realized in the genus vertebrate; and hence the conception of development appliea more closely to the relation of genus and species, than to the relation of matter and form in a concrete object.

Many controversies have been waged over what is called the principism individuationin. What is it that makes one individual distinct from another individual of the same apecies? Some of the achoolmen held that, being of the same apecies or form, they were distinct in virtue of their matter; and it followed, since angels have no matter, that every angel is of a different species: except their opecies, there is nothing by which they can be dirtinguished from each other. We may be less ready to dogmstize with confidence about angela than were the schoolmen; bat the fashion of deriding their speculations becanse they were exercised in solving that kind of questions is fortanately in diminished vogue. The problem of the principium individuationis is aserious philosophical problem.

It may throw some further light on what has been said of the antitheais between matter and form, to point out that matter cannot really be the principimm individuationis. Two ahillings which have the same form are said to be of different matter. Now their matter is silver: but it is not becsuse it is made of silver that one shilling is different from another shilling. In that respect all shillings agree; it is because they are made of differont masese or pieces of silver that they are different ahillinge. But if mo, it follows that to be of gilver is a character common to both pieses (quite apart from their being of the same die); and though we asy they differ in matter, we mean that though of the same matter, they are different pieces of it. The problem of the principinm individuationis is not therefore solved by the distinction of matter and form ; the ahillings are different, though of the same form, because in esch that form
[is stamped upon a different piece of silver; bat the pieces of silver themselves present the same problem, of a common form (the nature of silver) in different individual objects. Matter is indeed, strictly apeaking, not a particular thing or an aggregate of particular things, but a generic conception. We recognize various species of it, which we call elements: the elements are different forms of matter; pad in calling them eo, we imply something common to them all, ae we imply something common to man and ox in calling them both animals; though we are less able in the former case than in the latter to form any conception of the common or generic character in abatraction from ita specitic differencea.]

It hardly neede now to be pointed out, that where the predicate of a proposition defines the subject, it is related to ita subject far otherwise than where it is an accident. We realize (or we should realize, if our definitions were what we aim to make them) that the genus, modified or developed in the way conceived, is the subject; the definition and that which is defined ane not tire but one. Of course, when a green thing is equare, the same particular thing is both square and green; the green thing and the square thing are one thing; bat here the aubject is net an univermal, and we have only to recognize the coincidence of attribates in the aame individual. Being green and being equare are not one, as being a triangle and being a three-sided rectilinear figare are ${ }^{1}$; there is a conceptual unity between these ; between thoee only an accidental.

It followe that there is a conceptaal connexion between any subject and ite genus or differentie ; be who understands the nature of the sabject sees that it must be what is predicated of it as ita genus or ita differentia. What belonge to the ewence of anything muet belong to it; for elee it would not be that kind of thing, but comething different.

We may now take up the last of the pointe raised on p. 62-the second in the order in which they were there stated: viz. the ground of the distinction between eesence and property; since the least paragraph auggeats the question, What do we mean by the essence? If the essence of anything be what makee it what it is, of coarse it would be something different, were any element in its essence wanting; but what makes it what it is?

[^37]Those who hold the view, already mentioned, that definition is of names only and not of thinga, have an answer ready here, agreeable to that view. They esy that we cannot tell what makes anything what it is, but only what makes it what it is called; and that the world might have been epared much useless controversy, if men hed realized that by the eseence of anything they meant no more than the attribntes which they agreed should be signified by a general name: or, as Locke called it ${ }^{1}$, the momizal essence. Pushed to its logical conclusion, such a doctrine makes all the distinctions of predicables arbitrary; for if the nature of the thing denoted by a general name X is not to determine the aignification of the name, we can attach to the name what concept we please, and it will reat with us whether the concept shall be one with which a given predicate is conceptually connected or not, and therefore whether it shall be an acoident of X, or stand in come other relation to it. And if we were to regard only the definitions of geometry, it would appear a gratuitous parador to maintain, that men determined arbitrarily what to include in the definition of circle or triangle, and what to omit. Every one recognizee that you declare better what a triangle is by eaying that it is a three-sided rectilinear figure than by saying it is a rectilinear figure whose angles are equal to two right angles; or a circle, by saying that it is the figare genorated by the revolation of a straight line round one of its extremities remsining fixed, than by saying that it is a flgure having a larger aree than any other of equal perimeter. What has led men to suppose that definition is a matter of fixing the meaning of names is the difficalty found in defining nataral linds, i. e. the various speciee of animal, plant, or inorganic element; in despair they have looked to the eignification of the name for the only meaning of the easence of the object. The definition of abetract notions like wealth or crime or liberty has lent eome support to the same view. In these caces, the object defined cannot be presented to the censes in an example, as can gold, or the holm-oak, or the buffalo; we cannot be sure therefore that different men intend to define the same thing, when they offer definitions of such notions; and instead of settling first by its appearance that a given act is a crime, or an object wealth, or a state one of libarty, and then

[^38]argaing to ita nature from our definition, we have rather to determine whether it is to be called a crime, or wealth, or a state of liberty by considering whether ita nature is auch as mankind, or particular writers, heve agreed to signify by thowe names. Hence it might appear that in the case of abotract terms ${ }^{2}$ at any rate, convention settles what the essence of them shall be; in the main it in not really so, even with them; for the understanding of facts would not then be facilitated as it is by the aubetitution of ' better' for 'worse' definitions of abstract terms; but the plasaibility of the view here adde weight to the arguments which are drawn, in the manner we must now proceed to show, from the definition of netamel kinds.

Suppose that we wish to define the natural substance dog, or gold. The forms of language recognize a difference between a substance and its attribates; for we say that Gelert is a dog, bat not that he is a faithful; and apeak of a piece of gold, but not of a piece of heary. Yet when we define a substance we can only enamerate ita qualities or attribates ${ }^{2}$, and leave out of account what it is that has them. What attribates of Gelert then are we to enumerate, to explain what we mean by calling him a dog? or what attribates of a wedding-ring, to explain what we mean by calling it gold? In each case a certain fixed nucleus, as it were, of attributes, holding together in repeated instances and through great varietiee of circomstance, is included in our concept of an objeot called by such a general concreto name. But which altributes are to form this nacleas, and on what principle are we to make our selection? If it be said that we are to include every attribate common to all doge, or all gold, two difficulties arise. The first is, that we
${ }^{1}$ Sach complex abatract notions were called by Locke 'mixed modes"; which he aid we could dellne, because we had firit made them by putting together cimple notion (or in his languago, simple ideas) with which we were perfectly acquainted. The expremion 'mixed mode' has not exablinhed itself; perhspe because the worde are not well adapted to convey the meaning which Locke intended by thoir combination; but it would be useful to have an appropriate expreacion to indicate what he meant. Cf. Eepay, BE. II. c. xxii.

- We hava, however, seen. in discusaing genus and differentis, that these cannot well be called attribatea. But it might be arged, that elthoagh they cannot be attributed to any other 'univeraal' as qualifying it, thay mast be attributed to some subatance which in any individual object is what has the charecter, in virtue of which we call it a dog or gold, as well as hering such other attributes as mangy or line-drawn; ${ }^{\text {f }}$, howevor, Pp. 11-44, supra.
should include in oar notion of dog or of gold all the properties, as woll as the attributee that are to constitate the definition : for the properties of a kind are the predicaten common and pecaliar to all the individuals of that kind; and hence we should still lack a principle apon which to discriminate between property and essence. The second difficalty is more serions. We are to inolude in our definition of a kind every attribate common to all individuals of that kind; but until we have defined the kind, how can we tell whether a particular individual belongs to this kind or another $?$ Let the definition of gold be framed by collecting and examining every piece of gold, and noting down the attributes common to them all; the task is impossible in practice, but that might be overlooked; it is, however, viciona in theory; for it implies that we already know what gold is, or what makes a perticular object a piece of gold, and can by that knowledge eelect the objects which are to be examined, as apecimens of gold, in order to determine the nature of that substance. Thus we seem to be moving in a circle; what is gold is to be aettled by an examination of the things that are gold; what things are of gold is to be settled by knowing what gold is.

Hence our selection must be arbitrary; for we have no principle to make it on. We may take a particular specific gravity, the power to resist corrosion by air, ductility, malleability, and solnbility in aqua regis; and eay these constitate gold, and are its essonce. And in that case its colour is a property, or for all we can tell, an accident; for we can ree no necensery connexion between a yellow colour and all or any of those attribates, and if we found a white metal with those five attributes we ahould have to call it gold. Bat if we choee to include yellow coloar with them in our definition, then nothing could be gold that was not yellow ; yellow would be of the essence of gold ; bat only because we had decided to give the name to no metal of another colour; it would be the meaning of the name that fixed the easence, and the easence would be only ' nominal'.

It has been assumed in the above that the attribates included in the definition may be not only arbitrarily selected, bat without any perceivable connexion among themselve ; so that any attribute omitted from the definition should drop at once into the rank of sceident ; the eesence is only a collection of attributee comprised in
the signification of the same name, and there are no properties at all. And some logicians have maintained that we can never see any neceasary connexion between different attribates; and that when we speak of them as universally connected, we really mean no more than that they have been very frequently found accompanying one another. Without for a moment agreeing with this opinion (which denies any eense in the distinction between a connexion that is necesary and univeras, and a conjunction that is accidental) it may be admitted that we often regard attributes as necessarily and universally connected, because we believe that with fuller knowledge we might see into the necesity of the connexion, when as yet we cannot actaally do so. This is markedly the case with the varions properties of an inorganic sabatance; and the kinds of plant and animal aleo present us with many instances where difforent peenliarities in a apecies are inferred to be 'correlated ', becuuse the same conditions seem to affect them both, without our being able to underatand the connexion between them.

The difficulty of determining what attributes are eseential to a substance, and therefore of discriminating between easence and property, does not however arise entirely from the seeming disconnexion among the attributes of a kind. It arises also, in the case at least of the organic, from the great variation to which a species is liable in divers individuals. Extreme instances of such variation are sometimes known as border varieties, or border apecimens; and these border varieties give great trouble to naturalista, when they endeavour to arrange all individualg in a number of matually exclusive speciea. For a long time the doctrine of the fixity of apecies, aupported as well by the authority of Aristotle and of Genesis, as by the lack of evidence for any other theory, encouraged men to hope that there was a stable character common to all members of a species, and antoached by variation; and the strangeat deviations from the type, excladed under the title of monstrositiee or sports or unnatural births, were not allowed to disturb the symmetry of theory. Moreover, a working teat by which to determine whether individuals were of different epecies, or only of different varieties within the same species, was furnished, as is well known, by the fertility of offepring; it being assumed that a cross between different species would always be infertile, as in the case of the mule, and that when the croes wan oniformly infertile, the species
were different. But now that the theory of organic evolution has reduced the distinction between varietal and specific difference to one of degree, the task of eettling what is the essence of a species becomes theoretically imponible. It is possible to describe a type; but there will be hundreds of characteristice typical of every species. Who is to determine what degree of devistion in how many of these characteristics will make a specimen ementially or apecifically different $?$ Will it not have to be decided arbitrarily at the last? so that here again our ase of names will gettle what is essential to the species. Everything will be essential that we require in a apecimen in order to call it by a certain specific name.

Such are the reasons for ayying that the eesence of anything is settled by the meaning that we give to names, and if the easence is thas arbitrary, the distinction between emence and property is similarly infected. But that distinotion is obnoxious to snother objection, already noticed on p. 80 : that if the property is common and peculiar to the kind, it ought to be included in the essence, because connected with it univerailly and necesaarily. It is as little posible for a triangle not to contain angles equal to two right angles, as not to have three sides; as little possible for a line not to be straight or curved, as not to be the limit of a superficiea. If the property of a aubjeot is grounded in the nature of that eubject alone, why is it not regarded as a part of its natare? if it is grounded in part in the nature of the subject, in part in the fulfilment of conditions extraneous to the subjeot, then the subject only ponsenses it in a certain conjunction, and it ought to be called an accident. ${ }^{1}$

Having thus presented our difficulties, we muat endeavour their solution.

The inexpugnable basis of trath in the theory of the predicables lies first in the distinction between the necessary and the accidental : secondly, in the analysis of definition into genas and differentia. The first underlies all inference; the second, all clasaification. Bat the notion of essence, and the distinction between essence and property, are not applicable in the same way to every subject.

They present at first sight no difficalty in geometry. The esence of a figure inclades so much as need be stated in order ${ }^{1}$ Cf. supra, p. 66.
to not the figure as it were before ua: whatever can be proved of such a Gigure universally is a property. Thus the definition is acoumed, the propertien are demonatrated; and that is the true Aristotelian distinction between easence and property.

But how are the properties demonstrated? Only by asoming a great deal else berides the definition of the figure of which they are demonatrated. We asame, for example, the postulates; and that means that we see that we always can produce a atraight line indefinitely in either direction, or join any two pointa, or rotate a line round one extremity. We asoume the axioms; and that means that we see, e.g., that any two right angles muat be equal; and that if a straight line $A B$ falling on two other straight lines $C D, E F$ makes the angles $C A B, E B A$ equal to the anglea $D A B, P B A, C D$ and $E F$ mort be parallel, and if not, not; and vice verse: we asame aleo in one propoeition all that we have already proved
 in others. It is not from the mere contempletion of a figure as defined, that the perception of ite propertien follows; we must eet the figure into apeco-relations with other lines and figures, by an act of conetruction; and the truth of our conclasion is involved not solely in the essence of the figure as set out in ite definition, bat in that taken together with the nature of apeoe; for it is really the natore of apece which we apprehend when we realize that the sum of the interior angles made by two particular parallel atraight lines with a line that cuts them is equal on both sides of it, or that a given straight line can be produced to meet another with which it is not parallel. Another point must be noticed. It was asid that whereas the properties are demonstrated, the definitions are assumed ; but that does not mean that they are arbitrarily taken for granted. They are esoumed, becanse they are what we start with. But they are not arbitrarily taken for granted, becanee it is eelf-evident to us that the existance of a figure a defined is possible; and this is selfevident, because in the procese of defining we bring the figure into being before us. We know that three straight linee are enough to make a figure, because we make it of them in imagination; we know that a figure may have five sides, becanse we see the pentagon before us. It is this power which geometry posesses of creating instances of the objects of ite own otady that distinguishes it from the
non-mathematical aciencea. And it createa its objecta by constructing them-i.e. by drawing lines; and in this poseesses a nataral principle upon which to dirtinguiah between property and eseence. For though, in geometry, propertiee are commensarate with their subjects, and may be reciprocally demonstrated, yet everything depends upon the power mentally to see the lines; thus the angles of a triangle determine the position of its lines as much as the position of the lines determines its angles; but it is only through dividing spece by lines, that the angles can be realized. The visible figure is therefore our necessary starting-point. A definition which fails to determine that waits for application until the figure can be pictured. Let a circle be a figure having a larger area than any other of equal perimeter; that does not set a circle before us; an inflnity of figures can, we see, be made by a line that returns upon itself and is flexible at will; and the property specified will not, previously to demonstration, afford us any means of selecting the figure intended. But eay that a circle is the plane figare generated by the revolution of a atraight line about one of its extremities remaining fired, and then we have it before us; then we understand what it is about which the property of having a larger ares than any other figure of equal perimeter is affirmed. Once again, in geometry there are no happenings, no conjunctures. It is true that in order to geometrize we have, actually or in thought, to draw the figures: bat our procee of drawing only renders visible spece-relations which we conceive are eternally present everywhere in spece. Therefore the circle or the triangle is not subject to mutation on different occasions; there is nothing to prevent it at one place or time from being the same as at another; and the conditions under which it existe do not vary; the general nature of the spece in which it is is uniform and constant. Hence the properties of any geometrical figure, though, as we have seen, we must take the general nature of spece into account, as well as the definition of the figure, in order to realize their necesity, may yet without riak of any false deduction be regarded as if they were grounded in the eseence of that figure alone. For the general nature of apace is a 'constant'; it is everywhere the same, and conditions every figure alike; it is not because that ever changes, that different figurea have different properties, but because the figures are different.

Geometry therefore deals with subjects capable of definition : in which the definition serves to set the subject before us: and in which the distinction between easence and property, though from one point of view queationable, is from another cound. It is questionable, so far as the properties of a figare do ideally belong to it always, just as much as the figure always exists ; they are as necesaary to it as ita definition, and do not really any more depend on the definition than the definition on them. Bat it is sound, $\infty 0$ far as the eneance is that which we most start with, in order to have the figure before us, and eay anything about it, while the proparties are what we can demonstrate. The procesa of demonatration may require that we should make a further constraction than what the figure itself demands; but this further construction is not neceseary in order that we may see before ne the figure itaelf; and hence the definition, which as it were constracts the figure, gives us what is emential, the demonstration what in necemarily bound up therewith. ${ }^{1}$

Now the ecience of geometry, both in Aristotle's day and since, has been apt to ream the model of what a science ahould be; and that deservedly, so far as ite certainty and self-evidence go. But though we may desire an equal certainty and self-evidence in other aciences, we mast not ignore the differences between their subjectmatter and that of geometry; nor must we asame that the diotinction of essence and property will have the same applicability to concrete bodies as to figures in spece. The subjecte which we stady in chemistry, in botany, or in zoology, are not constracted by us; they are complex, and for all we know may differ mach in their constraction in different instances; and they exist under conditions which are not constant (iike the nature of apece) but infinitely varioss. Under these circumstances, we cannot erpect to find the determination of the eveence of a kind, and the separation between that and ite propertice, as soluble a tagk as in geometry.

Let us consider firat the definition of inorganic kinds. Here, since a compound may be defined by apecifying its composition,

[^39]our problem deals with the elements. It will be instructive to look for a moment at the Greek treatment of this question. There were two main attempts to define the famous four elements of Empedocles, earth, air, fire, and water. Plato supposed that they differed in the geometrical construction of their particles, thowe of earth being cabic, of air octohedral, of fire tetrabedral, and of water eicosihedral. If these were their differentiae, what was their genus? We can only reply, solid. ${ }^{1}$ They were something filling space, of different figures. In asoming the concrete things which he defined to fill apace, Plato did what every one who definee a nataral subetance does. We do not always mention it in our definition; we might define a suake, for example, as a certain kind of vertebrate; but the notion of a vertebrate involves it; and it is necessary if the definition is to fornish us with the concept of a material object at all. In taking geometrical figures as his differentiae, he attempted to gain in physics the advantages whioh geometry derives from our power of constructing ite objects; but he failed to show how the sensible properties of the diferent elements were connected with their reapective tigures. Aristotle proferred the method of those who distinguished the elements not by the figure of their particles, bat by the mode in which they combined certain fundamental sensible qualities, heat, cold, moisture, and dryness. Fire he thought was the hot and dry aubstance, water the cold and moist, earth the cold and dry, sir the hot and moist. These definitions have the disedvantage of using terms that poseses no very precise signification. How hot is unmired fire, and how moist is pure water ?

Modern science recognize in each element a whole legion of common and peculiar attributea. Some of these, such as its atomic weight, or its apecific gravity, are conceived to be constant or to charecterize the element in all conjunctures; others it only exhibits upon occasion; this is the case, for example, with ite reactions towards other bodies. We have very little insight into the interconnexion of the various attribates thus characterizing each element; bat unlese we are to regard everything in nature as accidental, we are bound to believe them interconnected.* It is impossible to
${ }^{1}$ Or perhapt, regraler solid.
I On what lind of eridence particular attribntes are held to be connected, it is the businese of the theory of the inductive sciences to ahow.
include in ita definition all that is known to be characteristic of an element; and for the mere purpose of identification, many of the attribates of an element would serve equally well. Bat we prefer to select as differenties, and inclode in the definition, such attribates as appear, in come form or another, in all or a large number of elementa; becanse we are thus able to exhibit the divers elements as related to one another upon as scheme, or in other worde to claseify them. Thus the opecific gravity of a arbetance in more suitable for defining it than some peculiar reection which it exhibita, although perhspe lese useful for identifying it; because all elementa most have some specifio gravity, bat no other need exhibit the eame sort of reaction. If, however, a reaction is common to a number of subatances, it may serve as a groumd for colleoting those into one clase, like the salta: the common reaction being a generic character; eapecially when for any rewoon, sach a the number of attributes that are commensarate with it (i. a are found where it is found, and not where it is absent), such reaction seems to be of importance in the subatances to which it belongs.

Such considerations may gaide us in choosing what to include . in our definition; and we shall aleo coteris paribue prefer for differeatime those attribates that are continuously exhibited to thove that an element only exhibite in a nare conjuncture. Neverthalem it is plain that our procedare is in great meserce arbitrary; and the distinction between esence and property is not applicable as it was in geometry. For among the constant attribates of an element we cannot atart with some and demonstrate the remainder; and thowe which it exhibite in particular circumstancee are not propertien in the full eanea. We may indeed regard it as the property of an element to exhibit a certain reection in certain circumstances ${ }^{1}$; but wherese the 'circomstances' under whioh geometrical figures exist and possess their properties are in evary case the same (being the general nature of rpece), the circumatancee relevant to the manifestation of the several properties of an element are different; hence we cannot afford to omit the statement of them in stating its properties; and since they are often very numerous and complex, and involve many other substances, it may be more natural to refer the property to a compound, than to one element. Neverthelems,
 invopy alimoti.
since caneal connexion is the root-idee of the notion property, we rightly regard these attributes as propertiee rather than accidents. For although the aubjection of an element to any partioular conditions rather than others is striotly speaking accidental, since it depends upon historical causes that are independent of the nature of that element, yet its behaviour when eubject to those conditions is not accidental : so that it is fairly called a property of gold to be soluble in aque regia, though very little gold be so dissolved : bat an accident to lie in the cellars of the Bank of England, for that belongs not to gold, but only to particular mases of gold, and why those masess ahould lie there instead of any others cannot be determined scientifically, nor by any reasonings applying to gold universally.

The use of the singular withont the article (ss in a proper name) when we say that gold is malleable, or iron rusta, or silver tarnishes, is worth remark. It implies that we think of gold, or silver, or iron as one and the ame thing always: that we are looking to the unity of kind, and not the partioular apecimens. The very idea of an element negater the possibility of any difference between different speoimene ${ }^{1}$; and when we investigate the propertiee of a compound, so far as the composition is really known with nocuracy, we have the same confidence in attributing to that compound universally the propertie discovered in a particular sample. In organic kinds, though we may know the chemical composition of the parte, we cannot know with the same accuracy the composition of the heterogeneous parts into the whole.

Indeed the problem of distinguishing between and property in regard to organic linds may be declared insoluble. If species were fixed: if there were in each a certain nucleus of characters, that must belong to the members of any opecies either not at all or all in all: if it were only upon condition of exhibiting at least such a specific nucleus of characters that the functions of

[^40]life could g° on in the individual at all; then this nucleas would form the essence of the kind. But such is not the case. The conformity of an individual to the type of a particular species depends on the fulfilment of an infinity of conditions, and implies the exhibition of an infinity of correlated peculiarities, atructural and functional, many of which, so far as we can see (like keenness of scent and the property of perspiring through the tongae in dogs), have no connexion one with another. There may be deviation from the type, to a greater or less degree, in endless directions; and we cannot fix by any hard and fast rule the amount of deviation consistent with being of the species, nor can we enumerate all the pointa, of function or structure, that in reality enter into the determination of a thing's kind. Hence for definition, wach as we have it in geometry, we must substitute clasificetion ; and for the demonstration of properties, the diecovery of laws. A clemification attempts to entabliah types; it selects mome particular characteriatica as determining the type of any opecies; these characteristics must be (a) of the eame general kind for each type, or, an it was expresed on p. 72, variations upon the eame theme, in order to exhibit the mutual relations of agreement and divergence among the varions typea : (b) important, or, as one might aay, pervasive : that is, they muart connect themselves in as many ways as poesible with the other characters of the species. It will be the description of the type, drawn op on such principles as these, that will serve for definition. It is avowedly a mere extract from all that would need to be anid, if we were to define (upon the sapposition that we could define) any species of plant or animal completely.

The full natare of an organio apeciea is $\mathbf{\infty}$ complex, and subject to $s 0$ much variation in different individuale, that even if it could be comprised in a definition, the task of science would hardly consist in demonatrating ite properties. To diccover the properties of hinds belongs to the empirical and not to the scientific stage of botany or zoology. Science asks rather what it is about any kind on which a particalar property belonging to it depende Herein we break up or analyse the complex character of the kind, in order to determine what we call the lawes of organio life. If a species, for example, is keen-scented, that must depend upon conditions that are bat a amall part of what would be included in
a complete scconnt of its nature. In order to find the commeneurate subject of which a property is predicable, we must abstract from all in the species which is not relevent to that one property; and our subject will not be the conerete kind, but a set of conditions in the abstract. The property whose conditions we have found is of course the property not of those conditions, but of anything that fulfils those conditions ; keen-scentedness, for axample, is not a property of a particular construction of the olfactory organ (though we should call it an effect of this), but of an animal in whom the olfactory organ is thus constructed; the lwwe of organio life anppose of course that there exist organiams in which they are exhibited. We may still speak therefore of properties of kinds; but the demonstration of them considers the nature of the kind only so far forth as it concerns the property in queation. The property is not common and peculiar to the lind, if other kinds, as may well be the case, agree with it in those respects on which the property depends; or if it depends on conditions which cannot be fulfilled except in an individual of that kind, but are not fulfilled in every individaal thereof.

Suah reflections led the schoolmen to distinguish four senses of the term property-

1. id quod pertinet omini sed now soli: thus it is a property of the cow to give milk; but other animals do the same; and to give milk is the commensurate property not of a cow but of a mammal; being causally connected with a feature which though present in a cow is present in other species besides.
2. id quod pertinet soli sed nom ommi: thus it is a property of man to write poetry, bat not nniversally; for the writing of poetry requires powers which no cresture but man possesses, but which also one may not possess and yet be a man.
3. id quod pertivet onni of soli, sell nom semper: in this sonse it is a property of the male \&frety to grow a certain lind of feather, mach used by ludies in their hats; bat only at the pairing season.
4. id quad pertinet osseni of soli ef semper: in this sense it is a property of a triangle to have its angles equal to two right angles; but it is difficult to find an example of such a property among organic kinds, for a feature so constant and univeraal would be regarded as part of the essence: unless like the schoolmen we call it a property in this sense to be capable of exhibiting a property
in sense 8; they often gave it as an illuatration of property in the third sense that man laughs; and in the fourth sense, that he is capable of langhter; for the capacity is permanent, bat the exercise of it occasional.

In all these uses of the term property the notion of a necessary or causal connexion is retained; bat commensarateness with the subject is not insisted on in all. No doubt a commensarate subject for every predicate is to be found; but only by specifying the precise conditions (in an organism or in whatever it may be) on which the property depends; but the concrete thing is the subject aboat which we naturally make propositions, naming it after its kind; and kinds being complex may agree together in some points while differing in others with intricate variety; so that when we have distingrished the species to which objects conform, and the attribates which they poseess, we cannot divide the latter among the former without overlapping.

Many general avd sbotract terms, which form the subjects of propositions, designate neither nataral substances, nor mathematical entitiea. There are namee of qualities and atatee of things, like softrese or putrefaction: of paychical states and processes, like pleasure, anger, volition: of the material producta of haman or animal shill, like $p u m p$, umbrella, bridge or neat: of natural features of the earth's surface, like beack or valley: of determinate parta of an organiam, like cell or aympathetic nerve: of forms of haman asociation, like army, wniversity, damacracy, bank. It would be todions to proceed further with such an enumeration. About all of thees terme it is to be observed that the notion of them involves a certain abetraction. Bridge and pwep are concrete tarme, but they are names given to material objeots because they serve a certain parpose, or exhibit a certain atructure; and all else in the nature of the object is disregarded, in considering whether it is a bridge, or whether it is a pump. In attempting to define an element on the other hand, or an organic apecies, we have to wait upon discovery, in order to know the nature that an object must poseess an gold, or as a crab; the whole nature of the concrete object forms the subject of our enquiry. It is the abstract character of the terme which we are now considering, or the limited extent of their signification, that renders them more capable of satisfactory definition; they are least definable, where that which
they denote is moat complex; thus it is easier to define army than democracy, and rigidity than putrefaction. The more complex any subject, the less is it possible to exhaust its nature in any brief compendium of words, and the greater also are its capacities of various behaviour under varying conditions; all these are part of the notion of it, and no definition will really be worth much to any one who cannot realize how different the thing defined would be in different circumstances. Thus a definition of democracy means most to him whose mind is moot fully stored with a knowledge of history and of institutions and of human life; he can realize what government of the people by the people for the people (if that were our definition) really involves. Bat comparetively little knowledge is needed in order that the definition of a bridge may be fully understood. It will be readily seen, that what has been said of the difficulty of determining either property or essence in regard to natural kinds applies also to such terms as we are now considering in proportion to the complexity of the notion to be defined; the more complex the subject, and the greater the range and variation of the modes in which it manifests itself, according to the conditions under which it exists, the more arbitrary becomes our choice of characters to be included in the definition, and the less can properties be commensurate attributes.

We have now reviewed the theory of predicable as it was first propounded; we have seen that the scheme of knowledge which it implies cannot be realized upon all subjects; that it is best examplified in mathematics, and in other sciences which deal with abstractions. But we have also seen that it contains distinctions of great value and importance. These are

1. the antithesis between an accidental connexion (or coincidence) and a necessary or conceptual connexion;
2. the conception of the relation of genus and differentia, and of the unity of genus and differentia in a single notion;
3. the resting the distinction of essence and property upon the distinction between that which we start with and that which we demonstrate therefrom; though this use of the term property cannot always be adhered to in practice.

It remains to say a few words upon the Porphyrian doctrine.
It differs to appearance in one point alone; the Porphyrin list of predicable substitutes Species for Definition. But that difference
implies a change in the point of view. The problem now is not as to the relation between two universals predicated one of another, but as to the relation in which the various universals predicated of an individual stand to their subject: for it is of individuals only that a speciea (each as man, or horse, or parrot-tulip) is predicated. ${ }^{1}$ And varioun inconveniences arise from this change. First and foremost we have to determine what is a true species, and what only s genus within a wider genus. ${ }^{2}$ Do I predicate his species of Cetewayo when I call him a man, or when I call him a Zuin? if Zulu be a species, man is a genus, though included with the wider genus of mammal, vertebrate, or animal; but if man is the species, Zalu is an accident. The question thus raised is really insolable; for species, as is now believed, srise gradually out of verieties. It gave rise to many great controversies, as to whether a species were something one and eternal, independent of individuals, or on the other hand no more than a name. These opposite views were indeed older than Porphyry or the mediseval thinkers who discuseed them so earnestly; nor can any philosophy refuse to face the controversy between them. Bat it was a misfortune that the theory of predicables should have got involved in the controveray; partly because it led to a mode of stating the fundamental insue which is not the best: partly because the true value of the theory of predicables, as a clesaification of the relations between aniversals predicated one of another, was lost sight of in the dust of the dispute between the realista and the nominalista.

A second inconvenience in the Porphyrian theory is that while begianing by distinguishing the relation of its predicates to an individual, it cannot continue true to this standpoint. Species is properly predicated of an individual; we ask what is the species not

[^41]of man, but of Cetewryo; snd if the species can be analyeed into genus and differentia, it is possible to regard theee as predicated of the individual belonging to the species. Bat we cannot distinguiah between property and accident, so long as the subject whose predicates we wish to refer to these heade is an individaal. A property is necesaary to its subject, and an eccident is not; bat all the attributes which belong to Cetewnyo are equally necessary to him es Cetewayo; on what ground then are some to be called properties, and others sccidents? An accident is an attribute which coincides ${ }^{1}$ in an individual with another general character, or universal ; its accidental relation lies towards that other universal, and not towards the individual, in which its presence is, historically, necessary. A property is an attribute found in an individual, but grounded in certain genemal charactaristica of that individaal; and it is proper not to the individual as such, but as having thuse characteristics, and therefore to everything which has them, or to that kind of thing oniversally. It is only therefore in reference to a kind of thing as anbject that we can aek whether a given predicate is to be ranked as accident or property. If it is asked whether it is a property of Cetewayo to tall, or fight, or be remembered, we must demand, of Cetewayo considered as what? Considered as a man, it is a property of him to talk; considered as an animal perhaps it is a property of him to fight; but considered as a man, or an an animal, it is an eocident that he should be remembered, though perhaps a property considered as a barbarian who deetroyed a British force. So long as wo consider him an Cetewnyo, we can only say that all these attributes are predicable of him.

Thirdly, the Porphyrian doctrine gave rise to a division of accidents into separable and inseparable which, if an individual be the subject, is confused, if an universal, self-contradictory.' An inseparable
${ }^{1}$ If sometimes tranalated what happens ($\sigma 0 \mu \beta a i z a$) to an individual, yet it is mid to happen, juat because it need not belong to him eocording to the conception we bave so far formed of him; and it is therefore only coincident in him with the charactars incladed in that conception. Cf. aupra, p. 62, n. 2.

 is rpaijmaror ivo кuppobvita, Porph. Isag. c. iii, init. (One thing is maid to differ peculiarly from another when it differs by an inaeparable accident. And an insoparable eccident is such as grejness of the oye, hook-nosednese, or the scar of a wound.) Porphyry indeed asye that accidenta in general

accident of an individual is an accident of the species under which he is considered, but inseparsble in fact from him. Thas it is an inseparable accident of a man to be born in England, but a soparable secident to wear long hair; because he can cut his hair short, but cannot alter his birthplece. Now this notion of an inseperable accident is confused, becanse the attribate is called an accident in relation to the species as subject, but inseparable in relation to the individual ; the whole phrase therefore involves two standpoints at once. And the distinction between separable and inseparable ascidenta thus understood has really nothing to do with the doctrine of the predicables as a clasaification of concoptual relations between a aubject and ita predicates. There are, properly speaking, no accidents of an individual as the complete concrete individual. The Old Pretender might have been born eleewhere than in England, and might have cut his hair shorter : regarding him as the on of James II, each of these things is an secident; but regarding him completely as the man he was, there was reason for each, and neither could have been otherwise without certain historical circamstances being different, though history doee not urually concern iteelf with tonsorial incidents in the lives even of prinoes. That one thing was altarable while he lived and the other unalterable leaves them equally accidents from one standpoint, and equally little mecidents from the other. If however the subject of which a predicate is said to be an inseparable accident be an universal, then
mponpoupiver i申ioraral, ib. c. x; and also that they are predicated pri-

 c. vi. But he does not seem to see that it is not from their relstion to the individual that they are called accidenta. For hia account of the dintinction between separable and inepparable eccidents, cf. c. vovp $\beta_{3} \beta_{7}$

 xpordr xeols ϕ Oopars roi imozcueivov. (Accident is what comes and goes without the deatraction of the anbject. It is of two hinds, separsble and ineeparable. To sleep in a separsble accident, to be bleck is an inteparable accident of a crow or an Ethiopian ; a crow can be conceived to be white or an Ethiopian to have loot his colonr without the deatraction of the mubject.) That he regarded inseparable accidents as predicsted both of apecies and of individuals as subject is clear from c. vi ro di minav roiv rididovs rüy

 dicated both of the species of crown and of crows aserally, being an inve. parable accident, and to move of man and horse, being a separable accident.)
the expression is a contradiction in tarms. It is sometimes asid that blackness is an inseparable accident of the crow. But if it is en acoident at all, then it is a mere coinoidence that all crows are bleck, and there is nothing in the fact that a bird is a crow requiring it to be bleck; it cannot therefore be ineeparable, however constant in our experiences the conjunction may have been. Per contra, if it is inseparable, that must be because the nature of a crow as auch requires it, and then it cannot be an acoident. The so-called inseparable scoident of a speciee is really an attribate which we find to charaterize a species oo far as our experience extends, without knowing whether ita presence depends on conditions nesemary to the existence of the species, or partly on conditions in the abeence of which the opecies may still exist. That amounta to saying that we do not know whether it is an accident or a property; and so a phrase is adopted which implies that it is both.

It would be well therefore to abandon the division of accidente into eeparable and ineeparable; and it would be well to abendon the Porphyrian list of predicables in favour of the Aristotelian. Either list rises very difficalt questions; but those which have been disecused in this chapter are quentions that muat be mised, whether we attach little value or much to the use of the terme Genus, Species, Differentis, Property, and Accident. The attempt to think out the connexions between one thing and another is so vital a featare of our thought about the world, that Logic may not ignore the consideration of it. Abatract terms, and general concrete terms, signify not individuals as such, bat attribates and individuals of a kind. We do regard attributes as connected with one another, and with the kind of a thing, sometimes necemarily and universally, sometimes through a conjuncture of circumstances in the history of an individual. We need a terminology in which to express these differences. We do form complex conceptions of objects, and of attribates or states, that cannot be analysed into a mere assemblage of simple qualities, but only per genus et difforentiam. These are the facts which justify this somewhat difficult part of logical theory.

CHAPTER V

THE RULES OF DEFINITION AND DIVISION: CLASSIFICATION AND DICHOTOMY.

In the last chapter the nature of Definition was discussed at some length; but nothing was said of the technical rules in which the requirements of a good definition have been embodied. The process of dividing a genus into species was also mentioned, but neither were the rules given which should be observed in that. It seemed better to defer to a separate discussion these and one or two cognate matters. Treated first, they would have been less intelligible. But what hae been said about the relation of genus and differentia, about the practical difficultiee that lie in the way of adequately defining many kinds of terms, and the homogeneity which ought to oharacterize the differentise of the several species in one genus, should serve to render the present chapter easily intelligible.

The rales of definition are as follows :-

1. 4 definition muat bo commenowrato with that which in to bo defined : i. e. be applicable to everything included in the species defined, and to nothing else.
2. 4 definition mast give the essence of that nohich is to be defined.

The essence of anything is that in virtue of which it is such a thing. It is in virtue of being a three-sided rectilinear figure that anything is a triangle: in virtue of being an institation for the education of the young, that any place is a sechool : in virtue of having value in exchange, that anything is wealth. We have seen, however, that in the case of natural kinds, and in some degree of highly complex abetract notions, the essence cannot be comprised in the compass of a definition, or distinguished very aharply from the properties of the subject. In these cases one must be content to do the beat he can : remembering-
(a) That the attributes included in the definition should be always such as are the ground of others rather than the consequences. Thus an animal is better defined by the character of ite dentition
n0010.5
H
than of ite habitasl food; since the kind of food that it can eat depends on the formation of ita teeth, and not vice versa.
(b) That we must not give only eome comparatively isolated attributes of the subject, bat also indicate the kind of subject which these attributes qualify. This is done by giving ita genus ${ }^{1}$, and hence our third rale is :
8. 4 definition muse be per genus et differentian (sive differeatias).

The better the definition, the more completely will the differentis be something that can only be conceived as the modification of the genan: and the lean appropristely therefore will it be called a mere attribate of the subject defined. Thus a lintel is a piece of timber forming the top of a doorway; it can hardly be called an attribute of a lintel that it forms the top of a doorway, for that implies that having already the concept of a lintel, I notice this further as a characteriatic of it; whereas really, until I have taken this into account, I have no concept of a lintel. On the other hand, if sodium be defined as an element exhibiting line D in the apectram, the differantia here may fairly be called an attribute. For one may have a pretty definite notion of codium without knowing that it exhibits this line in the spectrum. The complexity of the subject under definition is in thie case such that whatever be taken to serve as differentia can be only a amall part of the whole notion; we have in our minds a pretty substantive concept (if the phrase may be allowed) without the differentia; and therefore this appears as a further characteristic, which is really aelected becauso it is diagrootic.
4. 4 definition maet mot be in negative sokere it can be in positive derme.

The propriety of this rale is obvious. A definition should tell as what the thing defined is, not what it is not. A ecalene triangle, for example, should be defined, not an one containing neither a right angle nor an obtuse angle, but as one containing three acute anglee. In this case it is true that a very little knowledge of geometry woold eamble any one to extract from the negative information of the former definition the positive characterization of the litter. But a negative definition is in iteelf inadequate, and it would in most cases leave us quite uncertain what the subject positively

[^42]is. If real property were defined as property that cannot be tranoferred from place to place, we should not necessarily realize that it was property in land. If anger be defined as an impulee not directed to obtaining for oneself a pleasare, who is to understand that it is an impulee to repay an imagined hurt i A definition in negative terme is, with one exception, slways fanlty; its futility depends on the precision of the positive meaning which the negative terms may happen to convey. ${ }^{1}$

The one exception to the faultinesa of a definition in negative terms is furnished by concepts that are themselves privative or negative. A bachelor is an unmarried man; and the very meaning of the term is to deny the married atate. Injurtice, said Hobbea, is the not keeping of covenant. A stool is a seat for one without a back to it. ${ }^{2}$ But it must not be assumed that because a term is negative in form it need be negatively defined; intemperance is the exceesive indalgence in strong drink.
5. A definition must mot, direetly or indireetly, define the thing by itself.

A thing is defined by iteolf directly, if the term itself or some eynonym of it entere into the definition. The sun might, for example, be thus defined an a star emitting sunlight; or a biahop as a member of the episcopate. Such error is a little groen; but in the indirect form it is not uncommon. It arises with correlative terms, and with connter-alternatives ${ }^{3}$, where one is used to define the other. A cause, for example, is ill defined as that which producee an effect, or an effect as the product of a cause; for correlatives mast be defined together, and it is the relation between them that really neede to be defined; this is the ground of applying both the correlative terms, and in defining this, wo define them. The objection to defining a term by help of its counter-alternative is that the lattar may with equal right be defined by it. If an odd number is a number one more than on even number, the even is similarly that which is one more than the odd. It sometimes happens, however, that counter-alternatives cannot be really defined
${ }^{1}$ Cf. the discusaion of positive and negative terms, supra, c. ii, pp. 28-33.

- From Watte's Logic.
- Where s subject occur in two forms, and every instance must axhibit either one or other, then thee forms may be called counter-alternatives. Thua in nomber, the connter-alternatives are odd and even; in a line, straight and curved; in an animal, male and female ; in property, real and porsonal, \&c. Contraries and opposites generally nany be wrongly used to define one anothar in the ame way.
at all; if a man does not immediately understand that number is aither odd or even, there in no other knowledge to which we can appeal in order to explain to him the nature of the distinction, for it in unique; and in the same why there is no defining the difference between straight and curved. In suoh cases, to explain one counter-alternative by the other, though not definition, is the beat course we can adopt; for their mutual contrant may help a man to apprebend them both, and he may be more familiar with one than with the other.

There are arbtler modes of defining a thing indirectly by itself. We may use a term into whose definition that which we profees to be defining enters. Aristotle illustrates this by a definition of the sun, as a atar that shines by day; for day is the period daring which the san is shining. ${ }^{1}$ J. S. Mill's ${ }^{2}$ definition of a cause as the invariable and unconditional antecedent of a phenomenon erre in this perticular ; for menconditional cannot really be explained without presapposing the conception of cause.

It abould be noticed that whare the thing defined is deaignated by a compound word, it may be legitimate to employ in its definition the words that form parts of the compound. Thus a ball-race is the hollow way between the axle and the wheel in which the balls run that are used to take the thrust of one against the other. The term ball, used in this definition, is not of course what had to be defined.
6. A definition should not be exprosed in obsewre or figurative langmage.

The use of obecure words where plain and familiar words are available is a fault in definition, because it militater against the object of definition-viz, that one may onderstand the nature of the thing defined. The use of figurative, or metaphorical, language is a graver fault, because metaphors, where they are intended to do more than merely to embellish speech, may anggest or lead up to a right understanding of a subject, but do not directly exprese it. Memory, for example, is ill defined as the tablet of the mind; for though knowledge is preserved in memory, eo that we can recover it again, and writing in preserred in tableta for futare reference, yet the two thinga are very different, and the actual nature of what we call memory is as little like a tablet as possible.

$$
{ }^{1} \text { Top. ک. iv. 142^84. } \quad \text { Logic, III. v. § } 6 .
$$

r] RULES OF DEFINITION AND DIVISION

It must be remembered that language is not neceesarily obscare because it is technical. Every science is bound to use 'tarms of art ' which will be obscure to the laymen, but may express the ideas belonging to that science clearly and precisely. The obecurity forbidden is that which would be acknowledged by thowe soquainted with the field of stady to which the definition belonger

In the process of Definition, we take eome opecies, or other concept, and distinguish in it ite genus and differentia. Thas wealth is that which has value in exchange. There may be things which have value, but not in exchange-the air, for example, which has value in use; these are not wealth, and with them, in defining wealth, we are not concerned; though they belong to the same genus. Bat we might be interested in distinguishing the different opeciea which all belong to one genas; and the process of distinguishing or breaking up a genus into the speciee that belong to $/$ it is called Logioal Diviaion.

Logical Division in a process of great importance in aciense. Things belonging to one genus will be atudied together; and the object of our stady will be to discover all the gemeral propositions that can be made about them. But though there may be some statements that will apply to everything contained within the ganus, others will only be troe of a portion. If we rightly divide the genus into ita apecies, the apecies will be parta about which we shall find that the largest number of general propositions can be made.

Division ${ }^{1}$ is clowely allied to Cleadfioation ; and both to Definition. The difference between Division and Clasification seems to be principally this: that when we cleseify, we atart with the particulars of a genus, and throw them into groupe, according to their resemblances and differences; when we divide, we start with the genue, and distinguish the apecies within it by the differentive of which the genus is susceptible. In other words, Division moves downwarde from the more general to the more opecial, Cleasification upwards from the more opecial to the more general. This, at least, is the difference which one would intend to indicate if he contrasted the two operations ; bat in actual practice our thought may move in both directions at once; and the process of dividing a genus is at

[^43]the same time one of classifying the things in the genus. If, for example, one were asked to divide the genus novel, he might anggest a division into the novel of adventure, of character, and of plot; but be would at the aame time ran over in thought the novels that he had read, and ask himself if they could be clased aatiafictorily under these three heads.
The close connexion between Division or Clesification and Definition is obvious. If we divide a geans into apecies, it must be by the help of differentine, which serve to define the apecies we are forming. If the genua rectilimar figwre, for example, be divided eccording to the number of a figure's sides into thom with thres, with four, and with more than four sides, we obtain the definitions of triangle, quadrilateral, and polygon. In a claasification also, the claseer established most be distingaished by characters that will serve to define them.

A division masy be carried through sevenal stages, i. a the species into which a genus is first of all divided may themsolvea be subdivided into eperies; and this may be continued until the species reached no longer require subdivision. The species with whiah a division stope are called infmes apeoies; the genus with which it starts, the summum senus ; and the intermedistespecies, eubaltern sonars, i. e. geners (for they are geners in respect of the apecien next below them) subordinated to another genus. ${ }^{1}$ The prorimam genus of any species is that next above it in the eeries; and the words saperordinate, oubordinate, and co-ordinate are used to indicate respeotively the relation of any genus to those below it, above it, or standing on the same level with it (i. e. having the same proximum genus). These terms are also used in reference to a clessification; for a clasafication when completed may be regarded as a division and vice veras. The co-ordinate species into which a genus is divided are sometimes called its conatituent species ', as together composing or mating up the genus.

A division, or a clasification, may be set out in a schema, somewhat after the manner of a genealogical tree. The following is an example :-
${ }^{1}$ Cf. p. 92, in 2, mupra. According to one doctrine, natore hae determined where division ahould stop, and infimes apecies are fized by nsture. Cf. p. 81, tupra.

I In Latin, membra dividentia, as the apecies are conceived to ahere the genus amongat them.
v] RULES OF DEFINITION AND DIVISION 108

The following are the rules which should be obeerved in a logical division:-

1. 4 divivion muat be exhawtive: i. e. there muat be a plece for everything belonging to the genus in one or other of the constituent species into which it is divided. This rule may aleo be expressed by anying that the constituent apeciee murt be together equal to the 'totam divirum '.
The neoeseity of this rule hardly needs indicating. The object of division is to set out in orderly relation whatever is incladed within a certain genue; and if the division is not exhacative, this is not done. Suppose that an income-tax is introduced; it is neceseary that the Act imposing it ahould state what forms of wealth are to be regarded as income, and taxed eccordingly. The rent of land and houses is clearly a form of inoome, and would be included in the divicion of that genua ; but if the owner of a house lives in it instead of letting it, he receives no rent. Neverthelems, he enjoys an income, in the shape of the annual value of the house he lives in, just es truly as if he had let that house, and reoeived for it a sum of money sufficient to hire himself another; and he ought to be tared if be lives in his own house as mach as if he lete it. But if the incometan Act omitted to include among the apecies of income the annual value of houses cocapied by their owners, be would escape payment on that head altogether. Such is the practical importance of making a division exhaustive.
2. The conatituent opecies of the genus must avelude each othor.

Unless we secure this, we do not properly divide; for the parts of that which oue divides muat be eeparate from each other.

There are two ways in which a breach of this rule may come abont. We may coordinate with a apecies snother which onght properly to be subordinated to it ; a Dr. Johnson is asid to have divided the inhabitanta of the country north of the Tweed into Scotchmen and Damned Scotchmen; or an the proverb dia-
tingaishen 'finh, leah, fowl and good red herring'. In these instances the logical error points a sarcaem; but in iteelf it is comparsble to the procedure of the philosopher, who cat two holes in his door, a large one for the cat and a amall one for the kitten.
The second mode in which this rale is broken is by a crossdivision; the nature of this will be explained in connerion with the rule now following.
3. A division must procead at every alage, and 20 far as posible through all its stages ${ }^{1}$, upon one principle, or fondamentom divisionis.

The fundementam divialonis, the principle or bedie of a division, is that aspect of the genas, in respect of which the species are differentisted. Let the genus be soldier; in a soldier we may look to the mode in which be fights, the military rank which he holde, or the conditions of service by which be is bound. Proceeding upon the firnt basis, we should divide into artillery, cavalry, infantry, and engineers ; perhaps ataff and commimariat ought to be added. Proceeding apon the second, we should divide into officer and private, officer being again divided into commiasioned officer and non-commissioned. Proceeding upon the third, into regulars, yeomanry and militis, volunteers, and resarva. When the division is carried further than one stage, the ame fundamentuse divisionis should be retained in the leter stages which was used in the first. If the division of soldier into artillery, cavalry, infantry, and engineers be prolonged, we might divide artillery into horse-artillery, field-artillery, garrison-artillery, and moantainbattery; cavalry into light and heavy dragoons, lancers, and husars; infantry into mounted and unmounted. But it would not be proper, after beginning with the mode of fighting as our fundamentwm divisioni, to proceed with that of military rank, and divide artillery into officers and privates; for that is a division of soldier generally, and not of artillery any more than of cavalry, infantry, or engineers; so that if it is applied to one of these apecies, it must equally be applied to the others.

A division which proceeds on more than one fuedamentyst divisionis at once is called a crose-division; as if one were to divide soidier into artillery, cavalry, privates, and volunteers. It is called a crose-division, because the grouping required by one basis outs acros that required by another; in distinguishing privates, for
' Cf. infra, p. 116.
${ }^{2}$ Cf. nupra, c. iv. pp. 72, 87.

v]

example, from other soldiers, we disregard the distinction of cavalry and artillery, taking all members of both those arme who are not officers. A crose-division is worse than uselese; for instead of assisting to an orderly arrangement of things in thought, it introduces confusion.

It is plain that in a crose-division, the constituent species will not exclade each other. The only possibility of their being matually axclusive lies in their being formed apon one basis; for then they are distinguished by the different modes in which they exhibit the mame general character. But if different characters A and B are taken, both of them belonging to the genus, everything within the genus will exhibit come mode of both these charsoters; and the mame individuals which are included in a apecies that is constitated by the particular mode d^{\prime} in which it exhibite the charncter A may also be included in a speciee constituted by the particular mode b^{\prime} in which it exhibita the charnoter B; bence a^{\prime} and b^{\prime} will not exclude each other.

There are two apparent exceptions to be considered here: one to the otatament that the employment of two or more fundamenta dicisionis at once produces a crose-division, the other to the statement that the members of a crose-division are not mutually excluave.

The ancient division of matter into the four elementa, already alladed to as having been adopted by Aristotle ${ }^{2}$, proceeds (or appears to proceed) upon a double beas, of temperature and of hamidity. Matter is either hot or cold; matter is either moist or dry ; and hence foar apecies were eatablished, the hot and dry, the hot and moist, the cold and dry, the cold and moist. But there is not really a crose-division here. We do not, while profeseing to divide upon the basis of temperature, at the same time introduce speciee founded upon the besis of humidity (es if we were to distinguish the hot, cold, and moist elementa); our real basis is neither bumidity nor temperature, but the combination of the modes of temperatare with the modes of humidity. And such a basis offers a pecaliarly farourable opportunity for a good division. For given a certain number of characters in a genus, each found in so many different modes, and granted that every member of the genus must axhibit each character in some mode, and no character in more ${ }^{1}$ Cf. supra, c. iv. p. 86.
modes than one, then the possible alternative combinations are discoverable with mathematical precision. But it is only where the combination of certain characters happens to be of primary importance, that such a bacis of division can be profitably adopted. There would be no advantage in applying the method in such a case as the division of the genne soldiar, where, if we took the three bases of mode of fighting, military rank, and conditions of service together, semaming four alternatives under the first heed, three under the aecond, and four under the third, we should obtain a division into forty-eight members. These would be matually exclusive; yet such a result would for most purposen be valueleas ; for the three beses of division are not suoh as it is useful to attend to together; though in a particular connexion, as, for erample, in drawing up a acale of rates of pay, it might be advisable to proceed thas.

In our first exception, a crose-division seemed to be employed when it was not; in the second it might seem not to be employed when it is. It may happen that in respect of the individuals belonging to them, the conatituent species into which a genus is divided apon one beais coincide with those into which it is divided npon another. Thus flowering plante may be divided according to their method of fertilization into exogenous and endogenous; and according to the mode of germination in the seed into dicotyledonous and monocotyledonous. It happens that all exogena are dicotyledonous, and all endogens monocotyledonous; ∞ that if the genus were divided into exogens and monocotyledons, there would not in fact be any plant that fell within both membera. Nevertheless, the division is Logically a crosa-division, for there is nothing that we can mee to prevent the existence of such a plant, and we can imagine endogens which are dicotyledonous; and therefore that our constituant species do not overlap must be regarded as our good fortune, whereas it ought to arise out of the necesity of the method on which our division proceeds. And even if we came to undentand the connexion between these differences in mode of fertilization and of germination, such a division would atill be vicious; for it wonld not exhibit our species as necessarily excluding each other; and this becanse (what is more important) it would not exhibit them as alternative developmenta of a single, or common, notion.

There is a form of division called Diohotomy, which is of necea.
sity exhaurtive, and the specien yielded by it of necearity exclude each other; for it divides the genus at every etage into two members (as the name implies), which reapectively do and do not posecss the same differentis; everything in the genus must therefore belong to one side of the division or the other, and nothing can possibly fall into both. Animal, for example, may be divided into vertebrate and invertebrate, body into animate and inanimate, substance into corporeal and incorporeal ; each of these divisions is exharative, and its members mutually oxclusive.

Some logicians have held that in order to secure these edvantages all divisions ought to proceed by dichotomy. Bat the trath seems nther, that when a division is undertaken with the view of cleseifying or arranging all that is contained in the genus, dichotomy should never be used. Its use is in analysing or defining some one subordinate species. It may, however, sometimes be used to show that a division which is not dichotomons is necessarily exhaustive, and the constitnent species exclusive of each other.

The resson why dichotomy is out of place in a classificatory division is that we desire in a division to exhibit our various apecies as (alternative developmenta of a common notion; at every stage the genus is further particularized by the differentiae which we introduce in constituting ite species ; thus the division of the genus soldier, aceording to mode of fighting, into artillery, infantry, cavalry, and engineers, wae carried further by particularizing the way in which the artillery may be constituted for different tighting purposes, or the cavalry armed, \&rc. But one side of a dichotomy is always characterized negatively, by the non-poesespion of the attribute which characterizes the other side; and there is therefore no positive notion whioh we can develop in the subdivision of this side. The land of a country may be divided, acoording to the use to which it is put, into building-land, farm-land, forest, means of commanication, pleasure-ground, and waste; each of these 'subaltern genern' may be subdivided, farm-land for example into arablo, pasture, and orchard : orchard again according as bush-fruit, tree-fruit, or hope are caltivated. But if we were to proceed by dichotomy, we should divide land into building-land and land not used for building : the latter into farm-land and non-farmland : non-farm-hand into forest and not forest, and so forth. Now such a division would not only be far more cumbrous than one
unhampered by the method of dichotomy, as may be seen by setting both out in echeme ae follows :-

but it fails entirely to exhibit its species as alternative developments of a common notion, or (as it was put in the last chapter) variations on a common theme. To build on it, to farm it, to let it grow timber, \&c., are so many wiys of using land; to plough, to graze, and to raise frait from permanent stocks on it are three waye of farming, and therefore of using it; to grow bush-frait, tree-frait, and hope on it are three whys of reising fruit on it from permanent atocks, and therefore of farming and therefore of using it. ${ }^{1}$ But

[^44]
v] RULES OF DEFINITION AND DIVISION

to farm land is not a way of not building on it; a forest is not a form of not being a farm; roads and railways, which occupy land that is used as a means of communication, are not modes of not being a forest; to nse land as plessure-ground is not a particular way of not making a roed or a milway along it; to leave it waste is not a particalar way of not nsing it as pleasure-ground. Neither again is grazing a particular way of not ploughing land, nor growing tree-frait a particaler may of not growing bush-fruit on it. 'A negative conoeption affords no besis for further subdivision, and - division which attempte to cleseify by dichotomy is for ever subdividing negative conceptions.
[This is the main objection to a claseificstory division by dichotomy; which is strangely defended by Jevons, Principles of Seience, 2nd ed., c. $\mathbf{~ x x}, \mathrm{pp}$. 694-698, and Elementary Lesaons in Logic, Lesson XII. Other objections, which it seemed unnecessary to add in the main tert, since the firat is fatal, may nevertheless be pointed out. Such a division does not proceed on a single fundamentum divisionir. In the proper division of land, the basis taken was the use to which land is put, and that wan retained throughout; bat in the division by dichotomy, the basis taken was first the nse of land for building, by which it was divided into building-land and the rest: and the rest was divided on a different banis, viz. the use of land for farming : and 80 on. Again, the proper division co-ordinates concepts of the same degree of opeciality; bat the division by dichotomy subordinates them in several stages; so that waste-land is placed level with orcharde of buah-fruit. The order in which the subsltern genera are pleced (except where a positive concept is divided) is also quite arbitrary ; building on it might as resoonably be called a mode in which land is not farmed, as farming a mode in which it is not built on. Lastly, it is claimed for division by dichotomy that it is the only method which secures us from possible overeight of a species : if mam be divided into Aryan, Semitic, and Turanian, a rece may turn up that is none of these; whereas if it be divided into Aryan and non-Aryan, non-Aryan into Semitic and non-Semitic, and non-Semitio into Turanian and nonTuranian, we have a cleas ready (non-Turanian) for any new race that may turn up. But it must be obeerved that to aay that a race is non-Turanian does not characterize it; that the Aryan and

[^45][Semitic races are aloo non-Turanian (so that the constituent species are not mutually exclusive); and that if the lest objection is considered captions, because the non-Taranian is expreesly madea branch of the non-Semitic, and that in turn of the non-Aryan, then it means what is neither Aryan, Semitic, nor Turanian; now if we are uncertain that our division is exhaustive, and wiah to reserve a place for thinga that may fall within none of the opeciea we set up, it is easy to do that without the pains of all this dichotomy; we may divide man into Aryan, Semitic, Turanian, and anything that is nowe of these; this last heading expressee what non-Turanian means in the dichotomy, and stands, as it should, spon a level with the reat.]

For this reason, a olacaificatory division should never une dichotomy; the numbers of apeciee into which a summum or subaltern genua is to be divided can be determined not on any general logical grounds, but solely with reference to the nature of the genua in quention. Even where, as in the case of the four clements, the basis of division is the combination of attribates, the number of possible species that can be formed by different combinations is determined not by logio but by mathematics. Of course, if a genus falls naturally into two species, it ought to be divided in two; as number is divided into odd and even, and line into atraight and curved. But this is not mere dichotomy; for it is not the mame to divide number into odd and even as to divide it into odd and not odd. The claim made for dichotomy is that ite branches exhaust the genus and exclude each other in virtue of the mere form of the division ${ }^{2}$; since evarything in a genus must either be or not be, and cannot at once be and not be, characterized by any differentia that can be taken. And this is true; and we need realize no more than this, in order to see that number is either odd or not odd; but in order to see that it is either odd or even we need to underetand the peonliar nature of number, and not merely the genaral 'lawe of

[^46]thought', an they are called, that hold of every mubject. The completenes of the division of number into old or even is not therefore vouched by logic, any more than the completeness of the division of triangle into equilateral inosceles and scalene; nor in the fuct that it is twofold does the first possens any guarnatee which the second lecks in being threefold. And if a genus is seen to fall into thirteen species instead of three, it ahould be divided into thirteen; juat as triangle should be divided into three and not two. Unfortunately there are few aubjects where we can see at once that a genas contains necesaarily so many opeciee and no more; and that makes our divisions precarious, bat there in no remedy in the nee of dichotomy.

It may, however, occasionally be poesible to ahow by dichotomy that a division which is not dichotomone is exharative or ite rpecies matnally excluaive. Aristotle this supported his lint of predicables.

But there is no particular logical intereet attaching to this mode of eatablishing a divicion ; it is in principle the aame ae where our becis is the combination of certain attribates, and we show the division to be exhaustive by showing that no other combinations remain, 28 in the case of the forr elemente already given.

Dichotomy is really appropriate when we are seeking not to divide a genas bat to define a species. There are two contrasting ways in which we may attempt to constract a definition. We may take instances of that which is to be defined, and try to detect
what they have in common, which makee them instances of one kind, and on the strength of which we call them by the same name. This is the 'inductive' method. We might thus define 'snob', comparing thowe of our sequaintance to whom we could apply the name, or thowe whom Thackeray has drawn for ua; and if we thought that among all their differancea they agreed in prizing rank or wealth above character, we might accept that as our definition. The other method is that of dichotomy, and in this we try to reech our definition rather by working downwarde from a genus, than upwards from examples. Some genus is taken, to which the subject we wish to define belongs. This genus we divide into what poseesees and what does not possess a certain differentia. The differentis taken must be something predicable of the subject to be defined; and if genus and differentia together are already commensurate with that subject, the definition is reached; if they form only a subaltern genus predicable of it, this subaltern genus must be again divided in the same way : until we reach a commennurate notion. At every stage of our division, the differentia taken mart if possible be a modification of the differentis next before it; it must at least be capable of combining with those that bave preceded it in the construction of one concept in such a way that we are throughout apecifying the genenal notion with which we started ${ }^{1}$; and there should be so many steps of division as there are stagee which our thought recognizes as important in the specification of this concept. At every stage also we proceed by dichotomy because we are only interented in the line that leads to the mubject we are defining; all else contained within the genus we thruar aside together, as what does not exhibit the differentia characterizing that sabject. Had we further to consider and subdivide it, we could not be satisfied with characterizing it only negetively; for a negative notion furnishes, as we have seen, no basis for any further specification. But we may disregard, or cut it off : a step to which the technical name absoisaio infiniti has been given, i. e. the cutting off of the indeterminate.

The following example of definition by dichotomy will illustrate what has been said. The term to be defined is tuber; the genus to which it is to be referred is stom.
${ }^{1}$ Cf. infra, pp. 115-116, 118-120.

In this division, we reach as our definition of a tuber 'a stem creoping underground, muoh thickened, and posecesing leaf-bude in the form of eyes'. At every stage by an abocianio infinili wo rejected from further consideration a large part of the genus wo had so far reached: first all stems not oreeping, then all creeping stems not underground, then all underground creeping stems not much thickened, \&c.; and at every atage we mubdivided that part of the genus which wo had retained by a differentio that opecified further the form to which we had so far brought it.

It might have happened, that creeping stems had a name to denote them, say Chthamala ${ }^{1}$; and that underground Chthamala had a special name, say Hypochithamala; that these when much thickened had again a different name, say Pachyosata; and that tubers were pechysmata that possessed leaf-buds in the form of eyes. In this case, the division would be set ont in somewhat different form, as follows-

This mode of setting out the definition of anything implies a classification, in which namee have been given to every wider and narrower genus, and the differentia, which distinguishes each within its proximum genus has been settled. It may indeed be regarded as an extract from a classification, made for the purpose of exhibiting the natare of a single species. And this is more or less the character of all definition by dichotomy; though the classification may be only in the making, in the very procese by whioh we seek for our definition. It is only after considerable study of the parts of flowering planta, enabling us to group them by their less saperficial characters, that a tuber would be referred to the genus stem at all, instead of root; by that time, the diatinction between creeping and other stems, between those that creep above and those that creep below the ground, would have been already made; so that the method of dichotomy does not so much help us to discover, as to set out and arrange what we know of, the definition of a tuber. There may, however, be cases where the method will guide us in the construction of a definition of that whoee nature has not yet been carefully invertigated; the genus to which a term is to be referred may be clear, but the appropriate differentise unconsidered; anob, for example, belongs clearly to the genus man ; bat even here, the process of finding a differentis, by which to distinguish snobs from other men, is clasification in the making. Let us take the prizing of rank or wealth; if that by itself does not constitute a suob, we need some further differentis, to distingaish snobs from other men who prize rank or wealth; say they are distinguished by prizing these beyond character; we then have a definition of a snob, bat in getting it, we have taken note of a wider class of men within which they are included.

There are three things which Aristotle ${ }^{1}$ gage that we must look to, in reaching definitions by the division of a genus. All the terms (the summum genus and the successive differentise) mast be of the essence of the subject defined, they must be placed in their right order, and none muat be omitted. These are requirements also of a good classification; but just as a study of the logical form of clessification does not enable us to classify any particular order of phenomens, so we are not enabled to define any particular subject, merely
by familiarizing ourselves with the scheme of a definition of dichotomy.
[A definition of man, displaying the series of subaltern geners to which he may be assigned below the summum genus substance, and the differentis by which each subaltern genus is successively distingrished within the genus nart above it, whas long known in logical toxtbooks by the name of Arbor Porphyriana. It may be transcribed here. That of tuber given above on p .118 is in the eame form.

The material for the scheme is to be found in Porphyry's Isagoge, c. iii; where the writer points out that the same differentis which is divisive (dialperıкi) of one genus is constitative (ovararıs η) of that immediately below it. The scheme has the advantage of exhibiting the series of differentise by which the definition of the species is reached from the summum genus. Aristotle in Met. Z. xii. discusses how many differentiae there really are constitutive of the species; and decides that if each differentis is itself a true differentis of the one before it, then the species has only one differentia, namely the last For example, if animal is divided into footod and footlems
 ruped, the letter differentis biped is a differentia of footed as such;
[for to be a biped is a particular way of having feet. In the opecies animal bipes therefore, the correct analysis is into animal and biped, and not into footad animal and biped, and though we may procsed through sucososive stages to biped, there is nothing in the object corresponding to the serial order. If, on the other hand, at any stage we introduce s differentia which is not merely a further apecification of that which we have used before (es e.g. if wo were to divide biped into feathered and featharlese, or rational and imssional), then we are really introdacing a new differentia. In such a case, if we take animal again as the genus, the species man, defined as a featherlest or rational biped, would really be constitated by two differentine. We might endeavour to avoid this conclusion by calling biped the genus and featherlest or rational the differentia; but that ignores the fact that biped is obviously not summum genus of man. And if we aelect a freah basis of differentiation at more than one stage, wo are each time adding to the number of differentiee that must bo recognized in the speciea. In doing so we ignore the precept, to proceed throughout any division upon one besis; and Aristotle certainly speaks of the introduction of a differentia which is not continuous with thast before it as dividing kard rd $\sigma v \mu \beta e \beta \eta \alpha d r$ and not aard rd do6oy. We may notice too, that whereas a differentia which is a continuation of that before it is never applicsble to the other member of the preceding genus (e.g. biped is not applicable to foolless, the other member along with fooled of the genus animal), a differentis which is not of that nature might, for all that we can tell a priori, be applicable to both members (e. g. feathered and featherlew, might be applicable to quadruped no lees than to biped). The fullneen and complexity of natural kinds is, however, euch that we cannot alweys avoid the introduction of fundamentally new differentine, especially where, as in the claseificatory soiences often happens, our differentiae are intended as much to be diagnootic-i. e. features by which a species can be identified to declare the essential nature of the species. Cf. pp. 118-120.]

Before distingrishing Logical Division from the other processes to which the name Division is applied, it may be well to emphacize that it deals entirely (like the doctrine of Predicables) with concepts or univereals. The genus whioh we divide is divided into kinde; itself a univereal, the specification of it by various differentiae can only give rise to more determinate aniversals. The division of it stops therefore with infimas apocies, and never proceeds to the enumeration of individuals. For if the infima speciee could be logically divided into individuals, we must apply some fundamentum divisionis ; and that means, that we should have to distinguish indi-
viduals according to the different modes in which the common character of the species appeared in them; and to do that would be to distinguish theee modes themselves, which are not individual but universal, for many individuals might exhibit the same mode. But individuals of any species are in fact distingrished from each other by the coincidence of innumerable attributes; it is not any attribute singly, but the particular combination of them, that is unique in each instance; and whether or not they are sufficient to conatituter individuality, unique combinations of innumerable attributes cannot be exhibited in a logical division as differentise of one specien. ${ }^{1}$

There are two processes which have been called division, besides the division of a genus into its speciea. They are known as physical and metaphyrical division. In Phynioal Divialon, we distingaish the parts of which an individual thing or aggregete is compoeed: as in a man head, limbs and trunk : in a knife blade and handle. This process is aloo called Partition. It is still a process of thought that is meant-not the actual tearing of a flower to pieces, or quartering and beheading of a man; it may be applied to the distinction of the parta composing either a determinate individual, or any individual of a kind: as Great Britain on the one hand can be divided into England, Scotland, and Wales, a plant on the other into root, stem, leaf, and flower, or a forest into its component trees.

In Metaphymioal Dividon, we distinguich in a kind its genus and differentia, or the various attributes predicable of it, and incladed in our notion of it; thus we may divide man into animality and rationality, or ragar into the colour, teaxtare, solubility, taste and so forth that characterize any piece of ragar. This is ohviously a division that can be carried oot in thought alone. In Phyrical Division, the parta of an individual man or plant may be physically eeparsted; and in Logical Division, when the genus is concrete, individual apecimens of the infimae speciee may be

[^47]exhibited in different casees in a museum. But in Metaphynical Division, though the colour of sugar may be exhibited without its taste in a thing of another kind-e.g. in a aample of salt-it can aever be exbibited by iteelf.

It should be further obeerved, for the better distinguishing of these different kinds or senses of division, that in Logical Division the whole which is divided can be predicated of ita parto-animal, e. g. of man, os, \&cc.-and indeed unless it is $\mathbf{n c}$ predicable of all its parts, the division is at fault; in Metaphysical Division the parts can be predicated (paronymoualy, to use the Aristotelian expression ${ }^{2}$, or attributively) of the wholo-e.g. whiteness, sweetness, \&c. can each be predicated of sugar, in saying that ougar is white, is sweet, \&cc.; in Physical Division, the parts can neither be predicated of the whole nor the whole of the part-we cannot either say that a leaf or stem is a plant, or that a plant is a leaf or stem.
[A few worde may be added on the relation of Logical Division, and its rules, to Claseification. Just as the theory of Definition, with its sharp distinction of essence and property, breaks down amidat the complexity and variety of concrete things, $s 0$ it is with the theory of Division. Ideally when a genas is divided into apecies, whether once or through several stages, we ought at each stage to see that just such and so many species are possible in that genus; we do see this in geometry, in the division for example of conio sections into hyperbols, parabols, and ellipee; but in other sciences for the most part we must whit upon experience. Now we do not in experience find that thinge fall into kinds which fit into any perfect scheme of logical division. Any actual division that can be made therefore of animals, or plants, or forms of government, woald exhibit many logical defects; it would be the skeleton of a claserification, and every claesification involves compromise; the things, which it puts into the same clase from one point of view, from another claim to be placed in different classes; all that was said in the last chapter about the difficulty of defining concrete nataral kinds might be repeated to show the difficulty of clessifying them; and the same reasons which prevent our eatiafiactorily continuing a division down to a point at which it would find a meparate specific concept for every individual prevent our satio-

 δ ardpeior, Cat. i $1^{10} 12$. (That is peronymous which receives its denignation from something with a difference in inflexion, 20 a grammarian from grammar and a courageons man from courage.) The Latin for rapunvpop is denominatwm or denominatioum, according at the subject or ite attribute is meant.
[factorily olsesifying them at all. Classification is, se Jovons called it ${ }^{1}$, a teptative operation; its results are provisional; discovery may reveal new species, and show that characters which have been supposed always to go together may be separated, or those hitherto considered incompatible combined in the ame individual: there are limits indeed to thic, for there are 'laws of natare' with which all particulars mast be consistent; but many of the 'laws of natare' themselvee rest on the same evidence on which our classifications art constructed.

Thus the ideal which Logical Division sets before us is very different from anything which Classification achieves. The first is or would be an a priori process; by which is meant that it would fain develop specific from generic concepte not indeed prior to any experience of those objecte which belong to the various species of the genus divided, bat with a perception that the species revealed in experience are such as must necessarily have existed in that genus. Classification is an a posteriori process; it appeals for support to the fuots of the order of phenomens which we are classifying, and argues that the facts could only be thas on the assumption of connexions of attributes such as the proposed classes imply; it does not attempt to show that attributes could be connected in individuals of the genus in no other ways than these. Logical Division again is exhaustive, and the constituent species which it establishes are not to overlap; but a classification may have to acknowledge that there are individuals which might with equal right be referred to either of two co-ordinate classes, or seem to fall between them, or ontride them all. For these ressons, Division, as treated in a teatbook of Logic, is apt to seem unreal and fanciful to any one familiar with the work of acientific clasification; its rulee seem framed to suit not the world he has to deal with but a fictitions world of the logician's imagination; the consideration of a process which, outside geometry, can scarcely be illustrated by examples except by mutilating facts, is denounced as a barren pastime. And there is justice in the denunciation, when Division, or Definition, is studied without reference to the recalcitrant facts, and on its formal side alone. But if we realize with what grest abstements the rales of Definition and Division can be fulfilled in the actual classification of concrete facte, we may yet profitably study these rules, as counsels and not precepts. That is the beat classification which conforms to them most closely. The case of the logician may be compared with the case of the geometer. The geometer stadies such figures as he conceives, and he believes that his concluaiona are true of the squarea or triangle that exist eternally in spece, bounded by the distances between points therein; but be does not imagine they would apply without qualification to a equare table, or a triangular lawn. The figurea

[^48][of these concrete objects are much more complex than a simple equare or triangle. So (though the caeen are not identical) the logician atudies the problem of claseification as it presente itself to thought; but is prepared to expect that concrete thinge are croserelated to each other in far too complicated a manner for any single and simple scheme of classification to embrace them as they stand. We must consider aspects of them, and attempt to ascertain what various forms aome particular property may asoume, and under what conditions. In trecing a property through all the phasee in which it appears in different instances, we are in a sense pursuing a genus into its eppecies; we are realizing ite generic identity under divers forms, and this is part of the business of a logical division. The things themselves which we have to clonaify, if we take them in their completeness, cannot be caged in a neat logical arrangement; yet even 90 , the ranking of them in genern and opeciee at all, which is not the work of logic, but the natural bias of our thought (for the distinction of man and animal is older than that of epecies and genus), implies an effort at such arrangement; the logician does no more than render explicit the aims which underlie all claseificetion : exoept that the form of his theory takes too little sccount of the modifications which are imposed by the particular nature of the subject-matter with which we have to deal.]

OF THE INTENSION AND EXTENSION OF TERMS

Ir was obeerved by Aristotle ${ }^{1}$, that in one sense the genus is in the species, in another sense the species is in the genus. 'Animal' is in 'man', in the sense that you cannot be a man withont being an animal, so that being animal is included in being man. 'Man' is in 'animal', in the sense that among the forms of animal nature, man is included.

In the technical language of later Logic, this distinction may be expressed by saying that in intension the species includes the genus, in axtension is included in it.

The intenaion of a term verbal is what we intend by it, or what we mean by it when predicated of any subjeot ${ }^{2}$: the axtension is all that stands subordinated to it as to a genus, the variety of kinds over which the predication of the term may extend. ${ }^{3}$ If by term we mean the concept, or what is thought of, the extension is the variety of species in which a common character is exhibited, the intension the common character exhibited in this veriety. The distinction may be more readily apprehended, if it is noticed that we analyse the intension of a term in defining it, and break up its extension in dividing it.

It is clear that as between two terms subordinated one to the other in a classification, the higher, or superordinate, must always have the greater extension; animal, for example, is a term of wider extension than mas, and conic aection than ellipse; for the concept 'animal' extends or applies to mach besidea man, and that of

[^49]'conic section' to hyperbola and parabole, as well as to ellipse ${ }^{1}$. Many hold also, that the superordinate term, as it is of greater extension, so is of less intension; less being meant by calling anything an animal than by calling it a man; or by the term 'conic section', than by the term 'ellipse '. Hence it has been said that the extension and intension of terms vary inversely: 'when the intent of meaning of a term is increased, the extent is decreased; and vice versa, when the extent is increased, the intent is decreased. In ahort as one is increased, the other is decreased.' ${ }^{\prime}$

This inverse relation of intension and extension in terms may be illustrated not only by reference to classification, but in another way. We may take any term, such as Christian, and qualify it by an adjective or adjectival phrase: as if we were to say "Armenian Christian' or 'Christian of Ceesar's household'; by the qualifica tion we clearly make a term of narrower axtension than "Cbristian' simply, for we conceive that there may be Christians not Armenians, or not of Caesar's household; and at the same time we add to the intension, for it is no part of the concept of a Cbristian to be an Armenian, or of the household of Ceesar.

Still, when we thus qualify a general or an abstract term, we are instituting a sort of classification; we make an Armenian opecies within the genus Christian, or a cless, say, of bright colours within the genus colour. Therefore we may say generally that it is ouly to terms in a clessification, and in one 'series of subordination' in it, that the doctrine of the inverse relation of intension and extension applies. It woald be ridiculous to compare in this matter such different concepts as democracy and steam-engine; it is even unmeaning to compare terms belonging to the same clessification but to different lines, or 'series of subordination', in it; bird and reptice, for example, both belong to a classification of animals, but are not subordinate one to the other, and nobody can well tell which has the greater intension, nor if that were decided would he be able to infer from the decioion, which had the greater extension, or comprised the larger namber of subordinate species.

 species in the compen of the specioe under them, epecies geners in the differentioe belonging to them.)
${ }^{2}$ Jevons, Principles of Sciencs, 2nd ed., c. ii. p. 26. Cf. Sir W. Hamilton, Lectures on Logic, viii. II IxT ; Thomeon, Lavat of Thought, i 28 ; Bain, Logic, Deductive, p. 51 (' the greater the one the lees the other').

Applying only to terms subordinated one to another in a clasaification, the doctrine is an attempt to explain the nature of clacsif. eation, as a series of terms so related that each is of wider extension and narrower intension than the next below it.

Now it may be questioned whether this idea is just. The generic torm undoubtedly exceeds the apecific in extension, but does it fall short in intension? This queation may be put in another form: is the process of classification one of mere abstraction? do I form a generic concept from specific concepts merely by leaving out part of the latter, and attending only to the remainder? If our concepts of apecies and genus were constituted by sete of attribates disconnected but coincident, then this would be the case. The generic concept would be formed by picking out from several sets those attributes, or marks, which occur in them all; it would contain fewer marks, or be of lew intension, in the came sort of way as one man may have fewer decorations than another. On these priaciples the nature of a clasafication might be antisfactorily expreseed by the following symbols:-

Bat we have seen ${ }^{2}$ that the genus is not something which can be got by any process of subtraction from the species; it is not the same in all its species, and does not enter anchanged into them all as water into every pipe that leade from a common cistern. You cannot form a concept of it apart from all the species, as a can be read and written apart from other letters with which it may be combined. Attributes that are really independent, such as blue, and aweet, and heavy, can be thas conceived apart; but they cannot atand to each other in the relation of genus and species ${ }^{2}$.

If we look at terms which are really in a relation of genne and

[^50]species, it is not clear that the wider term has the less meaning. Take animal and man; if I say of anything that it is an animal, I certainly convey less information abont it than if I say it is a man; but it does not follow that the concept animal is of less intension than man. For it must be noted, that I should not say of anything that it is aminal, but an animal; which implies that I am aware of other animals, and that the concept animal includes alternatives, among which I am at present doubtful how to choose. But if so, the generic concept would seem to exceed the specific in intension; ' animal' means 'man, or horse, or ox, or ass, or some other form in which the general nature of an animal may manifest itaelf'. As we become familiar with the infinite variety of animal life, the term comee to mean not less to us, bat more.

Or take another illuatration. Say that a boy first makes acquaintance with the steam-engine in the form of railway locomotives. For a long time the term means that to him; but by and by he meets in his experience with traction-engines, ship's-engines, and the stationary engines of a factory. His earlier concept of a steam-angine-the earlier intension of the term for him-will altar; mach which he included at first in it, because he found it in all railway locomotives, he will learn to be uneseential-first ranning on reils, then the familing shape, then the moving from place to place. And aocording to the doetrine before an, he will leave ont from the concept one point after another, and at the end his notion of a steam-engine will be the anexcised residnum. But surely his notion of a steam-engine will have become richer and not poorer in the proces ; it is not that he finds that a oteamengine need not run on rails, 00 much as that it may run on the roads, nor that its familiar shape is unessential, so much as that it may be bailt in quite a diferent manner; nor that it need not move from place to place, so much as that it may work as a stationary engine. It becomes a genus to him, because it becomes - thing of alternative possibilities; and the experience which leads him to extend the term to new kinds of objects leads him to use it with a wider range of meaning. It is true that in becoming generic, the term comes to have a lese definite meaning, when applied to any object; but in iteelf it does not come to have leve meaning.

The doctrine of the inverse relation of axtension and intension in terms eeems therefore wrong; it mierepresents the nature of a clamaification. Bat a doctrine which has been sccepted so widely of late ${ }^{1}$, and seams at first sight 00 planible, mast have some degree of jurtification. Ita justification, or excuse, seems fourfold.

1. The thought which general terms suggent to the mind is often nigue, and the more so in proportion as they less raggest a definite menaible object. We do not realize all the alternative posibilities involved in animal nature each time that we use the term animal. Hence in the term of wider, as compared with that of narrower, extension there is often little definite; and we are apt to suppose insteed that there is a definite little. This error is encouraged by mistaking for thought the imagery that accompanies thinking. The nature of this imagery differs with different people, and any illurtration can be only arbitrary. But it might well be that when the notion of man or horee rose in one's mind, he pictared to himself the look of either with fair completeness; but that with the notion of animal there went the kind of image which a child would draw of a quadruped-four lines sticking out of an elongated trapezium, with a few more for the heed and tail. There is less detail in such an image than in that of a horse or a man; and it is not impossible that one might hence be led to sappose there was lese intension in the notion.
2. Our actual clamsifications, as we have seen, fall ahort of perfection in many reapecte; we often do not understand the interdependence of the varions characteriatics of an organic kind, or of the various properties of an elementary subetance. In these circumatances, we are compelled at times to fix on certain characters as constituting a genus, and then distribute into speciee the objects in which they are found by means of attributes whose connexion with these characters we cannot conceive. For example, there is a far-reaching division of flowering plants (already referred to) into monocotyledons and dicotyledons, based on the number of the seedleaves; bat in these two classes the sub-clasees are distinguished by rarious characteristics of the calyx and corolla, of the mode in which the atamens are inserted, \&c. Now we are ignornnt why

[^51]s plant with two seed-leaves should be capable of one series of flower-developments, and a plant with one seed-leaf of another series; the number of seed-leaves is, for all we can mee, an irrelevant character; though it cannot really be so; and the concept of dicotyledon or monocotyledon is complete, withoat reference to the character of the flower. Here therefore the intension of the wider term is less than that of the narrower. To the botanist the term Dichlamydeae, whose extension is leas than that of Dicotyledon, means plants which in the first place have two seedleaves, and over and above that have both calyr and corolla ; the tarm Dicotyledon means merely a plant with two seed-leaves. Such cases give colour to the doctrine, that where terma are subordinated one to the other, the intension varies inversely with the extension; but they do not embody the true spirit of a clasification.
3. We have men that a term may be qualified by an adjective which is really an accident of it: by which is meant that the adjectival concept is an eddition to the original concept, rather than a further determination of it; as when we qualify the term Christian (which implies a certain religious belief) with the adjective Armenian (which impliea a certain nationality)-there being no necessary connexion between creed and race, but any variety of one being capable of coinciding in individuals with any variety of the other. These cases (to which those considered in the last paragraph approximate) bear out the doctrine of inverse relation, so far as they go. But it may be observed that they only bear it out, because they have been as it were constracted to do so. We take a term, and qualify it by an adjective which in the first place is known not to be commensurate with it (and therefore narrows the extension), and in the second place is not implied in it in any way as a possible development of it: so that it is a sheer addition to whatever intension the original term possessed. Then we call attention to the fact that in the original term, and the term composed of it and of an adjective, extension and intension vary inversely. Of course they do, becanse we have carefully arranged it, by so qualifying the original term that they must. But it is ridicalons to infer from this, that in all terms, where one is of wider extension than the other, its intension is less. Because this holds where the terms are not related as genus and apecies should be, it must not be concluded to hold where they are so related.
4. It may still be felt that there is more truth in the doctrine than has been conceded. Take the most unimpeachable examples of genus and species, such as triangle, with its species equilatara, isosceles and scalene. Can we not and do we not form a notion of triangle which includes those points in which equilsteral, isosceles, and scalene agree, bat none of those in which they differ? and may not this notion be perfectly precise and definite? and if such be the intension of the genus-term, is it not less than that of the opeeies-term? We must admit that this is possible. In the words of R. L. Nettleship ${ }^{1}$, 'we may, for convenience' mke, mentally hold apart a certain fraction of the fact ; for instance, the miximum of meawing which juctifies us in wring the soord "triangularity". We may call this the generic triangle, and distinguish it from particalar forms of triangle.' But the trae intension of the term is not the ' minimam of meaning' with which we can une it, bat its 'full meaning'.

What has been so far mid with regard to the relation of intension and extension in terms may perhape be rendered clearer to some as follows. Wherever we have species of a genus, or diatinguishable varieties of a common notion, we may contrast the anity which they preeent with the variety. To attend to the intension is to attend to the element of unity : to attend to the extencion is to attend to the element of variety. Sometimes we are more intarested in one, and sometimes in the other. When Socrates in the Meno aske what is virtae, and Meno begins describing the virtue of a man, the virtue of a woman, and so forth, Socrates axplains that he wanta to know what virtue is as one in all these, and not what the divers virtaes are ; in later language, he wished for the intension and not the extension of the term. Aristotle remarks ${ }^{2}$ that an enameration of these different virtuce and a description of them severally aro more valuable than a vague statement of their common nature: i.e. that here at any rate the element of variety was more worth consideration than the element of unity, if either is to be neglected. But if the two are realized together, the unity of the superordinate whole must be seen as the more comprehensive unity, not as the more jejune extract. So far however as we cannot realize them together, and see their

[^52]necessary connexion, it will have the character of the jojune oxtract and be a whole of lese meaning, even although we know that the variety of species into which it enters is great; and in these conditions, it may be said to be of less intension.

It follows, that in reference to an infima species, or a notion within whose unity wo recognize no conceptaal variety, intension and exteasion are indistinguishable. The equilateral triangle may differ in the length of its sides; and we may if we like regard this difference es constitating a variety in the notion of equilatemal triangle. But if we do not-if we conceive the particular length of the sides to constitute no difference in the equilateral trianglethen we recognize no such variety in the unity as makes the distinction of intension and extension possible. The natare of equilateral triangle is not shown in species that are distinguished within that unity, but in that unity itself. The two aspecte of the meaning of the term coincide, or nther, do not fall apart.

But it may be eaid that even if there are no distinguishable species of equilateral triangle, there are very many distingaisbable equilateral trianglea. Two interleced equilataral triangles are a favourite symbol in the decoration of Chriatian baildings ; and the number of equilateral triangles delineated on the walle and in the windowe of churches alone mast be peat counting. Do not all these and others form the extension of the term, and are not they distinguishable from ite intension?
We have treated the extension of the term an 'the variety of kinde over which its predication may axtend'; the variety whioh we concrive within a onity. We have dealt throughont with a relation of general terms or notions; the development of variety within the unity of a conceptual or logical whole has been regarded as stopping with whatever we take as infimae apocies. The extension of a term is, however, sometimes anderstood to be not the various conceptually distinet forms which are included within the unity of a single whole (like the various virtues, or species of animal or plant, or kinds of conic section, or soarces of income), bat varions individual instances in which a common nature is realized. According to this view, the extension of man is not Aryan and Semitic, Negro and Berber, \&ce., but Socrates and Plato, Caesar and Pompey, \&c.; the extension of triangle is not equilateral, isosceles and scalene, but the trianglee on particular church walls and windows or

$\left.v_{1}\right]$ INTENSION AND EXTENSION OF TERMS

elvowhere; the extension of colour is not red, blae, and green, bat the particular display of colour in every portion of the sky, or blede of grass, or fragment of an army jacket. And the contrast of extension and intension is no longer the contrast of rariety and anity in a notion or conoept, but that between individuals and the . common character which makes them individuals of a kind.

This view has never proviled in respect of abstract terms. No doubt qualities have their instances; the whitaness of this page and that of the nert are each an instance of whitenese. But it is the function of abstraction to consider the quality in ita identity, and to ignore the difference between the concrete instances in whioh it is manifested; let the quality differ qualitatively, as the whiteness of milk does from that of snow, and we may be interested in the difference; bat if it differs only namerically, as the whitences in one patch of snow from the whitenees in the nert, we ignore it. We masy be separataly intarested in the various concrete things whioh exbibit the anme quality, but the very purpoee and nature of the abstraction which we perform in considering the quality is to treat it as the mame in these inotances, and to ignore their difference. With concrete terms it is otherwise; an attention to the identity of man in Soorates and Plato does not exalude our interest in them as eoparate individuals; and it is of concrete terms that individual instances are cometimes taken to constitute the extencion.

Now we need not quarral with this nee of the word; but it is important to see that we are introducing anew distinction. The relation of man to animal, or of negro to man, the relation whioh we recognize between opeciee and genus, is not the same as the relation of Socrates to man or animal, the relation between an individoal and its kind or umiversal. The inverse relation of extension and intension of which we have apoken doee not hold, axcept between notione or universale; if the axtension of a tarm is the individual instances, it is meaningless. The individual instances may be more or fewer, bat what is meant by the common term predicated of them all remains the same. We mew how the intension of the term amimal might from one point of view be said to increase, as a man becomes sequainted with fresh forms of animal life; and how from another point of view, becanse what at first he might have regarded as essential to an animal turns out not to be indispensable, it might be said to diminish, shrinking to a jejune revidunm. But whichever
way we look at it, it is only soquaintanco with fresh forme of animals that produces this reonlt: a mere increase in the numbers of one's acquaintance would produce no such effect. The intension of the term baby does not incresee and decrease with the fluctastions of the birth-rate ${ }^{1}$; when gainese were called in, the term did not alter ita intension. Intension han nothing to do with actan existence. There may never have been a perfectly just man; and yet we mean something by perfect justice. The dodo is axtinct, bat dodo would not heve less intension if the bird were as common a the sparrow. ${ }^{3}$ As it is, the chaffinch is commoner than the goldfinch, bat thare is not any consequent difference in intension between the two terms.

We may therefore mean as we please, by the extencion of a concrote term, either the distinguishable specien or the individuals included under it; but we must not treat the relation of extension and intension as the same in both cases. It is true that concrete individuale of one kind are distinguished from one another by their characters; and if we attend sufficiently to these distinctions, then as our acquaintance extends our conception of the variety of which the kind is susceptible enlarges. Unobeervant people may be familiar all their lives with earwigs, without recognizing the richness of earwig nature as diversoly displayed in divers individuale. The least oberrant of us have the richness of haman nature forced to come extent apon our attention. But so far as our growing experience of life leads an to realize more fully the variety of human nature, it is not because the men we meet differ numerically, but becanse they differ in chanctar from one another. With a kind like man, where the differences of oharacter between different individuala are 80 cloeely noted, it might seom that as the individuals are conceptoally distinguished, therefore in passing from man to Socrates and Plato we are only carrying on the eame procese of thought whioh we had employed in diotinguiahing writhin the genus animal the species of man and hore and ox. That is not mo. Man in net

[^53]less an univernal notion becanse it is nfore apeoific than animal; and if we were merely further specifying our conception of man in the case of Socrates, Socrates would be an onivereal notion too. But Socrates is an individual; and I cannot arrive at individuality by any apecification of a general notion. Socratea is distingaished concoptanlly from Plato ; bat that ia not the whole of the dirtinction, for they exist in the concrete.

In place of the worde Extension and Intension, varione writers have used others to mark the same distinction; and in particular, since the pablication of J. S. Mill's Logic ${ }^{1}$, the words Denotation and Connotation have come into favour for Extension and Intension reapectively. Mill claimed for these that they possess an advantage in the existence of the corresponding verbs, to denote and to eonnote, which other expressions do not possess; we may apeak of a term denoting or connoting thir or that, bat we ahould have to use a periphrais and any that so and so constituted the intension, or was included in the extension, of a term. Though this is a real advantage, yet in other respects the term which be selects seem to be ill chosen. Extension suggests, what we want to convey, the range of apecies over which the application of a generic term extends; Denotation does not. Moreover, neage allows us equally to any that a species or an individual is denoted by a term; if either is the more natural expression, it is perhape the latter; and so the very referenoe to individnals which we wish to avoid is foirted on us. Again, Intension naturally suggesta what we intend or mean by a term; Connotation suggests not that, bot fome subridiary meaning, a meaning additional to some other. It would, perhape, be convenient if the term Connotation were dropped, or reatored to its original signification (according to which nomen coneotaticum meant an attributive term), and if Denotation were diatinguiahed from Ertenaion ea reference to individuale from reference to subordinate apeciee. We could then any that animal denoted Socraten and Buoephalua, but that man and horse were part of its extension.

Such an emancipation from what seems to be an unhappy phraseology may, however, be too mach to hope for. But from a doctrine which Mill nsed his phrseeology to exprese it is necessary that we should emancipate ourselvea. Mill drew a distinction ${ }^{1}$ o. I. ii. \& 5 .
between connolative and montromolative namee, whiah he deecribed as being 'one of the most important distinctions which we shall have occerion to point out, and one of thoee which go deepent into the nature of language'. There are, however, no non-connotative names.

The distinction had better be atated in hil own words. 'A nonconnotative term is one which signifies a mbject only, or an attribate only. A connotative term is one which denotes a subject, and impliea an attribate. By a subjeot is here meant anything that pomeses attributes. Thus John, or London, or England, are names which signify a subject ouly. Whiteness, longth, virtue, signify an attribute only. None of these namea, therefore, are connotative. But white, long, oirtmowe, are connotative. The word white, denoten all white thinge, manw, paper, the foam of the see, \&cc., and implies, or in the lenguage of the echoolmen ${ }^{2}$, connotes, the attribute whilences. The word white is not predicated of the attribate, but of the enbjecta, mow, \&cc.; bat when we predicate it of them, we convey the meaning that the attribute whiteness belongs to them. . . . All concrote general namee are connotative. The word man, for example, denotes Peter, Jane, John, and an indefinite number of other individuals, of whom, taken as a clase, it is the name. But it is applied to them, because they posees, and to signify that they pomens, certain attributea. . . . The word man, therefore, signifies all these attributes, and all subjects which poween theme attributes. . . . Even abetrect names, though the namee only of attributes, may in come inatances be juatly considered as connotative; for attribates themsalves may bave attributes secribed to them; and a word whioh denotes attribates may connote an attribute of those attributea. Of this deecription, for example, is such a word an fawh; equivalent to bad or hurtful quality. This word is a mano common to many attributes, and connotes hartfolnees, an attribute of thoee varions attributes. ${ }^{2}$. . . Proper namee are not connotative: they denote the individuals who are called by

[^54]them; bat they do not indicate or imply any attribates as belonging to those individuale.'

Thns Mill considers to be connotative-
(a) general concrete terms;
(b) attributive terms ;
(c) sbetract terms, if they are names of a genue of attribatea;
and to be non-connotative-
(a) proper names ;
(b) abstract terma, if they are names of a simple or a logically undivided ${ }^{1}$ attribute.
Deaignations, i.e. descriptions of an individaal involving connotative terms, he considers connotative; abotract terms which are logically undivided, but not indefinable, like velocity or momentum, he does not specially discuse ; they ought to be connotative, if (as he bolds) definition unfolds the connotation of a name; they ought to be non-connotative, if (as appears to be the case) they 'signify an attribute only', and not an attribute ascribed to other attribates; but as he has forgotten his view of definition in this section, we seem justified in following the indioations of the conteart and clasaing them as non-connotative.

We have to consider, therefore, two clesess of names which according to this doctrine have no connotation (or intension): proper names, and abstract terms which are not generic, i. e. not predicated of other abetract terms which would form their extencion. We may begin with the latter.

According to Mill, fawll is a copnotative term, because it denotes slownees in a horse, and other hartful attribates, while connoting their common attribute of hartfulnese. Vice would be connotative, denoting indolence, intemperance, jealousy, and so forth, and connoting their common character an vicea. (It is to be obeerved that all terma are sacumed to deoote comething, and the queetion is whether they do or do not connote something an well.) Slowness, on the other hand, in non-connotative, and \mathbf{n} is indolence or joalousy; for these merely denote each a single attribute.

It would be very strange, however, if this were true. What I mean by calling Othello's passion a vice forme the connotation of that term; vice is connotative by what it means in regard

[^55]thereto; bat when I call his passion jealousy, though that includes calling it a vice (for vice is part of the notion of jealousy), we are told that the term has no connotation; 'vice' is a connotative term; but 'the vice of reedily suspecting the anfaithfulness of those you love' is not.

The fact is that Mill starta from the diatinction between concrete individuale, and their common character on the ground of which they are called by the aame name; and be takea a name to be connotative, if it has a common meaning distinct from the individuals of which it is predicated. Thus man is connotative because its meaning is not identical with John or Peter; and white because its meaning is not identical with milk or snow. He then confusedly supposes indolence and jealoury to be individuals denoted by the common term vice, slownese and stupidity by the common term fanlt; and since we can distinguish the common meaning of the terms fault and vice from the particular attribates of which they are predicable, be treats them ae connotative terms; while indolence and jealonsy, alownese and stapidity are non-connotative like John and Peter.

Now we shall see that John and Peter are also connotative terms; and therefore that even if indolence and such-like terms were comparable with them, they would not have been shown to be devoid of connotation. But they are not comparable. Indolence and jealousy are not individual attributes; if we are to tall of individual attributes, we muat mean the indolence axhibited by a given person at a given time and place: as the jealouay which fired Othello's heart when he atrangied Deedomona; and $\infty 0$ far as indolence and jealousy can be predicated of theee and other indolencea and jealoumies, we can distinguish the common meaning of the terms from the particalar manifertations of that meaning. They will therefore be as connotative as any general concrete term. We have aeen, however, that in abstraction we are not considering the particular manifestations of an identical quality; we are looking apon indolence as one thing, not different things every time that it is exbibited. Therefore the distinction between the concrete individuals and their common oharacter, from which Mill starts, is altogether out of place, and a view of connotation besed on that cannot apply to abetract terms. We must fall back apon the relation of concepts, which was developed at the
beginning of this chapter by the help of the words intension and extension. Let ue call these reepectively connotation and denotation if any one prefers it; but what we shall have to say about connotation and denotation in abetract torma is as followe.

An abstract term has a meaning: it means a certain attribute ${ }^{1}$, as an unity. This is its connotation. But we may recognise a diversity within this unity, or forme of this unity concoptually dis-tinot-the kinde, e. g., of vice or virtue If m, these form ita denotation. The tarm may be predicated of any part of its denotation meparately, and 00 far 20 we diatingaish the divers parta from the unity of which they are parta (e. g. indolence from vice as such), it doee not denote preciealy what it connoten. But when we come down to attributee within the unity of which we distingaish no diversity, the distinotion between what a term denotee and what it connotes dimppeare. Indolence, eo far as we recognize no soparate apecies of indolence, is juest one attribate: not one like a concrete individual, but as an univeras. The tarm connotes that attribate; and that is what it denotes or is the name of. It can be predicated, as a name or word, of the attribate it means. As a thing (i.e. here, an attribate) it is iteelf, and not a genus of different things. Sappose wo recogrized (as indeed we may) degrees of indolence; so far as we thought of them es different when we spoke of indolence, material for the distinotion between what the term denotes and what it connotes would be furniahed afreas. We might still have no separato names for indolence of divers degrees, but in spite of this the term would have connotation. Are we to eay that when we ceace to think of these degrees of indolence, it has connotation no longer? What has become of the meaning (for connotation is meaning) which it had before? Clearly it must have meaning. What we have to explain is how it can be predicated of that which is not precisely what it means. This arises through the recognition of a conceptual diversity within a conceptanal unity. Where that is not recognized, the problem does not arise; but the term still has meaning, or connotation.

The other clese of terms which Mill regards as non-connotative are Proper Names. His view is equally untensble in this case, but

[^56]for different reacons ; and there is more pleusibility in it. For there is an important difference in instructivences between proper and genaral concrete names, which ought not to be overlooked, though it ought not to be stated a lying in the non-oonnotative character of the former.

Mill denies that proper names are connotative, because they tell you nothing sbout the individual which they denote; wheress general namea give you information abont it. 'A proper name,' be eny, 'is but an unmeaning mark which we connect in our minde with the idee of the object, in order that whenever this mark meots our eyes or cocurs to our thoughte, we may think of that individual object'; and he contrants 'connotative' namee as ' not mere marks, but more, that is to say, significant marks'. A general name is used of an individaal on the ground of some character which the thing is believed to poseess; and that forms its connotation, which it ponecses independently of ite nee about this individual : a proper name is given upon no such ground, but merely in order to distinguish the individual it is given to from others.

The premisses here are correct, but they do not justify the conelusion drawn from them. A proper name need be given on the ground of no attribute ${ }^{1}$; for we may set aside as irrelevant to the real iesue the cuse which Mill instances of a name like Dartmouth, intended to imply that the town is at the month of the Dart, and compounded out of elementa whereof one is general; in the case of the river Dart itself, at any rate, no such significance is to be fornd in the name. ${ }^{\text {. }}$ On the other hand, general names are used on the ground of some attribate. I should not call London s port, except to indicate that coenn-going shipe resorted there. Yet it does not follow that proper names are non-connotative. For the proper name is only unmeaning before it is given; by being given, and becoming a mark, it acquires a meaning. And the general name was equally unmeaning before it woce over given; but being general, it can be given to more things than one, and having eoquired a meaning by
${ }^{3}$ Except, indeed, that of individuality : to be an individual is an attribate of the individual denoted, and Mill ahould have allowed that thie we connoted.

- Moot proper namea are melected for a definito reason ; a child christened Boptimus is gonerally the sovonth child; a mountain may be named aftor ita discoverer, s college after ith fonnder, or a society after come one of whom ite members wiah to be comeidered the disciples.
ite original imposition, has a meaning in adrance of its subsequent use about other individuals; and that is why it is instructive.

The account which Mill gives of a proper name is anbstantially indistingrishable from Hobbes's definition of any name, which Mill himself had accepted in the firat section of the same chapter. According to that, a name is 'a word taken at pleasure to eerve for a mark which may raise in our mind a thought like to some thought we had before'. Being a word taken at pleasire, it can have hed originally no meaning ${ }^{1}$; else that meaning would have restricted our choice. It acquired a meaning when we marked with it the object which we would heve it to signify. And whether we wish to mark with it an individual object, or a kind of object, makea so far no difference. All names, whether general or proper, are
 ally, and before they are assigned to an object, they are popal only, counds without meaning. In being assigned to an object, or becoming marks, they eo ipeo scquire meaning; for an unmeaning mark is not properly a mart at all, though I may of course be ignorant of the meaning of it. The brosed arrow 7 which is occasionally seen on gateposts, milestones, \&cc., is a mark; the traveller would know that it was not 2 mere flaw in the wood or stone; be might not know what it meant; but be would know that it meant something. By enquiry he might learn that it meant that the spot where it was placed was the precise spot whoes height was recorded in that portion of the ordnance eurvey. Here the mark is general. But the mark by which his narse recognized Odysseus was equally gignificant. In its own neture it was a ecar, the consequence of a wound, and not (like a brand) intended as a mark. Yet this oour (ita precise form and position being taken into acconnt) to those who hed obeerved it in Odyeeens became a mark by which to know him. He had been absent twenty years, and was changed otherwise beyond recognition; he was supposed to be dead; but his narse, seeing the mark, knew the man before her to be him-knew that about the man before her which otherwise ehe would not have known. How can it be said that it was an anmeaning mark for her? And euppose that instead he had at once told her that he was Odymsous ;

[^57]the name would have given her precisely the same information; how could the name be nomeaning? The doctrine that proper namee have no connotation is refated by every criminal who assumes an alias. ${ }^{1}$

Proper names, it was admitted, are not aesigned (as general names are employed) on account of their meaning. They only aoquire their meaning by being asoigred to an object. But in being asaigned to an object they must acquire connotation. The error which it is important to avoid is that a name can denote without connoting; for that impliea that a thing can be, and be distinguiehed, without any attribates distinguiehing it. I may frame the sound Glamby: it is doubtlese non-connotative; but neither does it as yet denote anything. So soon as I give it as a name to my honse or my horve, my dog or my daughter, it will denote that thing, and aloo connote it for me; for here, as in the case of non-generic abstract terms, we may say that the term denotes what it connotes. The two kinds of term have important differences. Proper names are given to individuals; and what the individual is we can never know completely. The proper name therefore cannot be defined; and a great deal of ite connotation may be said to be left as it were in the dark; the name connotes an individual characterized by all which distinguishes it from others; but we do not know all that. Practically we may any that the connotation is anything which enters into our notion of the individual, and therefore so far an no two men have the ame knowledge of Glamby, that name will have partially different connotation for different men. The mme remark might be made, however, in some degree about general namea. And if Glamby were a mark denoting an individual, but connoting nothing, how ahould any one whom I told to go to Glamby know whether I sent him to a person or a place?

It is hardly necessary to labour the point further. If the connotation of a name were a fixed and conetant meaning, borne by it in every case of ite application, and therefore general, it would be fairly said that proper names were non-connotative. For they have no constant meaning, except in reference to the same individual; and so far as they belong to several individuals, they are equivocal. But an equivocal tarm is not a tarm without meaning;

[^58]it is a term with more than one meaning. And whatever has meaning has connotation. The connotation of a proper name can ouly be learnt by knowledge, personal or through report, of the individual denoted; sach report must of course be made by help of general terms. But the connotetion of a general term is in the last resort learnt through personal mequaintance with or report of some object of the kind denoted. Only being general it servee now to convey information sbout individuals without the need of personal aequaintance. ${ }^{1}$
[A little further examination of the passage quoted on p. 132 will show how thoroughly confused Mill's account of the matter is. A connotative name, he asay, is one which denotea a subject and implies an attribute: a non-connotative name denotes a subject only or an attribute only. He clearly intends here to distingaiah between subjects and attributes; and by a subject be means an individual. ' By a subject is here meant anything which possessea attribates. Thus John, or London, or England are names which signify a subject only.' But whether such a subject of attribates is a bare uncharacterized catat, and all ite predicaten are. attribntea : or whether it is a subject of a certain hind, of which its further predicates in otber categories are to be called the attributes, Mill does not eay in so many words. The former is, however, implied; for the word man connotes all that makee John a man; and the sccount of substance in the next chapter bears this oat. Yet we are told that fault is a connotative term becsuse it denotes, e.g., slowness in a horse and connotes the hartfulnems of this quality; the names of attributes 'may in some cases be justly considered as connotative; for attributes themselves may have attributes ascribed to them'. According to the definition of a connotative term given at the outset, slowness ought to be a subject and not an attribute, if faull is connotative.

Mill has confused the logical relation of subject and predicate, which sllows you equally to ssy that alowness is a fault and London is a city, with the metaphysical relation of subetance and attribute, aleo sometimes called the relation of subject and attribate; and he has not any very coherent view of what he means by a subject an

[^59][= substance. He has consequently also failed to distinguish the relation of genus and species from the relation of general to singular or uniyersal to individnal. Thas terme like white or Erituous are connotative, becsuse their form implies a subject (whether a substance or not) distinct from whiteness or virtue, of which they are to be predicated; colour is connotative, while whiteness is not, because that is a genus, and this is an infima species; cily is connotative, while Londom is not, because city is general or universal, and London is singular or individual.]
[For the sake of the curious, a few worde may be added on the history of the term 'connotative'. In William of Occam 2 distinction is found between abeolute and connotative terms. Absolute terms have not different primary and eecondary significations; 'nomen antem connotativum est illad, quod significat aliquid primario et aliquid secundario.' He gives as instances relative names (for father signifies a man, and a certain relation between him and another): names expressing quantity (since there must be something which has the quantity) : and certain other words: o. Prantl, Gesehichte der Logik, Abs. xix. Anm. 831, vol. iii. P. 864. Johannes Buridanus said that some terms connote nothing beyond what they stand for (' nihil connotantes ultre ea, pro quibus supponunt'); but 'omnis terminus connotans alivd ab eo, pro quo supponit, dicitar eppellativas et appellat illud quod connotat per modum adiecentis ei, pro quo supponit'. ${ }^{1}$ Thus meus and tuus stand for something which is mine or yours; bat they connote or signify further and 'appellant me et to tanquam adiacentes' (id. ib. xx. 111, vol. iv. p. 30). In the same way elsewhere we are told that 'rationale' 'connotat formam substantialem hominis' (xx. 282, vol. iv. p. 63 : cf. Anm. 459, p. 109). Albwn and agens are given elsewhere by Occam (ib. xix. 917, vol. iii. p. 886) as examples reapectively of connotative and relative terms; and it is explained (ib. Anm. 918) that a connotative or a relative term is one which cannot be defined without reference to one thing primarily and secondarily another; thus the meaning of album is expressed by 'aliquid habens albedinem'; and when by any term anything 'connotatur vel consignificatur, pro quo tamen talie terminus supponere non potest, quin de tali non verificatur ${ }^{\text {' }}$, such a term is connotative or relative. Thus a term whes called connotative if it atood for ('supponit pro') one thing, but signified as well ('connotat') something else aboat it; as Archbishop Whately mayg (Logic, II. c. v. \& 1, ed. 9, p. 122),

[^60]
v1] INTENSION AND EXTENSION OF TERMS

['it "connotes", i.e. "notes along with" the object [or inplies], something considered as inherent therein.' The Archbishop suggests the term attributive as its equivalent; and though connotative terms were not all of them adjectives, since relstive terms also connote, and so do terms like ' mischief-maker' or 'pedant', which though adjectival in meaning are subetantives in form, yet adjectives are the principal clans of connotative terms, in the original sense of that word.

Connotation and denotation were thue originally not opposed to each other, and the terms were by no means equivalent (as they have come to be treated as being) to intension and extension. And James Mill, who probably by his remarias upon the word consote had some infleence in directing his son's attention to it, says that ' white, in the phrase white horse, denotes two things, the coloar, and the horse; but it denotes the colour primarily, the horse socomiarily. We shall find it very convenient to say, therefore, that it motes the primary, connotes the secondary, signitication' (Amalysis of the Huean Mind, vol. i. p. 84). By the achoolmen it would commonly have been said to connote the colour, and the primary signification whe that 'pro quo enpponit'. J. S. Mill, in a note to p. 299 of the rame volume, objects to his father's inversion of the usage. But he himsolf, by extending the term connotative to cover what the schoolmen called abeolnte, and opposed to connotative, names, introduced a complete alteration into its meaning.

John and suan are both sbeolute names in Occam's sense. Man, no doubt, according to some (though not according to a nominalist like Occam) may stand for either an individual or an universal ; for an individual when I say 'this man', for an universal or species when I say that man is mortal. (Occam would have said that in the latter case it stood for all the individuale.) Bat even when I say 'this man', mesning John, the name mas does not denote two things, man and John; for John is a man; and if I abetract from that, John disappeara too; I have no notion of John as something with which I can proceed to combine in thought another thing, viz. man. With while it is different; I have a notion of paper, and a notion of whiteness, and whiteness is no necessary part of my notion of paper ; and so with sny other subject of which whiteneas is only an attribute and not the essence. Hence the name white may be said to denote two things, the colour, and that which is eo coloured; for these can be conceived each without the other, as John and man cannot. James Mill, who thought that objects were 'clusters of ideas', and that we gave names sometimes to clusters (in which cese the names were concrete) and sometimes to a particular iden out of a cluster (in which case they were abstract). could also esy that white, when predicated of this paper, denoted two things-the whiteness, and the oluster not including whiteness
[which I call peper. But Jokn only denotes one thing - the cluster of ideas which make John; and man ouly one thing, the cluster of ideas common to John and Peter. J. S. Mill, however, distinguished what is common to John and Peter from John or Peter, and said not indeed that man denoted two things, but that it denoted one and connoted the other. But if he had been asked what Jobn, the subject, was as distinct from man, his attribate, he would either have had to eany that he was not something different from man, any more than alownees is something different from a fault, though fault was aleo held by him to denote one thing and to connote another; or that John was just the uncharacterized substance, in which those attribates inhered, the anknown sabject; or else that he was what remained of the concrete individual when his homanity had been left out of his nsture. None of these answers would be very satisfactory. Again, coloured is connotative, in the original meaning of that word, because it in predicable, asy of a horse, and to be a horse is something else than to be coloured; in J.S. Mill's usage, because it is predicable of brown, though to be brown is to be coloured. Mill treats as two, when he opposes a term's denotation to ita connotation, thinge like John and man, brown and colour, whereof the latter is simply the universal realized in the former, and the former nothing without the latter: as well as things like horse and colour, which are conceptually two. Originally, only a name that was predicated of eomething thus conceptually a distinct thing from the attribute implied by predicating it was called connotative; and it is only where there are thus conceptually t 100 things, together indicated by the name, that the word comnotative has any appropriateness.
(Cf, also on the history of the word Comeotative a note in Minto'e Logic, p. 46.)]

CHAPTER VII

OF THE PROPOSITION OR JUDGEMENT

A ornbral sequaintance with the nature of the judgement or proposition has been hitherto serumed. It would be impossible for Logic to be written, or if written to be anderstood, anless the acte of thought which it investigates were already in a why familiar ; for Logic arises by reflection apon the modes in which we alremdy think of things. Now judgement is the form in which our thought of thinge is realized, and it is only.in judgement that we form concepts. The varieties of the concept, as they are distinguished in the doctrine of terms, the different relations of one concept to another which form the basis of the distinction of predicables, would be onintelligible, unless it were realized that, in the first instance, concepts come before us ouly as elements in a judgement. They live, as it were, in a , medium of continuous jadging and thinking; it is by an effort that we inolate them, and considering subject and predicate severally by themselves ask in what relstion one stands to the other, whether they are positive or negative, abstract or concrete, singalar or general, and $s 0$ forth. Withoat presuming some knowledge of this mediam in which they live it would be of as little use to discuss terms, as it would be to discuse the styles of Gothic architecture without presuming some knowledge of the nature of apece.

We must now consider more alosely what judgement is, and what varietien of judgement there are that concern Logic-i.e. varietiee arising in the manner of our judging abont any anbject, not in the mattar which we jadge of. ${ }^{1}$

A general definition of judgement raises many metaphysical problems, which cannot be fully discussed in such a work as this. But a few thinge may be pointed out about it.
${ }^{1}$ This antithesis must not be presed too far, an was pointed out sbove, e. i, pp. 5-7. Tn regard it as ebsolnte, es if what wo judged of made no difference to the manner of jadging, is the error of thoee who attempt to treat Logic as a 'purely formal' science. But I do not think that, with this caution, the statement in the text need minlead.

Every jadgement makee an aseertion, which must be either true or false. This capacity of truth or falsehood is the peculiar distinction of judgement, expressed grammatically by the indicative mood. Imperatives, optatives, axolamations, and interrogations are not judgements as they stand, though they imply the power of judging. 'I say unto this man "Come", and be cometh.' Here the indicative sentence ' I my unto this man "Come"' may be true or false, the indicative eentence ' He cometh' may be true or false, and both these are judgemente; but we cannot ask of the imperative 'Come', is it false or true ?-it is not a judgement. Again the question 'Art thou he that troableth Israel ?' is not a judgement; it is not iteelf true or false, bat enquires whether the judgement implied is true or false. An optative, an in the line 'Mine be a cot beside the rill', is not as it stands a judgement; it could hardly be met with the rejoinder 'That 's true', or 'That 's a lie'; if it were, and we were to ak 'What is true?' or 'What is a lie?' the answer would be 'That you really wish to live in a cot beaide the rill'; so that, although an assertion is implied about the wishee of the person spealing, it is not so expressed in the optative. Exclamations may in like manner imply an aseertion which they do not expreses, as when we say 'Strangel' or 'Incredible I' They may also be mere modes of expressing feeling, like an action and geatare; and in such ceses, though something doubtlees 'preese in the mind', the exclamation can hardly be regarded as an attempt at asmorting ${ }^{1}$ snything. It is not, however, necessary to go into any mubtleties; the same grammatical form may indicate different acte of mind, and the same act of mind be indicated by different grammatical forma; 'Let the king live for ever' may be called imperative or optative: ' Angels and ministers of grace defend us,' imperative, optative, or exclamatory: ' I would that I were dead,' optative or indicative. It is enough for us to realize that a judgement being an assertion, capable of truth and falsehood, the full and propar expression of it is in the indicative mood.
A judgement makes one aseartion; an assertion is one, when there is one thing said of one thing-iv raft tods, ie. when the subject is

[^61]
rii] OF THE PROPOSITION OR JUDGEMENT

one, and the predicate one; though the subject and predicate may be complex to any degree. Thus it is one judgement that 'The last rose of sommer is over and fled '; bat two that ' Jeck and Jill are malo and female'; for the latter in equivalent to 'Jack is male and Jill is female'; one thing is asearted of Jeck and another of Jill; there is one grammatical eentence, but two judgementa.

Subject and predicate are terms which have already been explained, as that about which something is seserted, and that which is asserted about it. A judgement is often eaid to be compoeed of three parta, aubject, predicate, and copula ; the copula being the verb subatantive, 'is,' dorly, est, ist, sometimes, though mischievously, represented in Logio booke by the mathematical sign of equation, $=$. We may consider at this point the nature and fanction of the copula, and the propriety of thus reckoning it as a third member of a judgement.

Common speech doee not alwaye employ the copula. Take the line ' It comes, it comes; oh, rest in sweet'.' Here in the judgement 'Reat is aweet', we have subject (reat), predicate (sweel) and copula all severally present; whereas in the judgement 'It comes', we have the subject (if, referring to the omnibas), and for copula and predicate together the one word, comes. But that word contains what is said aboat the omnibus (for it is asaid to be coming, as rest is said to be sweet) ; and it also contains, in the inflerion, a sign that this is said about a sabject; and the judgement may, if we like, be put in a form that exhibita predicate and copula eeparataly, viz. 'it is coming'. It is true that ruch a change of verbal expresion may sometimes change the sense ; it is not the aame to say 'he plays the violin', and to say 'be is playing the violin'; we must use a periphrasis, and say, 'he is one who plays the violin', or 'he is a violinist'. But it is clear that the copala is present as much in the proposition 'he plays the violin' as in the proposition 'he is a violinist'; just as it is prewent alike in thought, whether I say Beati imaculati in via or Beati sunt immaculati in via. The inflexion of the predicate verb, or the inflexion of the predicate adjective together with the form and balance of the eantence, repleces or renders superfinons the more precise arbibition of the copula; it in, however, alwaye understood, and if we set down the rabject and predicate in symbols whose meaning is helped out by no inflexion, we naturally exprea it. We symbolize the judgement generally by the form ' A is B '; we may

[^62]write it ' $\boldsymbol{A} B$ ', bat that is an abbrevistion; to write it ' $\boldsymbol{A}=\boldsymbol{B}$ ' is an error.

If the copala is thus present, openly or surreptitionsly, in every judgement, what is it function, and can it be regarded as one of three parte composing a judgement? Ite fanction is to expree that the sabject and predicate are brought into the unity of a judgement : that the predicate is asoerted of the subjeot, and that the subject is qualified by the predicate. I may think of property and I may think of robbery, bat they may remain apart in my thought-subjecta succesively contemplated, like breakfest and a morning's work; if I eay that 'property is robbery', I show that they are not anconnected concepta, to my thinking, but that one qualifies the other.

Is the copuls then a third member in the judgement, distinct from aubject and predicate? Strictly speaking, no. For two terms are not subject and predicate, except in the judgement; and the act of judging, whereby they become subject and predicate, is already taken into account in calling them sabject and predicate; it ought not therefore to be reckoned over again in the copula. In the verbel expression of judgement, which we call a proposition, the copula may fairly be called a third and distinct member; bat the whole proposition ' A is B 'expremee as single act, in which though we may distinguish subject and predicate from the predicating, we cannot distinguish them from it as we can from one another. In our thought, the copals is the synthesis (or linking) of judgement: it is the form of the act, as distinguiahed from subject and predicate, which are the matter. In our langaage, the copata is a word used to exprees the performance of that act.

Is it of any consequence how that act is expressed-(1) whether by an inflexion or by an independent word; (2) if the latter, whether by the verb sabetantive or some different word or sign (ruch as the mathematical sign of equality) $?$
(1) Every judgement is analymable into arbject and predicate; though in the act of judgement we recognize their anity, yet they are aleo distingaisbed; and the predicate may in its turn become a subject of thought. The separation of the sign of predication from the predicate (as in the proposition ' He is a violinist', compared with ' He plays the violin') frees the predicate, a a it were, from ita immerrion in the present judgement. If therefore we wish to set
out a jodgement in a form that ahows alearly what is the sabject, and what the predicate, esch separataly considered, an independent word is better, as a sign of predication, than an inflecrion. For the purposes of a logical example, we chould prefer to expren a judgement in a form that shows this; bat it would be pedantry to do it, where, owing to the idiom of the language, it perverta the sease; and we do not need to do it at all when wo have no euch need to ${ }^{\downarrow}$ extricate the precicata.
(2) Different languages agree to use the verb mabstantive, or varb of exirtence, as the rign of predication: Homo sum, I and a man : Cogito, ergo sum, I think, therefore I am. ${ }^{1}$ The use of the verb of exirtence as copala arggents that every judgement prodioates evirlonce, that if I my that 'goverament is a science', I dealare not only that it is a acienee, but that it is or exinte ; on the other hand, the content of many judgemente eeams to negative this ides; if I my that 'a griffin is a fubulous monster', or that 'Queen Anne io deed', I do not aseert that a griffin or that Queem Anne arista. Hence some have boldly aid that the verb 'to be' is a mere equivocal term employed sometimea to aignify existence, and sometimes to aignify prodication: with no more identity of meaning in theer two ases, than there is between eat $=$ 'is' and ant $=$ 'eata'.' From this it would follow, that thare is no opeoial appropristencen in using the verb to be as sign of predication, nther than any other aign.

Yot if there were no epecial appropriatemess in the verb to be, as the rign of predication, it is otrange that so many langeages ahould heve aqreed to uee it. The case seems to be thas: that every judgement does imply existence, but not necemarily the existence of the sabject of the sentence. The distinguishing characteristio of a jodgement is, as wo have seen, that it is true or falee. With the thlee we need not hare concern ournelves ; for the man who makee - judgement, unleee he eays what he doee not really think, soye what he thinke to be trae, and therefore intends to declare the truth. All judgements therefore, besides affirming or denying a predicate of a subject, affirm themselves as troa. Bat a judgement which
${ }^{1}$ Properitions in which the verb of existance wes predicato naed to be called proponitions acwandi adiacontic; and thowe which had mome other predicate, where the verb to be whe present or implied ace copula only, were called propositions tertii adiacomtie.

- Cr. J. S. Kill, Logic, I. iv. I.
affirms itself as true olaime to express, so far as it goes, the nature of things, the facte, or the reality of the universe. In doing this it may be said to imply existence, not of its grammatical sabject, bat of the whole matter of fact aseerted in it.

When I eay that a griffin is a fabulous monster, I do not affirm that grifins exist like pigs and cows. But my jadgement implies the existence of a mase of fable, in which grifina have their place a fables too. If there were no fablea, I could not any that grifina were fabulous; but fablee are an element in reality-i.e. in the totality of what is real-no lese than pige and cows. Again, when I say that Queen Anne is dead, I do not affirm the present existence of Queen Anne; I do affirm ber existence in the pest; and the copals therefore still has the meaning of aristence. It may be asked why it abould be in the preeent tense, when the existence meant is past. The answer is, first, that the predicate correcte this so far as is necemary; but secondly, that the past (like fable) has a kind of existenca. If I am the same to-day as I was yesterday, then I do somehow anite in me at once the present and the peat; the past has ceesed to be present, bat it still somehow belongs to me. What is true of me is true of others, and of reality as a whole. Its history is in time; but it is one through that hiotory; and the past belongs to it now, as well as the present. Queen Anne doee not exist now; but that exista now, in whose past the life and death of Queen Anne have their place. They belong to the whole system of things which we call the aniverse; therein they exist, and only in belonging to it can they or anything elee exirt. The moon, if it had no plece there, would not be ; neither would juatice, nor the triangle ; though these different things play different parts in the whole. ${ }^{1}$

Every judgement then that I make olaims to deolare some portion of the whole trath that is to be known about the universe: in what form (so far as its parview goes) the universe exista. Hence it is no

[^63]accident that the verb of existence is employed to expreas the act of judgement. I may entertain a concept, ary that of Public Schools; I may think of them as tending to stifle originality in boys, but without deciding in my mind whether they do so or not; ∞ far, the compler concept of public schools as tending to stifle originality in boye floates as it were before my mind, bat it in not declared to exprese the facte; if I jadge, one way or the other, that pablio schools do or do not tend to stifle originality in boys, then I believe that my notion of them expresees them as they are-that it is no mere notion of mine, but the character of the real schoolworld; and to express that a combination of which I think is real and true, I use the verb to be. Public schools are linble (or not liable) to atifle originality in boys, because the liability (or nonliability) of public schools to do 80 if , or exista.
[It will be obeerved that in the last paragraph the copula was sad to imply, not to predicale, existence. For existence by itself is not a significant predicate, as we have already seen, and therefore cannot strictly speaking be predicated. We may ask, for example, whether grifins exist, as we may ask whether ostriches fly; but whereas in the latter case the subject is sasumed to exist, and the question is whether it possesses a certain predicate, in the former case we do not asoume that there are grifins, and enquire whether they possess the predicate of existence. Their existence would consist in being grifins, and not merely in being; and to aak whether grifine exist is to ask whether anything existing has the character intended by the term grifin. The existent is thus asoumed as the subject of our judgement, and the judgement claims to declare ita nature; we do not assume its nature as a subject of which to predicate existence. Hence it has been said that reality is the ultimate subject of every judgement. A judgement as a whole always has a content-the concept of the subject as qualified by the predicate: and this content is believed not to be a mere ides entertained by the person judging, but to be true, i. e. to be the natare of the real ; and all true judgements are true together, becanse reality is manifold, and each judgement seizes some portion of its nature. To aek, Can I make such and sach a judgement ? is to ask whether reality is correctly apprehended (in part) in the concept of such a eubject so qualified. To make the judgement is to apprehend reality in that way, to affirm of it the content of the judgement; and it is because of thie reference to reality involved in every judgement, that we use in expreasing a judgement the verb to be.

This view that reality is the wlimate subject of every jodge-
[ment must not, however, be underatood to mean that it in the cogioal subject, or be taken as destroying the force of the logioal distinotion between arbject and predicate. We may diatingaiah in fact three rabjecte, the logical, the grammatical, and the ultimate or metaphysical. That the logical sabject is not the same an the grammatical sabject of the sentence is readily apprahended. The proposition 'Belledonns dilates the pupil' may be an anower either to the queation 'What dilates the papil?' or 'What do you know of belledonns?' In either case the grommatical subject is ballsdonna; bat the logical eubject is in the formar caee 'dilating the papil'; that is what we are thinking about, and sboat that the judgement informs us that belledonns will effect it; in the latter caeo, the logical subjeot is belledonna, and aboot that the jodgement informs us that it produces this effect. This distinction of logical subject and predicate is alwaye present in thought when we judge, though sometimes the logical subject may be very vague, an when we say' it rains' or 'it is hot'. But subject and predicate together may qualify something further. This is easily seen when the subject is an abotract tarm. 'Jealonsy is a violent emotion': jealousy may be the logical subject here, but it only exista in those who are jealous. It is not then the ultimate subject, for it can in turn be prodicated of momething else. Some have thought (and this seems to have been Aristotle's opinion) that there was no single metaphyical aubject, but as many as there are concrete individanla. And in the Categories' he defines the concrete individual as that which can neither be predicated of nor inhere in anything further. ${ }^{3}$

But the doctrine which makes Reality the ultimate enbject of every judgement holds that in a sense the metaphysical subject is always one and the same: i.e. that there can be only one real system, to which all judgemente refer, and which they all contribate to determine and qualify. That a partioular thing should exist or be real means that it has its place in this system; and what is called the existential jodgement-the judgement whoee predicate

[^64][is the verb to be, in the eense of to exist-as in 'Sunt qui non habeant, est qui non carst habere', or 'Before Abraham was, I am'-dealares a part of the one system of reality. The content of an existential jadgement cannot indeed be predicated of reality as a quality or attribate. When I asy that jealousy is a violent emotion, I think of it an attribute of jealoas man; when I say 'Eet qui non corrat habere', I do not think of Hormee as an attribate of reality. Neverthelees, his existence is bound up with the axistence of the whole universe; the universe of reality is foand (when we think the matter out) to be presupposed by the existential judgement an mach as by any other; and though in it existence appears to be first astirmed in the predicate, and therefore not ascumed in the sabject, yet this oannot represent the true course of our thought. We could make no judgement at all, if we did not presume a reality about which it was mede. Even the negative existential-' Jooeph is not, and Simeon is not'-impliee this; for not to be meane to have no plece in that which is.

We are indeed accustomed to think of thinge and parsons as if each were complete and independently real; and in that case, the metaphytical enbject of any judgement would be some concrete indindual or other. The doctrine we are considering carries the queation further, and holde thast what is predicated of the concrete individual is not true of him in complete inolation from all elae, and therefore that he is not, metaphysically speaking, or in the leat resort, the subject of which it is true. There is no desire to deny to individuals a relative independence, or to pretend that the relation of attributes or univerals to the concrete individual is the same relation as that of an individual to the system of reality which includes him. The judgement 'Jealousy is a violent emotion' can be wo restated as to make the concrete rubject man the logical subject of the judgement ; I may exprese it, for example, by saying that jealons men are violent in their jealonsy. I cannot no reetate the existential jodgement, or any other in which the logical subject is already a concrete term, as to make Reulity the logical subject instead. But it is the metaphysioal sabject in the sanso that it is presuppoeed and referred to even in thoee jadgementa. We cannot maintain the view that the metaphysical subject of every judgement is alwhys in the last resort a particular individual. 'Civilization is progressive.' Doubtlees civilization is only seen in the lives of men; but it is esen in the lives not of thig and that man singly bat of the community to which they belong. We have to think of men as forming a system and an unity, if we are to give meaning to a judgement like this. What is contended is, that all judgements involve us in the thought of one all-embracing syatem of reality, whose nature and constitution none oan express
[completely, though each true judgement declares a part of it. Logic, as has been said before, cannot be rigidly separated from metaphysics; indeed, it derives its chief importance from ite connexion therewith. If it had merely to work out the scheme of allogistic inference, and such-like matters, the problem which the present note has raised would be superfluous; bat it inveatigater how we think; and whether we must think of the universe as a com of independent reals or as a system is a fundemental problem. ${ }^{1}$]

In the act of judgement, the subject ${ }^{2}$ with which we atart is modified or enlarged by the predicate, and in that form declared to be real. We end with the aubject with which we began, differently conoeived.' A ayntheris, and the affirmation of the reault for real, are common features of every judgement, and the copula expresees them always, add so far has always the same meaning. Whatever sign be meed, whether an inflexion, or the verb subetantive, or the mathematical symbol for equality, or anything else, this ayntheais, and the affirmation of the result for real, must be meant. The verb to be naturally lends itself to this meaning. The mathematical symbol of equality has a different meaning ; it is not a sign of predication, but an incomplete predicate; it implies, of one thing, quantitative identity with some other. If I say $A=B$, the predicate is not B but 'equal to B ': the special force of the sign ' $=$ ' is 'equal to'; I must atill perform in thought the act of predication, whether I sey A is equal to B, or \boldsymbol{A} is the first letter of the alphabet; and if $=$ were adopted as the rign of predication, the equation $A=B$ (which means d is equal to B) muat be written $A==B$.

A judgement then contains aubject and predicate; subject

[^65]and predicate in their combination are declared true of the real. To the words which signify the subject and the predicate separately is added a word which aignifies that they are combined as subject and predicate one of the other in a judgement. This word is called the copala; it may be omitted in speech or writing, or be replaced by an inflexion; but the act of thought which it indicates cannot be omitted, if there is to be a judgement. This act, however, is not a part of the jodgement in the same way that anbject and predicate are. It is the act or form of judging, and they are the matter judged. Hence it is, at least generically, the aame, while subject and predicate change; and for this reason the scheme of a judgement ' A is B ' represents subject and predicate by symbols, but retains the 'copols' itself. We write A and B for subject and predicate ${ }^{1}$, because they represent indifferently any subject and predicate, being themselves none; we write 'is', and not another symbol in its plece, because whatever be the aubject and predicate, the act of judgement is, generically, the same.

The act of judgement is, however, only generically the same in every judgement; it in the ame in es far as it involvea a synthesis of rubject and predicate, and affirms the resolt of that synthesis for real. It may differ in the nature of the synthesia of aubject and predicate. If therefore we apeak of judgement as a common form realized, for every difference in the subject and predicate, in different matter, we must admit that there are also differences in the common form. This was pointed out in the first chapter, as precluding what is called a purely formal trestment of Logic. We cannot otudy the form of thought with no reference to its content, because on the nature of the content depends in part the form. Having got some notion of the form of judgement, so far as it is always one and the same, we must now proceed to consider some of the varistions of which it is susceptible, so far as these belong to its form, and not merely to the content. Differences that belong merely to the content (as between the judgements 'men are animals' and 'roses are plants') we can of course ignore.
${ }^{1}$ Of course any other indifferent aymbole will serve, such an X and Y or S and P.

CHAPTER VIII

OF THE VARIOUS FORMS OF THE JUDGEMENT

Jodongents have for long been commonly distinguished according to Quantity, Quality, Relation, and Modality.

In reapect of quantity, judgementa are aid to be either singular, or wniversal, or particular. But the differences at the bottom of this distinction are not in reality parely quantitative, though they have sometimes been represented as being so.

The enbject of a judgement may be aither a singular term like 'Socrates' or 'Ceesar' or 'the present Cabinet', or a common tarm like 'man' or 'triangle'. In the former case, the judgement is aloo called adigular. In the latter, the jodgement may affirm or deny the predicate of the subject either universally, i.e. in every case, e.g. 'All equilateral triangles are equiangular', ' Nemo omnibus horis sapit' : in which case it is called noniveracl ; or partially, i.e. in particular cases, or of a part of the subject, only, e. g. 'Some larkepors are perennial', 'Some animals cannot awim': in which case it is called particular.

By a part of the subject is meant here a logical part, i.e. some instances or species included in the extension of the subject ${ }^{1}$, some part of all that it denotes; thus when I asy that some larkspurs are perennial, I mean some speciee of that genus: when I say that some animals cannot ewim, I mean mome species of animal, or some individuals of some epecies. Now the singular, particular, and universal judgements may be represented as referring respectively to an individual, to a part of a cleas, and to the whole of a claces, i.e. to one, come and all of a certain number. Or cince an individual is incapable of logical division, and a singular tarm, as denoting one individual, cannot refor to leee than all that it denoten, aingular judgemonts may be ranked with aniversal judgements, and contraoted with particular: both the former referring to the whole of

What their subjecte denoto, while the hatter refers to a part only. We ahall mee letar, in dealing with ayllogiem, that angzar judge--mente may for cortain porposes be treated es if they were universal, becaseo they equally render poesible cartain inferences. But at proeent it is important mather to realize that auch attempte to treat the differences between aingular particular and univereal, or eingalar + univernal and particular, as meraly quantitative do not do jurtice to the differences in the thought contained in them.

A logicel whole or cless (if we are to give it that name) is-as wo have alreedy seen-ill conoeived as a collection of individuals. It is rather an unity, or identity ranning through things which are differsat. It may form the subject of our thought and of our jodgement; but it diflers from an individual not as all from one of a collection, whioh would be a quantitative difference, bat rether notionally, se what is univeral from what is individual. The difference between singular and univernal judgemente is therefore not easentially quantitative. Again, the individoale contained within a clase are not, as individuals, an unity bat a collection; between some and all of this collection the difference is quantitative; but that is not the proper difference between a particular and an univeral judgement, for the univernal judgement regards primarily the clase as kind, and not as a totality of individuala. The difference therefore botween particular and univereal judgements is not emsentially quantitative. On the other hand, the difference between individual and particular judgementes is often quantitative. ${ }^{1}$ A criticiem of the forms in which lengagee expresses judgementa of these different typee will throw furthar light on what has just been mid.

It in common to indicate an univeral judgement by the words

[^66]all or mo (none) prefixed to the subject, according as the judgement is affirmative or negative; s particular judgement by the word some, similarly prefired; these are called signa or marks of quantity. The idiom of language will indeed often expreas a universal judgement in other ways; we can may Man in mortal, as well as All men are mortal: 4 barometer will not work in a vacumen, as well as No baromoter will work in a vacwum. But in the abeence of a mark of quantity, it is not alwaye clear whether a judgement is meant to be universal or particular; if I say Women are jealous, 4 flower is a beautiful object, I need not mean all flowers, or all women. Precision requires the quantity of a judgement to be expressly indicated : particularly where (as in logical examples) the judgement is taken out of contert and we leok the help which context often affords an in divining the writer's intention; and at least where the subject is in the plural ${ }^{1}$, the words all, none, some are appropristed to that service. A judgement without any mark of quantity is technically known as an indefinito judgement; becanse it is not clear whether the whole, or only a part, of the extension of the subject is referred to, and so the scope of the judgeanent is undetermined ; the examples jnat given, Women are jealow, 4 flower is a beautiful object, are therefore indefinite judgements.

At the mame time, the words all and mone, as signs of the universality of a judgement, have disadvantages of their own. For a judgement is really universal, when the subject is universal or general, and the predicate atteches to the subjeot (or is excluded from it) necessarily; but if it is found to attach to the subject (or to be excluded from it) in every existing instance without any necessity that we know of, we use the amme expresaions, all and mone. Thus we may say that No American poet stands in the firat rank, or that All the Fremel ministries are shortlioed; but neither of these is really an univeral jadgement. Fach is a jodgement made about a namber of individuals: it states an historical fact, and not a scientific trath. It would be convenient to call such judgements oolleotive ${ }^{2}$ or enumarative judgements; for they really collect in one the statements which may be made aboat every

[^67]instance of a certain clase, and make their aseertion on the otrength not of any conceptaal neceesity, bat of an enumeration.

We muat of coarse distinguish the question whether a judgement is meant as universal, from the question whether we have a right to enumciste it universally. If instead of saying All the Premck ministrics are short-lited (where the article the shows that I am referring to all of a certain number of things), I were to may $\mathbf{A l l}$ Frenol minitries are ahort-lived, it might be contended that the jodgement no longer referred to individuals or instances, bat affirmed a necemary oharncter of French ministries as such. In trath the statement is not clear, and a man would have to ask me, whether I meant it as an historical summary, or an universal truth; but the ambiguity of the statement is the very point to be noticed; for the two interpretations indicate the difference between a merely enumerative, and a true universal, judgement. If we contrant such judgements as $A l l$ my bones are out of joint and $4 l l$ triangles in a emicircle are right-angled, the difference is very plain.

We have seen that there is a marked distinction between a singalar judgement, whoee subject is an individual, and an universal or particular jodgement, whoee aubject is a general or abstract term, a concept or kind of thing. The enumerative jadgement (and this is true in some degree of the particalar jodgement also) approximatea to the type of the aingular rather than of the aniveral. ${ }^{1}$ For though the subjeot be a general term, and I predicate about all the members included under that term, yet I do ∞ because I have examined them as individuals, and found the predicate in them all, not becanse of any neceasary connexion between the predicate, and the common character of theee individuals which the genoral term signifies. Fronch minidry is a general term; but (for all that I eee) it is not because being a French miniotry involves being short-lived, that I assert all the French ministries to be ahort-lived; it is becsuse I have noted each caes; just as it would be upon the streagth of noting the individual case that I should assert the first ministry of M. Julee Ferry to have been short-lived. At the ame time, the collective judgement, though thus approximating to the type of the eingular, gives the hint of a true universal judgement. It suggests that the ground for the

[^68]predicate may lie in the common character aignified by the gemeral term ander which all them inatancee are collected. If I my Ledher was lated, there is nothing to indicate what about him was hateful: with which of all the coincident attributee in Lather his hatefulseen is univermally connected. If I asy All reformers have been hated, though that is an mooh an historical statement an the firat, and therofore enumerative only, it suggerta that the reacon why all thowe men heve been hated (Lather and Calvin, Cromwall and Gledetone -the statement implies a poesible enumeration) liee in the feot that they were reformers. Thus from an onumerative judgeoment we may pan to an univerial ; from a atudy of individuale to the amertion of an univermel connexion of charactora. When wo enumciate enumerstive judgementa, we aro on that roed: cometimen farther, and sometimes leon far.

The difference between a true universal judgement and one merely enumarative is exceedingly important. The one belongs to ecience, the other to chronicle or history. An univermal jodgement holds of any and every inatance, alike pant present and fatare, examined or anexamined. An enamerative judgement bolds only of thoee instancee which wo have examined, and rammed up in the subject. $14 l$ reformert are hated: if that is meroly enumerative, it afforde me no ground to anticipate hatred if I undertake reform; it afforde me no explanadion of the hatred with which reformers have been met. Bat if it is a true miversal, it oxplains the paot, and predicts the future. Nevertheless an univernal judgement bes nothing, se such, to do with nembers of inatances; if the connexion affirmed in it be neceemary, the jodgoment is atill miversal, whether there be a million inetancee of ite trath, or only one ${ }^{1}$; so that the form 'All d is B ' hardly does justice to it. An enumerative judgement contemplaten a number of instancen, and refers to all of them; and the form ' All A is B ' or ' All the A 'E are B ' expremes it adequately.

The particalar judgement may be interpreted as reforring either to individuals not enumerated or to an univeral not fully determined; and it will approximate more to the enumerative, or more to the

[^69]univeral, cocordingly. If I my Bome momon have raled kinghoms, I mean women whom I could eaumarate-Semirnmis, Cleopatra, Zenobia, Elizabeth, Christina, dec. : not women of such and auch a type, bot this and that woman. If I any Bome pigmonte fodo, I do not mean pigmente that I could enumernte, bat any pigmente of a certain kind; and suppoaing that I could apecify or determine the character of pigment, I could my that all pigmenta of that charscter fide. There is nothing in the outwand form of a particular judgement to show whether the epeaker is thinking rather of individuals whom he doee not name, or of conditions which he doee not apecify; though the content and contert of the judgement will ofter guide os on this point.

It will be readily seen that there is the eame cort of difference between the particalar judgement interpreted of individanls nots enumerated, and the partioular judgement interpreted of conditions not folly $\begin{aligned} & \text { apecified, as exista between the anumerative and the true uni- }\end{aligned}$ versal jodgement. If the women vaguely referred to as come were enumerated, I could my All the nomen on my list have ruled kingdome; if the pigmento vaguely referred to an some were charsctericed, I conld say $A l l$ such pigmente fade. The former is the enumerstive, the latter the universal All. And this difference, whether between the two interpretations of the particular jadgement, or between the enumerative and the univernal, may be axpremed by saying that in the one case the jodgement is interpreted in extension, in the other ases in intersion. A judgement is interpreted in axtension, when we are thinking primarily of the varions instances (individual or opecific ${ }^{1}$) incloded in the sabject to which the predicate refers; it

[^70]is interpreted in intension, whem we are thinting primarily of the subjeot as concept, of the character implied in the subject tarm, with which the predicate is connected. 'Some A is B ' is interpreted in extension, if I think of this that and the other A : in intension, if I think of A 'e of a certain character. 'All A is B ' is interpreted in extension, if I think of every one of the $A^{\prime} s$: in intension, if I think of the charactor of A ea sach.

What has been anid on the quantity of judgemente may be summed up as follows. Judgement predicates oither of individuale or univermale. In the former case, when it prediostee of one individual, the judgement is called singular: when of every one of a collection or enumeration, it may be called collective or enumerative. In the latter case, when the predicate is affirmed (or denied) of the subject withoat respect of instances, and therefore in any and every instance, the jodgement is called aniversel; when otherwise, it is called particalar. But an univeraal judgement is indicated by tho eame words (111 and None) as an enumerative, and is often confused with it. A particular judgement is really incomplete; it may be an incomplete enumerative, or an incomplete universal judgement, according se we think rather of the instances we imperfectly denote, or the conditions we imperfectly specify, in the subject. A judgement may be viewed primarily in intension, as aseerting a connerion of content, or in extension, as asserting a certain character in individuals. The former aspect predominates in the univeral, the latter in the enumerative, and even more in the singular judgement: in the particular, sometimee the former and sometimes the latter, sccording as we think more of the conditions imperfectly specified, or the instances imperfectly denoted. Some of these distinctions, though we are conscions of them in our thought, are not expresed in language; and for certain purposes of inference, it is enough to consider judgements simply as either univeral or particular : aniversal, when the whole of a kidd ${ }^{1}$, or
might think of the ohilling in my pocket, in youns, tc.); though when the grounde of distinction are no longer proper to the kind (as distinctione of firot and second, here and there do not belong to shillinge qua ehillinge), they are ignored in clemification.
'i.e. \& find or any 'oniveral'; bot I have avoided the word 'univeral' hore, and proferred kind (though otherwise a lees apposite term) in order to avoid confusion between the universal concept referred to in the jodgement, and the anivenal jodgement roferring to the whole of this univenal.
when an individaal is referred to (for in both cases the subject is completely indicated), particular when a kind ia referred to only in part (snd the eabject therefore incompletely indicated).

In respect of quality, judgements are distinguished as affirmative or megatice. An antrmative judgement assigns a predicate to a subject; a negative judgement pute it from it. But the distinction between affirming and denying is too familiar to need and too simple to admit of expressing in any other way, in order to indicate what is meant.

There are certain difficulties connected with negative judgements, which have already met us in dealing with negative terma. Judgement, as we have seen, refers to the existent; the content of our thought is declared to exprese the character of the real, ite manner of being ($\omega 0$ the judgement deolares) is ae we conceive. But the real is positive; it only exists by being nomething, not by being nothing. A negative judgement declaree what it is not, and how can this express it as it is ? Dead-nettles don'tating. How does that tell me anything real in dead-nettles? You may say that I formed an ides of a otinging deed-nettle, and in the negative judgement declare it false, an ides of nothing real ${ }^{1}$ But the jadgement is not about my ides; I may reflect on that, and asy that the ides I had formed of a dead-nettle was a wrong one; at present I am judging about the dead-nettle, not about any past idea of it And when I say that it does not ating, what am I mying about it ? in it, what is this property of not atinging? sarely, it may be urged, just nothing : so that the negative judgement expresses nothing real.

These misgivings are sometimes, though unfairly, met by ridicule. Still, in face of them, we must aesert, that everything finite is what it is, by not being something different: and at the same time, that it is not something different, in virtue of what it positively is. Hence we must accept the negative judgement as expressing the real limitation of thing*; but we must allow that it reste upon and presupposes the affirmative. If dead-nettles do not ating, there must be some characteristic which they do possess, incompatible with atinging. There is always a positive character as the ground of a negation. Snow is not hot, becanse it is cold;
${ }^{1}$ Moreover this would really mean that I now judged a previous judgonent to be false : sbout which the original question would at once arise.
this is not indeed an explanation of the tempersture of snow ; bat it means that a material body (which muct have some temperature) can only not have one degree of temperature through having another. If snow had no other degree of temperature, it would have 212° Fahr.; if it had none but 32° Fahr., it must bave that.

To say that negative judgements presuppose affirmative does not get rid of the difficulties to which we have referred. If enow is not bot because it is cold, then the cold is not hot. No one will deny that ; come people will think it a mere tatological proposition. Bat it is not tantological, though it is superfloons It is tantological to say that the cold is cold; to any that it is not hot becanse it is cold informs ue that hot and cold are mutually exclusive attributes. Cold is no more identical with not-hot, than odd with not-even; though the numbers which are odd are the anme numbers as are not even. The reciprocal exclusiveness of certain attributes and modes of being is the real truth underlying negation. But for that, everything would be everything else; that is as positive, se these several modes of being themselves.

Negation, as Plato asw ${ }^{1}$, is as necessary as affirmation, if there are to be any differences or discriminations within reality; that A is not B means that it is different from B, and not that it is non-existent.
[The further parsait of this subject would take us too far into metaphysica. It may be pointed out in passing that the notion of an infinite (or, as philosophers sometimes asy, an abeolute) being is of a being who is everything that there is to be; of whom it cannot be said that he has one attribute by lacking another; whereas finiteneses comes by limitation and exclusion: whence Spino7a's Delerminatio est negatio. Whether this is a tenable conception is another matter. In particular it raises the problem of the meaning, and reality, of evil. For if an infinite being is all things, and evil is something real, be ought inter alia to be evil. It has been conteaded therefore that evil is in reality just nothing, a view against which there are obvious objections on the surface: or at least that it is a mere appearance incident to limitation, but in itself no more than limitation.]

It has sometimes been propoeed to treat the negative judgement,

[^71]A is not B, as an affirmative jadgement, A in not- B^{1}, by combining the negative with the predicate. Bat inasmuch as the reciprocal exclosiveness of certain attributes and modes of being is a positive fact, it is no use trying to ignore it by a verbal manipulation. Nothing will make A is not- B an affirmative judgement, unless not- B is a positive concept; and if not- B is a positive concept (ayy C), it is only because B and C are reciprocally exclusive attributee; but if they are reciprocally exclusive attribatea, then C is not B and B is not C; nor can these negative judgementa be done away by repeating the same manipulation, and writing C is not- B, B is not- C. For if C means the very same a not- B, then not- C means the very same as not-not- B, and the proposition B is not- C means no more than B is not-not-B. That, however, is absurd; for C is a positive concept, and the coneciousnesg of the dietinction between it and B and of their reciprocal exclusiveness cannot be reduced to a consciousness that B cannot be denied to be itself. The argument thus expressed symbolically can be easily applied to a concrete case by any one who chooses to subetitute for B and C odd and even or dog and borse; though there is lees temptation to think not-andog a positive concept, than not-odd, as it leaves us to select in the dark among a large nomber of atill remaining alternatives.

Judgements are distinguished eccording to relation into eategorieal, hypothetical, and digjunctive. We have been conoidering hitherto categorical judgements. A ontegorioal judgement merely affirms or denies a predicate of a subject : doge bark, doad men tell no tales. An hypothotioal jadgement connecte a consequent with a condition which it doen not, however, imply to be necessarily fulbilled: if money is scarce, the rate of discoust rises. The condition is called sometimes the antecedent (in grammar, the protasis), ae what is connected with it is called the consequent (in grammar, the apodosis). A disionotive judgement affirms alternatives: rocke are either igneowe, aqueous, or melamorphic. The hypothetical judgement is sometimes called comjunctive, as conjoining the truth of the consequent with that of the antecedent: while the disjunctive disjoins the truth of one alternative

[^72]from that of the others. Both are cometimes called complex judgementa, in contrast with the categorical, which is called simple.

In an hypothetical judgement, the antecedent and consequent may have the same, or different, subjects: the scheme of the judgement may be either 'If A is B, it is C ' (If corm is searce, it is dear), or 'If A is B, C is D ' (If money is scarce, the rate of discownt rises). Again, either sinteoedent or consequent may be either negative or affirmative: but these differences make no difference to the oharacter of the judgement as hypothetical: it still affirms the dependence of a consequent on a condition: hence the distinction of effirmative and negative, though applying to the antecedent and consequent severally, does not apply to the hypothetical judgement as a whole.

Where the sabject of the antecedent and the consequent is the same, the hypothetical judgement may commonly be reduced to categorical form: ' If A is B, it is C ' may be written ' A that is B is C^{\prime}; If corm is searce, it is dear, becomes Searce cons is dear. Even when antecedent and consequent have different subjecte, a little manipulation will sometimes prodace an equivalent judgement categorical in form: If wishes were hores, beggare mould ride might be written Beggare whowe wishes were horses wowld ride. For the hypothetical jodgement asserts a predicate of the subject of the consequent, under a condition expreased in the antecedent; and if that condition can be expressed an an adjective of the subject of the consequent, then of that sabject, so qualified, we may assert the predicate in the consequent categorically. But we do not thus reduce hypothetical to categorical judgements: the hypothetical meaning remsins under the categorical dress. Searce corn is doar is not really a jodgement about scarce corn, bat about corn : we realize that corn is something which may be scarce, and is dear when scarce; and so the dependence in corn of a consequent on a condition is the barden of our judgement abont it.

The difference between the categorical and the hypothetical jodgements-between affirming or denying a predicate of a subject, and asserting the dependence of a consequent on a conditionbecomes clear in the case of unfulfilled conditions, in past or future time. If I had served my Gad as I have served my king, He nould not hare giten me over in my grey hairs: no donbt this implies the aategorical jadgement God does mot forsake those who seroe Him
failhfally; but it cannot be reduced to this, for it implies also Therefore He mould not have forsaken me, if 1 had served Him faithfully; and we cannot eliminate the bypothetical judgement.
 Halye, he will ruin a great power; bere it is not atated whether Croesus will crose the river or not; so that as the fulfilment of the condition upon which the aseertion in the consequent depends is left in doubt, there is nothing but the dependence categorically asserted.

It may be urged that at least the dependence is categorically asserted; and therefore the hypothetical judgement is categorical after all. This is a very good anserer to any one who attempta to sbolish the dirtinction between the two judgements by declaring that all judgements are in reality bypothetical; for it shows that the bypothetical does presume the categorical. Bat it does not invalidate the distinction of the hypothetical from the categorical; for that distinction reste upon the difference between aeserting a dependence of consequent apon condition, and asserting an attribute of a subject; if it is granted that the hypothetical asoerts the former, though it do so categorically, yet it differs from the categorical judgement.

It has been said ' that the very reason just given for maintaining the essential difference of these two types of judgement excludes the consideration of that difference from Logic. For both aseert; they differ in what they aseert; the difference is therefore in the matter and not the form of judgement. We have the same form, A is B, whetber for A we write Croerus, and for B a king of Lydia, or for A the destruction of a great pover, and for B mual follow on Croence croscing the Halys. But it will be readily admitted that the distinction between categorical and bypothetical assertion is formal in the sense that it meets us, whatever be the subject we may think about; and to exclude it from Logic on the ground that, as compared with the common form of assertion in both, it is material, only shows the impossibility of making Logio a pwrely formal science. It is claiming to consider the genus, and refusing to connider the species: a procedure which would be tolerated in no other science, and cannot be tolerated in Logic.

[^73]There is a metaphynical problem suggeated by the hypothetical judgement, whioh must be briefly noticed. If Hannibal had marched on Rome after Cannac, he would have takon it. This judgement makes an assertion; in doing 90 it declares something to hold good of the real, for it declares its own content to be true. But what does it declare true of the real, and what historical fact (as we may put it in such s case) does it affirm ? Not that Hennibal marched on Rome after Cannee, for he did not; nor that he took Rome, for he did not; nor that the one event was due to the other, for neither happened. If he had marched on Rome then, he woukd have taken it ; but that is not a fact in his history, or in the history of Rome; it is an unfulfilled contingency; and how can that be real? Every hypothetical judgement presents this problem; for it asserts that under certain conditions eomething would exist or have existed, but not that the conditions are realized, nor therefore that it does or will exist or has existed. Nor does ite truth require thin; in order that an hypothetical judgement should be true, neither condition nor consequent need be realized; and yet if an bypothetical judgement is true, it is true of reality, and reality, we may urge, is actual; what then does the hypothetical jadgement affirm to be sctual in the real ? A character, saye Mr. F. H. Bradley ${ }^{1}$, which is the grownd of the connexion hypothetically asserted in the judgement. Rome was in such a atate that it could not have resisted Hannibal after Cannse. This is true ; bat it etill leaves us with the question, how can there be the ground, in the real universe, of something which nevertheless does not happen? We speak freely of unrealized ponsibilities, as if they existed as well as realized actualities. We are not almay conscious of the metaphysical difficulties involved: how are we to think of what we so freely speak of ? When we reflect, in Logic, upon the hypothetical form of judgement, we become conscious of the problem."

The diajunctive judgement may be expressed echematically in the forms ' A is either B or C ' (Every man at forty is either a fool or

[^74]a physiciam), 'Either A is B or C is D ' (He oilher fears his fate too mell, Or hie desert is amall ${ }^{1}$, Who dares not pat it to the tonch, To gain or lowe it all), 'Either A or B is C ' (Either the Pope or the King of Italy ahould retire from Rome). As the hypothetical jadgement alwaye affirms an hypotheris, no this alwaye affirme a diejunction, whether the alternatives themselves be given affirmatively or negatively. So far as the nature of the diejunction goea, there is no difference between ' A is either B or C ', and ' A is either not B or not C ': between ' Either A is B, or C is D ', and 'Either A is not B, or C is not D ': between ' Either A or B is C ', and 'Either d or B is not C '. Bat it should be noted that 'Neither . . . nor' is no diajunction at all, bat a conjunction of negations. On St. Paul's voyage to Rome 'neither sun nor stars in many deys appeared'; there is no ohoice between alternatives here, but two statementothe sun did not appear, and the stars also did not.

There may be any number of alternatives in the disjunction; but that clearly does not alter the character of the judgement.

It is not always clear in a diajunctive judgement whether the alternatives offered are meant to be matually exalusive. If \boldsymbol{A} is either B or C, then it cannot be neither; but may it be both? The question concerna the right interpretation of a form of apeech, rather than the nature of disjunctive judgement. Sometimes from the nature of the caeo we may know that the alternativen exclude each other : as if we are told that Plato was born either in 429 or $\mathbf{4 2 7}$ в.c. Where this is not so, it is perhapes safer to assume that they are intended as mutually exclosive, unless the contrary is stated; a legal document is careful so to write it, where ' \boldsymbol{A} or B or both' is meant, or to write ' A andjor b ' with that aignification.

It has been suggested that the diajunctive judgement is in reality s combination of hypotheticals; that ' A is either B or C ' means ' If A is not B, it is C; if A is not C, it is B; if A is B, it is not C; if A is C, it is not B^{\prime}. Doubtless these four propositions are involved (supposing B and C to exclude each other); but we do not therefore get rid of the peculiar natare of the disjunctive

[^75]judgement. For they are not four indopendent hypothetical judgementa; and their force is not appreciated, unless it is seen that together they make up a disjunction, that they offer us a choice between alternative hypotheses. Thus disjunctive judgement at once includes and goes beyond hypothetical, in the same sort of way as hypothetical judgement includes and goes beyond categorical. An hypothetical judgement makes an assertion, like a categorical; bat what it asserts is a relation of a consequent to a condition. A disjunctive jadgement involves hypotheticals, but it presents them as alternatives and asserts the truth of one or other of them.

The disjunctive judgement aleo raises a metaphysical problem, when we ask what real fact corresponds to it. 'Plato was born either in 429 or 427 B.c.' cannot state the actual fact about Plato: he was born definitely in one year, not merely in one or other; it is because we do not know in which, that we state an alternative, and there was no alternative in the event. Here, therefore, the disjunctive judgement seems nither to exprese the state of our knowledge, than the state of the facts. On the other hand ' Number is either odd or even' seems to exprese a disjunction in the facte ${ }^{1}$; and the species of the same genus are a kind of real diagunction. If a colour is to exist, it must be blue, or red, or some other colour, and if it is one, it can be none of the others. We come back here upon the ame trath which met ua in considering negative judgements, that a thing ia definitaly this or that by not being something else; we have to recognize aloo that there is often a limited number of possibilities, in the way, for example, of colour, or of animal apecies, but why or how there should be a limit to what is possible in the universe is a hard question.'

We come next to the diatinctions of modality in the judgement. In respect of modality, judgements are distingaished as asertoric, problomatic, and apodecictic; the first is sometimes opposed as pure to the other two as modal; but we shall find that if judgements are divided into pure and model, the assertoric can be

[^76]conveniently retained as a form of modal judgernent. Judgements of the form ' X is Y ', ' X is not Y ' are asestorio-' the train is late', 'the train is not late'; of the form ' X may be Y ', ' X may not be Y ', problematio-' the train may be late', ' the train may not be late'; of the form ' X must be Y ', ' X cannot be Y ', apo-delotio-' the train must be late', 'the sun cannot be late'. The distinctions are also expressed by adverbs : \bar{X} actaally, possibly, necessarily is (or is not) \boldsymbol{Y}.

In the sense of the word to which we have so often called attention, these distinctions are clearly logical : i. e. they belong to no special science, bat recar in our thought aboat all thinds of subject. Whatever \bar{X} and Y may be ${ }^{1}$, we may find ourselves asearting that X is, that it may be, or that it must be $Y .^{3}$

It is clear that the modslity of the judgement whose subject and predicate are X and Y does not in any way affect or modify the predicate Y. When I aay that the train is actually, or possibly, or necessarily late, it is not the predicate late which is actual, possible, or necessary,-but the train being late; for there are not those three kinds of lateness. 'The blossoms of that chrysanthemum are possibly white': 'the blossoms of that chrysanthemum are actually white'; it is clear that 'actually' and 'possibly' do not qualify the predicate white, as the adverbe 'purely' or ' brilliantly' might do; there is no such colour as possible white, as there is a brilliant white or a pure white. 'Water rana down hill': 'water muat run down hill'; these are not different waye of running, like running fast and running slowly. Grammarians tell ns that adverbe qualify verbe and adjectivee; bat these adverbs, actually, posesibly, and necessarily, seem to form an exception to the rule. They qualify neither a verb nor an adjective, though these be predicates of the judgement, bat the judgement iteelf.

For the real meaning of theee expressione- ' X is actanlly Y^{\prime}, ' X is possibly, or may be Y ', ' X is necessarily, or must be Y '-

[^77]is rather this: 'that X is Y is actual ', 'that X is Y is posesible', 'that X is Y is necessary'. They involve reflection upon the judgement that X is Y, and express differences not in the nature of X or of the predicate belonging to it, bat in the nature of our grounds for affirming X to be \boldsymbol{Y}. We may speak of differencee of modality in judgemente, if wo like, as differences in the mode in which, for us, the judgement is grounded. Yet such an expression is open to misinterpretation. For when I say that \boldsymbol{X} may be \boldsymbol{Y}, I do not judge at all that X is Y, but that there are insufficient grounds for so judging. We must, however, scrutinize these forms of expression more closely; for the illustrations eo far chosen do not bring out their different meanings, having been chooen merely with the purpose of showing that modality qualifies neither the subject nor predicate of what appears to be the judgement in which it occurs.

Nothing is more fundemental in our thought than the constant search for necessity in our assertions : the desire to see that the matter of fact asserted could not be otherwise than we assert. In this search we are not content with what is commonly called experience. I may find in my experience that a man whom I had trusted does me a wrong, but I want to know further why he did it. So it is with any other event of which I have no explanation. My explanation in such a case would lie in connecting the event with another; we are perpetually tracing connexions between one fact and another, and cannot conceive anything to be completaly isolated from everything else. 'Nothing in this world is single; All things by a law divine In one another's being mingle'; this is the faith that anderlies all effort after knowledge. All judgement expresses the connexion of things, or of one attribate with another in thinga; about a thing isolated altogether from everything else, united with no other by any common characteristic, judgoment would be impossible. ${ }^{1}$ But we realize only gradually the interconnexions of fact. In many judgements intended by us to express the factes we apprehend them, we find upon reflection that the connexion of the subject and the predicate is not intelligible to us; we then reek some ground for the fact asserted; and if we cannot

[^78]find it by seeing more clearly into the fact, we look for it in another, i. e. in a wider aystem to which the first belonga. Often, however, when we make a judgement we do 90 without full relection upon what is asserted and upon the grounds for it; and such judgements, barely asserted, are called aseertoric; and the expreasion of them, ' X is Y^{\prime} ('crows are bleck', 'the train is not arrived'), is bare of any words that indicate reflection on the grounds for our asestion. It is true that such judgements, reporting what we perceive, are not made arbitravily; but the appeal to perception does not aatinfy us; for though we may be unable to doubt that a rose is red when we see it, and seeing it justifies our aseartion, yet it does not show why the rose is red, and the fact remains one for which we see no ground.

But the aseertoric form of judgement, X is Y, may express two different mental attitades. We may affirm or deny unhesitatingly, but without any thought in our minds of possible grounds for what is asserted. We may repeat our affirmation or denial as unhesitatingly as before, when the question whether there are sufficient grounds has occurred to us, even though we have not found any to sativfy us. Some men detect water with the diviningrod. That is very calraordinary; how do you account for it? I can't, but they detect it. Here the assertoric judgement is challenged, and repeated; in the interval, we have reflected on the grounds for our judgement, and found none: none, that is, that make the fact asserted intelligible, though we may still think we have grounds for making the asertion in our experience of events that we cannot account for except by connecting the detection of water with the use of the divining-rod. We therefore still use the assertoric form; yet the force of it is not quite the same, though the words in which we express ourselves are; and we must be careful to notice the difference, since in Logic it is not the form of words that matters, but the form of thought.

The difference lies in the absence or presence of the thought of the grounds of our jodgement. If there is no thought of them, we make the judgement without looking beyond it; if there is thought of them, we look beyond the judgement in making it, even when we look in vain. It might perbaps be best to call a judgement pure, rather than modal, when it is made without any thought of its grounds ; and to call it assertoric, and so assign to it
a species of modality, only when it is asserted with the thought of grounds that are not forthcoming. In this case, the introduction of the word actually would mark a judgement as assertoric; but the ordinary categorical form, X is (or is not) Y, might represent either a pure or an assertoric judgement. Very often the emphasis of the voice, or the use of italics, serves to distinguish the pure from the assertoric sense of such a form of judgement. If I say 'The stimulation of the retina by waves of ether is correlated with sengations of colour', I may barely intend to state a fact, without thought of looking beyond it for grounds; bat if I emphasize the 'is' or write it in italics, I should be understood to affirm it as an actual fact in spite of $m y$ insbility to give grounds for it; the general thought of grounds sccompanies the judgement, but in a different form from what occurs in the problematic or apodeictic judgement.

By the expression 'grounds for our judgement' in the last paragraph has been meant grounds for the matter of fact judged; and at the risk of repetition, it may be well again to distinguish between this, and grounds for judging. For the difficalties in the subject of modality centre in this distinction, and if our discassion cannot hope to solve the difficulties, it may at least be well to indicate where they lie. Even if I do not see how a man is made aware of the presence of water by the divining-rod, I may have resson for judging that he is, if I bave known water found by men who had no other means of detecting it. In scholastic phrase, I have here a ratio cognoscendi, but not a ratio cesendi: a reason for acknowledging the fact, but not a reason for the being of the fact. ${ }^{1}$ Of course the ratio essendi is the best of all rationes cognoseendi; of course also my ratio cognoscendi may tarn out inadequate on closer scrutiny. And if a judgement made without any thought of ite groands-what we have now called a pure and not a modal judgement-be reaseerted in assertoric form, it is seldom that it is purely assertorio. Either we find our reasons for eseerting it insufficient, and it has acquired the character of a problematic judgement; or we have begun to explain the fact, and then the judgement is on its way to become apodeictic. 'Thero were species

[^79]once intermediate between the ape and man. How do you know that, since no specimen has been found? Much may have existed, of which no trace has aurvived.' This reply givee a tinge of the problematic to the original judgement. Suppoee a different reply: - The atructure of man bears the same relation to that of the ape as previle between species in other cases where specimens of intermedinte forms, now extinct, have been preserved.' This is something of a ground in the mature of the facts for accepting the original judgrment; there must therefore, we might eay, have once been forms intermediate between man and ape. Our 'must' in such a case expreses a different kind of necessity from what it expreses in a really apodeictic judgement; but atill, it does express a lind of necesaity. It is rare that a judgement is reaffirmed after challenge with unshaken confidence, and yet with no thought of any ratio esendi. 'I feel ill' is such a judgement. If a man challenges my aseertion, I cannot justify it, but only reaffirm it. But the barely saeertorio attitude, when once the mind has been awakened to the thought of the grounds of its judgement, is rare. Our pure judgements, when we have got so far as to ask their grounda, generally present themselves as either problematio or apodeictio. This might be considered to justify us in calling a pure judgement, i. e. one made without reference to its grounds in our thought, assertoric: instead of reserving that name for the case in which a judgement is made in the consciousness that judgementa need grounds, and yet is neither problematic nor apodeictic. Nevertheleas the distinction between the two cases ought to be observed; and is in fict expressed by the addition to the pure judgement ' X is Y ' of the adverb that marks the assertoric form of modality, in the expression ' X actually is Y '.

If we turn to the apodeictic and problematio judgements, the character of the aseertoric will become clearer by the contrat. The apodeictio may be considered first. When we may ' X must, or cannot, be Y^{\prime} (' X necesearily is, or is not, Y^{\prime}), we imply that there are grounds known to us for X being, or not being, Y. As a rule, theme Rrounds are conceived to lie outride the content of the judgement $X Y^{1}$: i. e. we do not apon reflection see immediately that X must or
' We may pymbolize thus the jadgemente whose aubject and predicato are X and Y, and which are thas 'matarially' the mane, but whoee 'formail' character-modality, quality, quantity-may differ.
cannot be Y, upon a mere consideration of the nature of X as such; we see it to be a consequence of other truths, which in their turn may be aserted either apodecictically or aseertorically. The water must rise in the common pump, when the piaton is raieed: why mact? because of the pressure of the atmosphere. It is the conecioneness of that ground for its rising which leade us to affirm the water's rising apodeictically, wheress the mere obeervation of fact would only lead us to affirm it assertorically. Butare we sure, it may be asked, that the atmosphere must have weight? for if not, we can only say that the water must rise if and when the atmosphere has weight. We cannot here diecuss the sufficiency of the grounds on which we regard the general propositions of acience as demonstrated; but it is clear that if the grounds of an apodeictic judgement are themselves affirmed only assertorically, there is a doubt thrown on the apodeictic judgement. It is neceesary, if the judgements on which it is grounded are necessery. ${ }^{1}$ 'Animale must sleep, because they cannot be continuously active.' But how do we know that they cannot be continnously active? And supposing a reason were given, we might ask how it is known to be necessarily true, and so ad infinilum. An apodeictic judgement would thus be merely a judgement made with reference to grounds from which it followed, and which we accepted as true; but since these grounds might not be trae, there would be no judgement abeolutely necessary, because none safely grounded.

The remedy for this state of affsirs would lie in the existence of judgements which we saw to be necessary (i. e. saw must be true) without going beyond them: the ground for the judgement ' X must be Y^{\prime} lying in the content of that judgement.' We have

[^80]already been made familiar, in discussing the heeds of predicables, with the notion of judgemente in which the subject and predicate are conceptually connected : some such judgements are immediatoly necemary. That a line must be either atraight or curved is a judgement of this kind. A man may essert as fact that lines are either atraight or carved, being led to that assertion by the memory of past experience: but if he paase to reflect on the ground for the aseertion, he may realize that not only have the lines he has seen or imagined been all of them either straight or curved, but they muat be so.
An apodeictic judgement then is one whose trath is not merely : affirmed (for every judgement affirms ite own trath) but seen to be grounded, either in itself, or in other judgements accepted as true. It is to be noted that many judgemente which are really or in thought apodeictic are commonly expressed in assertoric form. In mathematics, for erample, every step is by the mathematician seen to be necesary; almost all mathematical jadgements are apodeictio ${ }^{1}$; insomuch that it is often summarily said that mathematica deal with 'necessary matter'. There is consequently no need to distingrish apodeictic from other judgementa in mathematics, and they are all, as a rule, expressed assertorically : we say ' 2×2 is 4 ', not ' 2×2 must be 4': 'the interior angles of a triangle are'not ' mast be'-' equal to two right angles'. On the other hand, many judgements expressed in spodeictic form are differently thought. Not only does the form ' X muat be Y^{\prime} ' leave it uncertain whether the jadgement is asserted as immedistely necessary, or as grounded in knowledge outside itself-a matter of which we cannot be unsware in our thought when we judge; but also the outside grounds of the judgement may be grounds that merely require the fact asserted or explain it : may be rationes cognoscendi or rationes essendi. At times we even use the apodeictic form of propo-

[^81]sition to hide our doubts : we are conscious of grounds for a judgement, and grounds against it, and we look to those only which enforce the side we wish to take, and in reference to them make our assertion apodeictic. 'It must be so: Plato, thou reasonest well', does not express the same confidence as if the speaker had asid ' It is so'. All these diveraities of thought lie concealed under the apodeictic formula, X must be Y; but it is alwaya implied by that formula that our attention is directed to the grounds for the aseertion $\boldsymbol{X} \boldsymbol{Y}$.

The problematic jodgement, on the other hand, implies that the truth of the jadgement depends on grounds whoee existence cannot be amserted. ' X may be Y ' means that we have not sufficient grounds for asserting positively that $X Y$ is trae. Thus it involves the same attitude of reflection as the apodeictic judgement, or as the assertoric (if we distingaish the assertoric from the pure); but as a result of reflection, the relation of the content of our judgement to what we know is seen to be different, and precarious.

In order to understand the meaning of the problematic judgement, we must distinguish between those which are general (i.e. which have a general term for subject) and those which are singular. For where the subject is a general term, the problematic form may or may not express a judgement that is problematic in ita logical character. A problematio judgement, an is obvious, exprewee uncertainty; but uncertainty has been regarded as a state either of facts, or of our mind in regard to facta. As a state of our mind, uncertainty arises through ignorance; and it is this uncertainty which renders a judgement problematic, in the logical sense in which that is one of the modalities of judgement. As a state of factes uncertainty might mean either of two things; but only one of theae can be meant when the judgement is singular; and the judgement is not in both cases logically problematic. Yet the formala ' X may be \boldsymbol{Y} ' is used in all theve cases.

The judgement 'Rain may fall to-morrow' is a singular judgement : being concerned not with a particular thing or person, but still with a particular day. This judgement is problematic in the logical sense; for it does not imply. that the fact, whether rain is to fall to-morrow or not, is uncertain, but only that we are ignorant of the present condition of some at least of those factors (wind and clonds, heat and moisture, lie of land, and currents of air) on
which to-morrow's event depends. The fact is really certain, bat we are uncertain; the rain falling or not falling to-morrow is now necesesary, but to us problematic. With sufficient knowledge we could say 'Rain must (or cannot) fall to-morrow'. Bat sufficient knowledge is beyond our reach.

Again, 'The Sultan may beheed his vizier to-morrow.' This is still problematic, for it implies that we have not sufficient grounds either for affirming or for denying that he will do so. But in the opinion of many, there is here a further uncertainty in the fact itself. For the ione depends in part upon the Sultan's will; and many hold that the future actions of the human will do not lie contained as it were necessarily in the present; and therefore that no amount of knowledge would enable us to calculate and predict with certainty the ects of men, or evente depending in part upon the acta of men, as it would enable us to calculate and predict events dependent purely upon physical canses. Aocording to this view there is a 'real contingency' in human action. ${ }^{1}$ Such real contingency would of course carry with it, that our judgements about future contingents mast be problematio in the logical sense; we cannot know for certain what in itealf is undetermined. But the problematic nature of our judgement in such a case doen not spring from our ignorance, since no increase of knowledge could remove it; it springs from the natore of the facta; and the difference in the nature of the facts between their real contingency in the one case, and their necemary interconnaxion in the other, is not - difference of logical modality. Indeed, if we regard the human will asa principle of new beginnings, or sonrce of eventa whose determining conditions cannot be found in events preceding them, we might even asy that a particular future human action is neceesarily contingent. It is to be observed, however, that this uncertainty in the event itself can only belong, if at all, to fucure events. If I sany 'The Sultan may have beheaded his vizier yenterday', I imply no more ancertainty in the fecte than if I say 'Rain may heve fallen yesterday'; the same is true of the judgement 'The Sultan may now be beheading his vizier', just as much as of 'Rain may now be falling'. All thee alike are problematio only in virtae of my

[^82]uncertainty about the facts, and not of any uncertainty in the facts themealves.

The upehot of this is, that in singular jodgements the problematic form ' X may be Y ' expresees always our wat of ground for making an assertion, but not necesearily any want of certainty in the facts themselves. All evento-the acts of man ${ }^{1}$ alone perhape excepted-happen necessarily when they happen, the conditions on which they depend being what they are; but these conditions being largely unknown to us, we have not sufficient ground for aeserting the events; hance our assertions assume a problematic form, ' X may' be Y ': meaning, that while we know nothing inconsistent with the aseertion that X is Y, we do not know enough to justify us in saying that it must be so; though if it is an, it is so necessarily. Only in haman action and what depends on buman action some would admit a real contingency; and would understend the formule ' X may be Y ' to include in such case an assertion of uncertainty in the events themselves.

Let us now take a problematic judgement which is not singular. 'Cancer may be incurable.' Here we mean that though cancer either is incurable or not, we have not cufficient grounde for a decision. The judgement is besed on ignorance, and is logically problematic. But the aame formula sometimes has a eomewhat different meaning. 'Currants may be either black, white, or red': 'a man may die of joy'. We do not mean here that we are uncertain whether corrants are black, white, or red, though lowowing they must be one or other; for on the contrary we know that they areall three, in different ceses. Nor do wo mean that we are uncertain whether or not joy can kill a man, but that sometimes it does so. If you tell me that you have a currant bush in your garden, I can say it may be bleck, white, or red; as to that particular bush I am uncertain. Bat I make this digjunctive judgement aboat it because of my knowledge that there are those three colours in currante.

Such a judgement therefore is not problematic in the logical sanse; for as refarred to the species, or general term, which is the subject of it, it implies not my uncertainty, but my knowledge of the alternatives. Here the facts may be called uncertain, in the sense of being multiform or variable, but not in the sense (in which a particular fact, if really contingent, is uncertain) of not
${ }^{1} \mathrm{Or}$ of any other being that has freedom in the came eence.

omi] VARIOUS FORMS OF THE JUDGEMENT

being the necessary outcome of preexistent conditions. This variability arises either through the diversity of apecies necesaarily included in a genas (as when we say that a conic section may be either an ellipee, a parabola, or an byperbola) or through the multitude and complexity of the elements in the world that go in constantly shifting combinations to the production of what we regard as single things or eventa. Any two elements (the word here must not be confined to its technical chemical sense), taken arbitrarily in isolation from everything else, would as we believe interact with each other always in the same way. Science endeavours to determine the interactions that would occur between such isolated or 'abetract' elements, and so to enunciste its propositions universally. But in fact we cannot readily secure such isolation. History, or the course of events, depende on all sorts of elements as it were jostling in concreto, and so presenta perpetaslly varying combinations or conjunctares. This gives rise, as we previously sam, to the accidental or 'coincidental': which is also sometimes called the contingent ${ }^{1}$; and in the sense that the eame conditions, in the kaleidoscopic movement of events, are combined now with these and now with those others, there is uncertainty in facts. We might know enough to esy what precise conjunction of physiological and other factors is necessary in order that a man should die of joy; but the occurrence of this conjunction depends on historical conditions that are sometimes fulfilled and sometimes not. Hence we make a judgement which is problematio in form, 'a man may die of joy': meaning that if certain factors combine with his joy, a man will die. We have no right to connect a predicate Y universally with a given subject X, if its presence in \boldsymbol{X} depende on the coincidence of other factors; and so long as in our judgement we do not specify all the conditions neceesary in order that X should exhibit the predicate Y, our judgement will assume the form ' X may be Y '. These conditione may or may not be known to us. 'Water may boil below 212° Fahrenheit': this depends on its being sufficiently heated, and at an atmospherio preseure sufficiently low : both of them conditions not necessarily connected with the occurrence of water below

[^83]212° Fahr. But the conditions here are known; and we give our judgement the problematio form, not on account of our ancertainty of the grounds on which the content of the assertion depends for its truth, but because we know that those grounds are not always present. Here then the problematic form is due to an omisaion of the conditioning details. The particular judgament is sometimes particular for the same reason, because we omit some of the conditions, given which the predicate might be affirmed of the subject universally. In other cases of course the particular judgement is all we are able to enunciate, and we do not know under what conditions the predicate could be affirmed universally of the subject. 'Some trianglea have the square on one side equal to the squares on the other two'-viz. when that side subtends a right angle; 'some children are taller than either parent', bat bere we cannot give the condition on which it depende. The same difference is observable in the case of theee quasi-problematio jodgements; as may be seen if the foregoing particulars be put into the form ' X may be Y '. 'A man may amile and amile and be a villain' means much the same as if it were said that some men amile and umile, and yet are villains; but we do not know more than the fact which showe this conjunction to be possible; we cannot state the condition on which the conjunotion of a amile with villainy dependa.

In dealing with the quantity of judgemente we eaw that in the particular judgement 'Some X is Y ' we may either be thinking of individuals of the kind X, not eeparately enomerated, or of aome general determination of the kind X, not epecified, which would involve ite being Y; that in the former case, it is rather of the natare of the singular judgement: in the latter, it is on its way to become universal. Particular judgements of the latter kind have been called 'modal particalars', because of their close similarity to the quasi-problematic judgements which we are now considering. They can indeed be expressed in the form ' X may be Y ' as eesily ${ }^{2 s}$ in the form 'Some X is Y '. There is only this difference between the two expressions; eech implie that under certain conditions, not specified, though possibly known, X would be Y; but the latter implies that these conditions are eometimes actually fulfilled, the former does not necessarily do ao ${ }^{1}$.

[^84]Where a jodgement problematic in form atates the alternatives within a genus, as if I asy that a line may be straight or corved, the architecture of a church classical or Norman or Gothic, it is really, as referred to the genus, a neceseary judgement if we see that the alternatives are neccesary, but assertorio if we merely accept them as actanl. As referred to any particular subject, like the boundary between the United States and Canade, or the parish church of Clayfield Porcornm, it is problematic; because it implies that I have ground for offering these alternatives, bat not for going further and deciding asetween them. Where, though the judgement is not disjunctive, yet \boldsymbol{X} is general, and the anspecified conditions under which \boldsymbol{X} is \boldsymbol{Y} are known, the meaning of the form ' X may be Y ' has really nothing problematic about it-i. e. it corresponds to no uncertainty in oar thought with regard to the content of the judgement. Where the conditions are unknown as well as unspecified, it has the logical charactar of the problematic judgement no far as it implies that we are uncertain under what conditions X is Y, bat is asertoric so far as it implies that we know that there are rach conditions, because X is eometimen Y. The aingular jadgement 'This X may be Y ' ('This water may be unwholeomen') is problematic in the logical sanse, becsuse it means that we are uncertain whether the conditions under which X is Y are fulfilled in the case before us.

A problematic judgement therefore does not imply by ite form that any partioular event is in itaelf uncertain ${ }^{1}$; though come hold that there is a real uncertainty about eventa involving human will. The matter of feot asearted in a problematic judgement whoee subject is a general term may be uncertain, in the sense that the given anbject doee not carry with it the predicate, but will only exhibit it ander conditions that are not constantly and necesearily combined with it. But a jodgement is not logically problematic unless it expresees our ancertainty with regard to the connexion of a predicate with a given subject. All aingular judgemente of the form ' X may be Y ' are therefore logically problematio; but general judgemente of that form are not really problematic, when the form only serves to cover the omiseion of the lnown conditions

[^85]under whiah X is Y universally, or to specify one of the alternative forms under which X is known to oceur.
[The distinction between singular and general problematic judgements finds a parallel also in the case of spodeictic judgements; bat as confusion is not so likely to arise there from want of noting it, the discussion of apodeictio jadgement was not burdened by it. Any one remembering what was said in c. iv on the difference between conceptual and historical necessity will see that a singular apodeictic judgement is one in which an historical event is recognized to be necessary on the ground of previous historical events accepted as actual; these last may in turn be shown to have been necessary, on the ground of other events before them: bat auch a process of demonstration recedes into the past ad infinitum, and so we never get more than hypothetical necessity. A genersl apodeictic judgement, on the other hand, is a really universal judgement-a judgement asserting a connerion of content or of universals, irrespective of occnaion or time.]

We may ram up what has been said of the modality of judgement as follows. In every jadgement I intend to easert truth, but not necessarily about the particular reality that my judgoment refers to; the truth I assert may be that I am unable to discover the trath about this reality. I may judge without looking for the grounds of what I assert; and in such case my judgement is called assertoric, and expressed in the form ' X is (or is not) Y '; it can, however, also be called pure, as being pure or free of any reference to the grounds for what is asserted. On the other hand, I may reflect on the relation which the content of a suggested judgement bears to what I already know, or take, to be true; and if I find it involved in such truths, my judgement is called apodeictic, and expressed in the form ' X must (or cannot) be Y '. Judgemente whose trath is seen to be grounded in the nature of their own content are also affirmed apodeictically. Those apodeictic judgemente which are grounded in facts not forming part of what they affirm themselves have a different logical character according as these facts can be affirmed apodeictically or only assertorically; if the letter, the judgement resting on them is not strictly apodeictic, for only the sequence can be afflrmed apodeictically. If I find the content of a suggested judgement involved in conditions about which I am ignorant or uncertain, I assert it to be possible; such a judgament is called problematic, and expressed
in the form ' X may (or may not) be Y '. The problematio judgement does not imply that particular events are unnecessary in their happening, though, when general, it does imply that an event of a certain kind depends on a conjuncture, or contingency, which is not univeraally necessary. It is possible that when reflecting on the grounds for what we aseert, we cannot find any except that we perceive or remember it, though this may be reaeon enough to convince us of the truth of our assertion; then the content of the judgement is affirmed to be actual, and the judgement called asestoric, and expressed in the form ' X is (or is not) Y ', with an emphasis perhaps on 'is', or the addition of the word 'actually'. This aseortoric judgement, being not a bare unreflective assertion, but expressing besides our mental attitude towarde the content of a judgement, is different from the assertoric judgement, above called aleo pare, that containe no refleotion apon the grounde for what is asserted or for its assertion; and as involving such reflection, this is modal.

These distinctions of modality do not then express differences in the necesaity with which elemente connected in reality are connected ${ }^{1}$; yet they do express this, that whereas some connexions in reality are seen to be necessary, others, and the existence of such elements, and their distribution in time and place, are not. Many philowophers have felt it impossible not to believe that the existence of all things, and their distribution, and every feature of their interaction are as necessary as those matters which form the content of our really apodeictic judgements; and if their belief could pass into clear vision, judgements at present problematic or assertoric would be repleced by apodeictic.
[There are a few other adverbs (besides possibly, actually, and necessarily) which may be introduced into a judgement in order to express reference to the grounds for asserting it and an estimate of the truth of ite contents: e.g. probably, truly, falsely, really: although all but the first of these may also be used merely to qualify some term in the judgement; a traly virtuous woman, for exampla, meaning a woman virtnous in a particular way, or a falsely delivered message, one not delivered as it was received,

[^86][whereas a probably dangerous undertaling does not mean an undertaking involving a particular kind of danger. Such adverba (if used to express our attitude as to the truth of the content of the judgement in which they occur) may be called modal, and judgements modal, in which they are used. But no adverbe of any other lind make a jadgement modal, and no qualification of the content, but only of the unreffecting directnese with which, in a 'pure' judgement, the content is affirmed. Differences of tense, for example, must not be reckoned to affect the modality of a judgement ${ }^{1}$; they morely affect the predicate, and not our attitude towards affirming the predicate of the sabject; and paet, present, and futare verbe may all occur (as we have seen) in judgements of any modality. No doabt differences of tense are a somewhat peculiar affection of the predicate. If I my Jeks drives furiously, I predicate a different action from what I predicate if I say that he drives slowly; but the action predicated is the same, whether I say that Jehu has driven, is driving, or will drive, and only the time of the action differs. This, however, merely
${ }^{1}$ As by J. S. Mill, Logic, I. iv. 2, who rightly rejects the view of those who would make every adverb the ground of a modal difference in the proponition where it occure. The dietinctions of modality deecend from Aristotle, do Interp. xii 1 and Anal. Pri. a. ii. 1, but the word rporros ($=$ modre) is said to ocear finat in the Commontary of Ammonius; a Ammonius in Ar. de Interp. 172", (quoted in part Prantl, vol. i. p. 654)= Berlin

 ing how the predicate belongs to the mbject, e.g. "quickly", when we may that "The moon waxes quickly", or "well" in "Socrates argues well", or "much" in "Plato loven Dion much", or "almag" in "The run alwaye moves". The number of them is not infinite in the nature of thinge, but is beyond our compatation, like the number of univermals that can be aubjecta or predicates, thoogh they cannot be numbered. Aristotle, however, bringe into his consideration of modal propositions four modes only, the neceseary, the possible, the contingent, snd further the imposible. . . ' This state ment sbout Aristotle is bewed on de Interp. xii, and the modalities were often enumerated as these forr, sometimes with the addition of the true and the false. The anme wide definition of rporor is given by Michael Psellus (v. Prantl, ii. 269), bat he aingles out for discussion only those which 'determine the connexion' of subject and predicate, i.e. the modalitiee proper. Cf. Buridanus (Prantl, iv. 22), who explains that the qualification which is to make the proposition modal munt attach to the copula, and not to the cabject or predicate. The word modus is of course a term of wide signification, bat Logic is concerned with certain modi propositionis; and it is obviously wrong to appose that any adverb will make the proposition in which it occurs modal; nor can differencea of tense do mo, though they exprem a modification of the prodicata.
[amounts to saying that judgements differing in tense differ thareby in the category of time, and not in another category. Time is - very peculiar feature in the existence of thinge, but still it is a festare in their existence, and gives rise to a grest variety of modifications in their predicates. There is no more reason for reckoning as modal these differences in time, than there is for 00 reckoning the differences in degree, or in place, to which the existence of a predicste is susceptible in a subject. The plague raged lath year: it is raging now: it is raging here: it is raging in Calcutia. If the plague can exist in different times, so also can it exint in different places; and if judgements do not differ in modality by connecting its existence with different pleces, neither do they differ in modelity by connecting its exintence with different times.]

There are a few other distinctions drawn among judgements, which ought to be noticed. We may deal first with a series of antitheses whose force is sometimes too readily considered to be the same: these are analytio and aynthetic, cosential and accidental, verbal and real.
'In all judgementa,' says Kant ', 'whersin the relation of a subject to the predicate is cogitated (I mention affirmative judgements only here; the application to negative will be very easy), this relation is possible in two different ways. Either the predicate B belongs to the subject A, as somewhat which is contained (though covertly) in the conception A; or the predicate B lies completely out of the conception A, although it stands in connexion with it. In the first instance, I term the judgement analytical, in the second, synthetical. Analytical judgemente (affirmative) are therefore those in which the connexion of the predicate with the subject is cogitated through identity ${ }^{2}$; thoee in which this connexion is cogitated without identity, are called synthetical judgements. The former may be called explicative ${ }^{5}$, the latter augmentative judgements; because the former add in the predicate nothing to the conception of the subject, but only analyse it into its constituent conceptions, which were thought already in the aubject,

[^87]although in a confused manner; the latter add to our conception of the subject a predicate which was not contained in it, and which no analysis could ever have discovered therein.' Kant's example of an analytic judgement is 'all bodies are extended': for our conoeption of body is extended substance, and therefore, in order to make the judgement, we need only analyee the conception. 'All bodies are hesvy', on the other hand, is a synthetic judgement; for it is not contained in the conception of bodies, that they gravitate towards one another.

Kant's statement of the distinction between analytic and synthetic judgements has been much discussed and critioized. In particular, it has been pointed out, and it is important to resognize, that no judgement is purely analytic; every judgement is a synthesis of distinguishable elements. Let the predicate B of an analytic judgement be contained in the conception of the subject 4 -exiended for example in the conception of body. Suppose the constituent elementa of the conception A to be $B C D$, as those of body are substance and extension. Yet the judgement ' \boldsymbol{A} is \boldsymbol{B} ' (all bodies are extonded) is not equivalent to the judgement ' $B C D$ is B^{\prime} (all exteuded substances ars extended). The latter does merely repeat in the predicate what is contained in the subject-conception; and inasmuch as the subject-conception has already been exbibited as a synthesis of elements, among which the predicate is one, the judgement only goes over old ground. But the former judgement performs a process of anslysia, and does not pick out one element from an analysis already made. Now this difference is important; because in performing an analysis of the subject-conception, we realize at the same time that the predicate muat be conjoined with the other constituent elements in the subjeot, in order to make the subject-conception. ' A is B ' means ' to the constitution of A, B must go with $C D$ ': all bodies are extended means 'to the constitation of body, extension must go with substantiality '. Kant indeed tells us that until the analytic judgement is made, the predicate B is only covertly contained in the conception A : so that it is really the work of the judgement to recognize B (as an element along with other elements) in the conception 4 . On the other hand, the synthetic jodgement is from one point of view analytic. 'Cats purr'; it is true that I learn this only by experience, and that purring is not otherwise necessary to constitute the

viI] VARIOUS FORMS OF THE JUDGEMENT

conception of a cat: but to me, who have learnt long ago that cate do purr, purring has become part of my conception of a cat, and when I make this judgement, I am picking out one element in my conception, in order to assert its connexion with the others. Except therefore to some one who knows what cats are, but not what noise they make, and knows what purring is extraneously; the judgement that cats purr is not purely eynthetic. And even to him, in the act of making it, it becomes also analytic; for no sooner hes he united the predicate 'porr' with his conception of a cat, than it becomes an element selected from among the other elements of his more enlarged conception.

Every judgement then is at once analytic and synthetic; for the act of judgement at once holds different elements apart and recognizes them as elements in a single whole. As held apart, it requires an act of synthesis to see that they make one whole: as recognized to make one whole, it requires an act of analysia to find and hold them spart.
.In distingaishing analytio and synthetic judgements, then, Kant has not distingrished judgements in which there is only an act of analysis from those in which there is only an act of synthesis. What he has really done is to distinguish those in which the pres dicate is part of the definition of the subject from those in which it is not. For he really had in his mind only judgements whose subject is general, or at any rate if his diatinction can be applied to singular judgements, it is only so far as a particular thing is derignated in the subject by a general term, or concept under which it is brought. 'This body is extended' would be anslytic, and 'This body is hesvy' synthetic, because the predicates are respectively explicative and augmentative of the concept body. Yet if we look to the particular experience which is the ground of the judgement 'This body is heavy', we shall have to acknowledge that it analynee what is given es a concrete whole; so that although the judgement is synthetic so far as concerns the relation of the predicate to the sabjeot-concept, it is anslytic as concerns its relation to the object of percoption, the body in question. Such judgements have in fact been called in consequence 'analytio judgements of sense', though they are emphatically synthetic in the Kantian aense, as being grounded on the conjunction of manifold elementa empirically in an object, and not on a relation between
subject and predicate which is necessary for thought, because 'cogitated through identity' and so incapable of being denied without ealf-contradiction.

Now Kant, in drawing the distinction, wha intarested precisely in the question of the necessity belonging to certain judgemente, in virtue of which our thought recogaizes them as true without appeal to confirmation from repented experience. His 'analytic' judgements have this necessity because they are analytic; the problem, he says, is to see how any 'synthetic' judgements can have it. So far as these merely state the conjunction in things of attributes which are distingaished and found together in them, they lack the character of neceseity, whether we call them eynthetio or analytic ${ }^{1}$; but he held, and rightly, that there are some judgemente in which we do apprebend the necessity of the predication, without the connexion being 'oogitated through identity'. Sach are the judgements ' $5+7=12$ ', or 'Two etraight lines cannot enclose - spece .

A question next arisen regarding thoee judgementa in which the predicate is already covertly contained in the subject-concept, and which are therefore incapable of being denied without contradiction, and so conceptanally neoeasary; has this come to pasa merely by the fret that we have choeen to include certain elements in the sabject-concept, which we thereupon cannot consistently deny of it? We aaw, in diconssing Definition, that we have sometimee to determine arbitrarily what elementa are to be inoluded in our definition of a concept ; and if this were alwaye the case with definitions, it woald appear that Kant's anslytio judgements are necesearily true merely because of the meaning which we have given to the subject of them. On the other hand, if the elements in the definition are not arbitrarily selected, bat are seen to hang together necessarily in the constitation of the thing defined, then the analytic judgement which predicates of a concept a part of its definition is justified by the same insight into the necessary connexion of distinguishable characters as justifies a synthetic judgement which is not empirical. Let us take an example of a subject in whose definition the elements are arbitrarily ${ }^{2}$ put together. In

[^88]the Elementary Education Act of 1870, \& 8, an elementary school is by definition 'a school, or department of a school, at which elementary education is the principal part of the education there given, and does not inalude any school or department of a school at which the ordinary paymente in respect of the inatruction, from each scholar, exceed ninepence a week'. To say tharefore that an elementary school charged lees than $10 d$. per bead per week in fees was to make an analytic judgement, from the standpoint of the Education Department in 1870; bat ouly becanse it had been arbitnarily settled that none charging 10d. or over should rank as an elementary school, and not because we have such a knowledge of what an elementary school must be as to see that it could not be elementary, and charge a fee so high. Whereas if I say that a figure has sides, that is trae not becanse it is agreed to call nothing a figure which has not, but because I see that lines can be pat together into the unity of, and are required in, a figare.

It follows that come jodgements ranked by Kant as analytio may involve just the same insight into the necessary connexion of elements in an unity as is found in the clese of aynthetic judgements which most interested him-viz. those that are grounded not upon repeated experience but upon the apprehension of necessity; while others are true only in virtue of the meaning we have chosen to give to words; neither is any judgement parely analytic or parely synthetic. His distinction therefore is not well expreseed by these terms. If, however, we take the terms acplicative and augmenlative (or ampliative), we may say that all his 'enalytio' jodgements are explicative of what is already involved in thinking the eabject, bat we may queation whether all his 'synthetio' judgements are ampliative, unleas singular judgements, which analyse a present axperience, are excluded; nor does the term 'explicative' apply any otherwies to those jadgementa where the elements in the subjeot are arbitrarily pat together than to thoee where they constitate a real anity for our thought. Now the former are, as we have seen, true by convention as to the meaning of worde, and no they may be called verbal; and to verbal jadgemente we may oppose as real all whose truth doee not rest upon the meaning given to words, but which state something about the nature of things: whether what they state is seen to be necessary -in which case they may be either analytio or aynthetio in the

Kantian sense-or reats apon mere experience of fact-in which case Kant would call them synthetic. This does not commit as to the view that all definition is verbal, bat only that if a so-called definition does no more than arbitrarily to inclade certain elements in a concept, like the definition of 'elementary school' quoted above, then it is verbal. On the other hand, if we wish to mark the distinction between judgements in which the predicate is part of the definition of the subject, and those in which it is not, we may call the former easontial and the latter aooldental. The term 'essential' may be extended to cover those casees where the definition is arbitrary ${ }^{1}$, and some eseential jadgementa will then rest merely on the law that forbids self-contradiction; while others will involve the eame apprehension of the neoeseary conneaxion of elements in an unity as Kant's necesary ' synthetic' judgements ; some, that is, will be verbal and others real. The term 'sccidental', if 'eccident' be taken, as by Aristotle in the phrsee кaf' aird $\sigma_{0} \mu \beta e \beta \eta \kappa \delta s$, to inclade what is demonstrable of a kind, will cover all Kant's 'synthetic' judgements, whether they are grounded on an experience which, 00 far 20 we can see, might have been otherwise, or on insight into a neceseary relation of concopts ${ }^{2}$. It will be seen that the three antitheses, of analytic and synthetic, essential and accidental, verbal and real, cannot really be regarded as equivalent; for neither are they made on the same fundamentwow divivionir, nor do they respectively bring together and keep apart the same individual judgemente.

Two comparatively animportant clasees of judgements may be mentioned before closing this chapter-exceptive and exoluaive jodgements. An exceptive judgement is one which excepta from its application a certain part of the extension of the subject ${ }^{3}$: as in Clough's satirical version of the second commendment-'No graven images may be Worshipped, except the currency.' An exclusive

[^89]judgement is one which confines the application of the predicate to the subject of which it predicates it: as in Elijah's exclamation, ' I, even I only, am left.' It is clear that within a given whole, it makes no difference whether a predicate is affirmed of one part only, or denied of all but that: Only the brave deserve the fair would mean the same as the poet's actual line None but the brave deserve the fair. The mcholastic logicians treated these and some other forms of judgement under the head of Exponiblis, i. e. propositions whose full meaning could only be expounded in more judgements than one. Thus 'None but the brave deserve the fair' impliee two statements, that the brave deserve the fair, and that thoee who are not brave do not. The infinite jodgement was also an exponible; for if I say that Parlisment is not-in-session I imply that it is not in session, and is in some other state instead.

CHAPTER IX

OF THE DISTRIBUTION OF TERMS IN THE JUDGEMENT: AND OF THE OPPOSITION OF JUDGEMENTS

We saw in the lest chapter that all judgements, in respect of their quality, were either affirmative or negative; and in respect of quantity, might be treated as either universal or particular. The latter division indeed etrictly applies to those judgements only whose subject is a general term, and therefore not to singular judgements ; but for the purpoees for which these can be reckoned with univernal judgements the divicion is exhaustive. The purpoese in question are the determining the distribution of terms, together with what depends on that. A term is said to be distributed, when it is used in reference to ite whole extension, or to all that it can denote. ${ }^{1}$ Now the subject of a singular judgement denotes one individual only, and the judgement refers to that ; the subject of an univeral judgement is general, and may denote any number of individuale, but since the judgement is universal, it applies to them all. Therefore in both singular and univereal judgements, all that the subject can denote is rererred to, or, in other worde, the subject is distributed; and, in considering the distribation of terms in a judgement, we may accordingly rank the singular with the universal.

As every judgement must have both quantity and quality, and in eech reepect there are two alternatives open, there are four varieties of judgement in respect of these two characters combined. An affirmative judgement may be universal or particular : a negative judgement may be anivereal or particular. It is costomary in

[^90]Logio to indicate these four forms of judgement by the first four vowels, thus :-

an universel affirmative judgement is indicated by the letter 1 ;							
an aniversal negative	$"$	$"$	$"$	$"$	$"$	$"$	E;
a particular affirmative	$"$	$"$	$"$	$"$	$"$	$"$	I;
a particular negative	$"$	$"$	$"$	$"$	$"$	$"$	0.

Thus the affirmative judgementa are \boldsymbol{A} (universal) and I (partioular): the negative judgemente are \mathcal{E} (oniverala) and O (particular); and this may be remembered by noting that 4 and I, which indicate the universal and particular affirmative ${ }^{\text {and }}$ gementa, are the firet two vowels in the verb 'affirmo': E and 0 , which indicate the aniveraal and partioalar negative judgementa, the vowela in the verb 'nego'.
All univeral judgementa (4 and E) distribute thoir mabject: all negative judgementa (E and O) diatribute their predicate. No partioular judgementa (I and O) distribute their aubject: no affirmative judgements (Λ and I) distribute their predicate. Thus :-
in \boldsymbol{A}, the subject is distributed, the predicate undistributed;
in B, " " " distributed, " " distributed ;
in I, "~ ", undistribated, ", " ondirtríbated;
in $0, n$ " ", andistributed, " ", distribated.
It is impori t to onderstand and become familiar with these characteristics of a judgement.

A term, es was explained just now, is said to be distributed when it is used with reference to all that it can denote ${ }^{1}$. The term ' book' is distributed, when used in a proposition that refens to all books: undistributed, when used in a proposition that does not refer to all books. It is obvious that an aniversal proposition about books (whother affirmative or negative) refers to all; and that a particular proposition does not; all books are written before being printed: no book was priated before 1450': some looks are publishod mexewn: some booke are never publisied. That the subject of universal propositions is distributed, and of particular propositions undistributed,

[^91]needs no further illustration. Two cautions, however, may be offered.

1. The subject of a proposition is the whole sabject-term; if I say all modern books are printed from movalle type, the subject is not books, but modern books; it is true that my judgement does not refer to all books, but it refers to all modern books, and so the subject is still distributed; while it is andistribated in the proposition some modern books are pristed from slergotype platen But I may restrict a general term like book not by worde which leave it still general (e. g. modern book, book printed by Etsevir in Leyden), and therafore capable of baing either distribated or andistributed, bat by a demonstantive pronoun, or other worde which deatroy its gemerality (e.g. that book, these books, the frot book which I ever posecsed). In the latter case, the term becomes a derignation, and is therefore aingular, or (lize 'these books') a collection of singulars; and the proposition should rank with oniversals. Bat the general tarm which is ristricted, by a demonatrative or otherwise, to the deagnation of a particular individual, in not distributed, eince it does not refer to all that it can denote. 'Book' therefore is undistribated, bat 'this book' is distributed, in the proposition 'This book wants rebinding'; for 'book' might be used of other books, but 'this book' is already used of the only book of which, co long as I mean the same by 'this', it can be used.
2. In apeaking of the distribution of terms, we are inevitably led to view judgemente in axtension rather than intension: and indeed as referring (altimately) to so many individmal objecte, rather than aeporting a connexion between universals. Now we have seen that a judgement may refer to individuala, but need not; and that in a judgement properly univeras, there is no particular thought of individuals. In saying that a triangle has ita angles equal to two right angien, I am not referring to all the particular triangles that have ever existed or may exiet; I am thinking of their common character as triangles, which being one and the same in them all may be opoken of in the singular number. ${ }^{1}$ It may therefore appear erroneons to say that such a judgement distributes ite subject, if to distribute Δ term is to use it with reference to all that it can denote; for to the individuals which the term triangle
${ }^{1}$ I do not deny that a particalar 'ropresentative' trianglo muat be conceived in mating the judgement.
can denote I am not referring. But it is true in this sense, that whatever particular triangle you ohoose to take, my judgement holds good of that. We must avoid aupposing that in every oniversal judgement we are thinking of all the different individuals of which the subject-term is predicable; bat we must recognize that our jadgement bolds of them all.

The diatribution of the predicate in a judgement is not generally so readily understood as that of the subject; for the extension of the predicate in not naturally before ns. The rule is that negative propositions distribute their predicate; affirmative do not: and this equally whether they are universal or particular.

All preachers praise virtue: some practise it. It is enay to see here that I refer in one case to all and in the other only to part of what the term preacher can denote. The subject therefore is distributed in one case, and not in the other. But what of the predicate? That is not distribated or undistributed becanse it refers to all or only some preachers; for a term is only distribated or andistribated when it is ased in reference to the whole or to a part only of ite own extension, not of the extension of the subject of which it is predicated. Now the extension of the terms 'praiser of virtue' and 'practiver of virtwo' includes everything whioh can be said to praise or praotise virtua. Prenchers may do so, bat so may others who are not preachers; these almo are therefore included in the extension of the predicate; bat what is thus included is not prelicated of preachers. In the jadgement X is Y, I predicate Y of \boldsymbol{X}; but I might predicate it also of $Z ; X$ and Z are both included in the extansion of Y, or in what Y can denote; but when I affirm Y, I do not affirm it in its whole extension; for then in saying ' X is F ', I should mean that it is X and Z, and in esying ' Z is $\bar{\prime}$ ', I should mean that it is Z and X. The predicate therefore is not used in reference to ite whole extension, i. e. is undistribated.

The predicate of an affirmative judgement in fact cannot be thought in extension at all. The subject of which it is predicated forms part of its extension; but in the predicate, as opposed to the sabject, I am thinking of a character or attribate belonging to that subject. A great deal of the diffeculty which hangs about the doctrine of the distribution of terms arises from the fact that a term is said to be undistributed both when it is used with explicit reference to a part only of ita exteasion, and whon it is usel
withoat explicit reference to its extension at all. The subject of a particular judgement is undistributed in the former sense; when I asy that Some preachers practice virtue, I am explioitly confining my statement to a part of the extension of the term preachor. The predicate of an affirmative jadgement is andistribated in the latter sense. When I say that All preachers praise virtue, though it is true that preachere, even all of them, are only part of the extension of the predicate, yet I am not thinking in the predicate of its extension bat of its intension. The ortension of a term consists of all the alternative speciea, or different individuale, in which it is manifented. It is imposible to predicate alternative apecien of the same arbject, or to esy of anything that it is so many differentindividuale. 'An ellipes is a conic section.' The extension of the predicate conic seotion is hyperbola, parabola, and ellipeo; I cannot asy that an ellipee is all of these; I do not want to say that it is an ellipwe; I am thinking of the common character in them all, i.e using the predicate in intension. Still, it is only part of the extension of the predicate which is referred to in this jadgement, and therefore the term is anid to be undistributed in the judgement, though in the predicate extension is not considered at all.

In a negative judgement, on the other hand, the predicate is necesearily denied in ite whole extenaion. Cacsar is mol ambitions; there are a thousand forms of ambition among mankind; but if I deny ambition of Caemar, I deny all these. It is the mane whether the judgement is univermal or particalar. No Mfuomiman foars deatk. Whether we look to the forme which fearing death may take, or to the individuals in whom it is exhibited, if I deny the predicate of Musalmans, I deny all forms of it, or deny that they are any of thoee individuals in whom it is exhibited. Bat again, Some marine aximale are not vertebrate; of those animals I do not merely deny that they are doge or cats, plaice or almon, all of which form part of the extension of vertebrate; vertebration in every form is denied of them; a negative jadgement denien its predicate in loto.

In an affirmative judgement, the subject is necessarily part of the extenaion of the predicate; in a negative judgement it is as necessarily no part thereof. And to say that the subject is no part of the extension of the predicate is to any that the predicate is denied in its whole extenaion.

But here again it is primarily the intension of the predicate which is in my mind. When I say that 'Bratus is an honoormble man', the only individual referred to is Bratus, though 'they are all honourable men that have slain Cacsar'; when I any 'Caesar whe not ambitions', I need not be thinking of any one who was. It is an attribute which I affirm in one caee and deny in the other. Nevertheless, whereas if I do attend in affirmative judgements to the extension of the predicate I cannot affirm the whole, and do not want to affirm the only part-viz. the sabject of the same judgement-which I can affirm, in a negative judgement, if I attend to the extension of the subject, I can deny the whole. 'A cycloid is not a conic section'; if I remember that conic section includes hyperbola, parabola, and ellipse, I can say that a cycloid is neither an hyperbole nor a parabola nor an ellipee.

We are not thinking primarily of the extension of the predicate in a negative judgement; bat if we do think of it, we must deny it in toto, or else our judgement will not mean what we intend it to mean; therefore the predicate is distributed. 'The Tenth don't dance'; we are not thinking of thoee who do; bat bears dance, and eo are part of the extansion of the predicate, and if the predicate were not denied in ita whole extension, it would be compatible with the trath of that proposition to say that the Tenth were bears; or if the predicate were used only in reference to the ursine portion of its extension, the proposition would mean no more than that the Tenth were not bears.
[Sometimes the device of circles, representing the extension of the subject and the predicate, is used in order to explain the distribution of terme. Collect the mammale in one circle, and the enakee in another: then if no anakes are mammals, snakes will lie outeide the whole mammal-aren: and if eome vertebrates are not mammals, some part of the vertebrateares will lie outride the whole mammal-ares;
 whereas if some vertebrates are mammals, come part of the vertebrate-aren will coincide either with the whole or with a part only of the mammal-ares; and if all mammals are vertebrates, the mammal-area will fall completely within the vertebrate-aren. But all the objections which lie against repreenting in this figarate way the logical relation of a larger to a smaller clase within it lie equally against 20 representing the diatribation of terms. We may my that the negative proposition
[snaker are not mammals excluden anakes from the whole clese of mammale, and not merely from a portion of it (asy men) : but we must not think of the class as an ares cut up into diastricts called apecies, or as a collection of which the apecies are component groupe.]
[Any one who realizes that the predicate of a proposition is not thought in extension will see that there can be no truth in the doctrine of the Qmantification of the Predicale. But the doctrine has the support of diatinguighed writers, among others of Sir William Hamilton, who invented it, and of Stanley Jevons; and it ought perhaps to be examined here. It may be easily ahown to be false; and the conscientious student haply atumbling upon the mass of intricate technicalities based upon it may be glad to feel excused from the labour of mastering them by the knowledge that they are built upon a worthless foundation.

By quantification of the predicate is meant affiring a mark of quantity to the predicate as well as the anbject of a judgement. Thus instead of the four forms of judgement, A, E, I, O, we get eight, as followe :-
U. All X is all Y. All organiams are all mortale.
A. All X is some Y. All men are some mortals.

1. Some X is all Y. Some mortals are all men.
I. Some X is вome Y. Some men are some (things) fleet of foot.
E. No X is any Y. No anakes are any mammale.
η. No X is some Y. No men are some mammale [e.g. not monkeys].
O. Some X is no Y. Some vertebrates are not eny mammals.
w. Some \boldsymbol{X} is not come 1 . Some mammals are not some vertebrates [$\mathbf{e} . \mathrm{g}$. not cows].

In defence of this mode of atating propositions it is urged that as the proposition whose predicate has all before it, and the corresponding proposition whose predicate has some before it, do not mean the ame thing, and we must know which we mean when we judge, we ought to express it. It is strange, if that is the case, that no language ever has expresed it; and it may be confidently asserted that none of these eight forms of proposition expresses anything that we ever really mean when we make a judgement (though some express, in 'portmanteau' fashion, what we mean when we make two judgementa); and that the reason why we ought not to express in our proposition whether we mean all or some before the predicate, is that we mean neither.

Let us take an A proposition. It used to be stated ' All X is Y ';
[we are told to state it 'All X is some Y '. $A l l$ men are some mortals: which mortals are they? the horses? the grase of the field? clearly not, but only the men. Yet it can hardly be meant by the proposition, that all men are men; it is somothing abont men that the proposition tells us. What about them ? that they die, and not which kind they are among the kinde of thinge which die; we know that they are men already, and that need not be repeated in the predicato.

But there is a difference between saying that all men are all mortals, and saying that all men are some mortale; the first implice that the terma are commensurate, that there are no mortale but men : the second that men are mortal, but an undetermined range of objects (cate and doge and borses and asses and what not) are so besides. Ought not this difference to be expressed ?

Doubtless, but it requires another proposition; All men are mortals -some mortals are not men. In recognizing that men die, we do not judge that any other kind diee; and though we may be aware of it when we say that men die, it is no part of the judgement men die. There is much that we are aware of when we judge that men die, besiden the content of that judgement-that the sun is shining, for example, or our feet aching; yet nobody would suppose this to be included in that judgement, merely becanse we are aware of it in making the judgement. There is no more reseon to suppose the faot that other creatures besides men die to be included in the judgement all men are morial, because we are aware of it in making the judgement. All men are some mortals is not one judgement, but a 'portmanteau' proposition-two judgements expressed in what (in respect of its grammatical form) is one sentence.

It is true that in some judgements we expressly think the predicate and the sabject to be commensurate. In a definition, we must do this. Momentwm is the produet of mase indo velocity: wealth is that which has value in exchange; in these cases, it is included in our thought that the product of mass into velocity is momentum, or that which has value in exchange, wealth. But such judgemente are ill expresed in the form ' All X is all Y '. We do not think of all momenta, all samples of wealth, bat of wealth and momentum each as one thing. Again, the formala ' All X is all Y ' makes us think of X and Y as different things: whereas the whole force of a definition is to assert that the subject and predicate, the thing defined and the definition of it, are the same thing.

There are propositions whose terms are known to be commensurate, but which are not definitions, such ao all equilateral triangles are equiangular. These slao we are told to represent in the form 'All X is all Y ', and to say that all equilateral are all eqwiangular triangles. But this does not correctly exprese the true meaning of
[the other proposition. For granted that in enuncinting it we are aware that the terms are commensurnte: what we wish to assert is the matual implication of two attribates in the triangle. It follows from this that every triangle exhibiting one exhibits the other; but those which exhibit one are not a different eet of trianglen from those that exhibit the other. By patting a mark of quantity before the predicate as well as before the subject, we make it appear as if the extension of one term whe sefirmed of the extension of the otber, and (if we consider individuals) as if the individuals denoted by one term were affirmed of the individuals denoted by another. Bat that is either impossible, if the individuals are different, or tautologons, if they are the same.
'All' can be no part of any predicate, except where (as in these are all the apostles) the subject is collective. If the universal jadgement 'All living things reproduce their kind' is true, then it is true of any living thing and therefore of peas. I may introduce ' perfectly' into the predicate, and then it will be true that peas reproduce their kiod perfectly. But I cannot introduce 'all' into the predicate. For then, since all living things are all things that reproduce their kind, peas would be all things that reproduce their kind; and that is nonsense. The predicate of a judgement is affirmed distributively of each that falls under the subject; the predicate quantified by all could be only true of the subject collectively. No equilateral triangle is all equiangular triangles; how then can they all be? The proposition only means that all equilateral triangles are equiangular and cice worsa. As before, it is a 'portmantean' proposition, and not a single judgement.

The U form of proposition has been considered at some length, becanse it is in as way the most plansible member of the series. Universal judgemente whose terms are commensurate do differ from thone whose terms are not, and do form a very important class of judgements; and there is no special recognition of them in the ordinary fourfold classification of judgements (A, E, I, and O). It has been wrongly alleged that Aristotle ignored such jadgements; on the contrary, he recognized their great importance in science. To remedy this supposed omission the doctrine of the quantification of the predicate offers us an entirely false analysis of them, and one which Aristotle himself exposed. ${ }^{1}$ The analysis overlooke altogether the

[^92][intonsion of terms. Profeming to complete what is defective in the current recognition of different trinds of proposition, it leaves important differencea itself unrecognized. We have seen that a proposition of the form 'All \bar{X} is Y ' represents two kinds of judgement essentially different in thought, ecoording as it is really universal, meaning ' X as such is Y ', or only enumerative, meaning ' All the X 's are Y '. Of this difference, whether in anivemal jadgements whose terms are commensarate (U) or not (4), this doctrine takes no note; bat sets up instead two kinds which misrepresent our thought by the sign of quantity prefired to the predicate.

The particular affirmative propositions may be diamiseed briefly. We are told that ' Some X is Y ' bhould be written either 'Some \bar{X} is some Y ' or ' Some X is all Y '. Take the former, ' Some X is some Y ': we ask immediately, which X are which Y ?; and the only answer is that the X that are Y are the Y that are X. Sonec sovers reap; if that means some sowors are some reapere, this can only mean that the sowers who reap are the reapers who sow. Take the letter, 'Some X are all Y '; some animals are all the pigs (for it does not mean, are all of them pigs: as we might say that some families all squint, meaning that all the members of some families squint). Which animals are all the pige? curely only the pigs themsalven. If it be said that the proposition means that there are more animals than pigs, then the real subject of the judgement is the other animals (which are not pigs), and not (as this form pretends) the animals which are piga. If, again, it be axid to mean that all pigs are animala and come animals are not pigs, then as before we have two judgements pecked into one sentence. What is one jadgement, and what is the character of a judgement, are questions to be determined by considering our thought, and not the verbal devioes we adopt to express it. To think that all pigs are animals, and some snimals are not pigs, is to judge not once bat twice, even though we were to write such a pair of judgements in the form oome animals are all pige.

To the negative judgement also the quantification of the predicate does violence. The univeral negative is to appear in the two forms ' No X is any $Y^{\prime}(E)$ and ' No X ' is some $Y^{\prime}(\eta)$. The former may stand; for as we have seen, if X is not I; it is not any
affrmation is troe when onivervality [in arteacion] is amigned to the predicated univaral, e.g. All men are all animale. Cf. Ammonins in loc. f. 82, who pointe out that then eech man would be all animale.) Anal. Pri.

 be attribated in toto, I mean for eximple snimal as a whole to man, or science an a whole to munic, but just imply to follow on the erbject, as our promimesays ; for the other is both aselem and impomible, e g. that all men are all animals, or that jartice in all good.')
[case or kind of \boldsymbol{Y}. The latter may well puzzle us. It denies of \bar{X} some part of the extension of Y; pig, for example, is part of the extension of animal, and sheep are not pigs ; bence sheep are not some animals ; but this is quite consistent with their being animals. ' No X is some Y^{\prime} ' is therefore consistent with 'All X are Y ', and what it means is that 'Some Y are not X '; whether any X are Y or not it leaves doubtful. There remsin the particular negatives, 'Some \bar{X} is not any Y ', and 'Some X is not some Y '. Again the former will stand; but what does the latter mean? It does not mean that some X is not Y at all, e.g. that some animals are not pigs at all, but are something quite different (ray sheep or cows); for that is expressed by the form 'Some X are not any Y '. It can only mean thst there are some Y 's distinct from some X 's: i.e. that though some X may be Y, they are not every Y. 'Some murderers are not caught' is sense ; but 'Some murderers are not some caught', if sense at all, is only true because fish and cricket-balls are also caught, and some murderers are not these; so that if the proposition were to be false, they would have to be fish and cricket-balls and everything else that is ever caught; it is the contradictory of the impossible judgement 'Some X is all Y '. Buf as we never make that judgement, we never want to contradict it; yet these are forms of judgement which thoee who would quantify the predicate condemn Logio for hitherto ignoring. ${ }^{\text {I }}$

Thus all the eight forms of proposition with quantified predicate have been found vicions, except \mathcal{E} and O; and these are so interpreted as to lay undue atreen on the aspect of extension in the predicate. The truth is that if we prefix to the predicate of a proposition a mark of quantity, all or some, we are bound to think of the various individuals (or apecies) characterized by the predicate, not merely of the character, or 'universal' : we are bound to take the predicate in extension, and that we cannot reslly do. We cannot predicate of the extension of one term the extension of another. If a set of individuals, or of apecies, forms the subject of a judgement, another set cennot form the predicate. 'All X is some Y^{\prime} ' is meaningless. 'Some Y,' we are told, means ' part of the class Y '; but which part is X ? Let the class Y be divided into two parts, X and Z; we do not need to say that X is the former part; it is false to say that it is the latter.

[^93][Still, it is urged, the judgement comparea the extension of two classes. 'All X is all Y ' means that the class X and the class Y are co-extensive: ' All X is some Y ' means that the class X is included in the class Y, which extenda beyond it. But if the cless X and the class Y are coextensive, how are they two classes? Taken strictly in extension (ae the doctrine of the quantification of the predicato takes ita terms) the cless X and the clam Y are not the common character X and Y realized in many things, but the set of things in which this character is realized. If the class \bar{X} is the things in which the common character X is realized, and Y is realized in the same thinga, then there is only one class or set of things, and no moparison between two classes; so that, after all, we have the class X, and predicate the character Y of them, i.e. we do not take Y in extension. And if the class X is included in the class Y, what does that mean? Suppose that all Y 's were collected in one place, sll $X^{\prime} \mathrm{s}$ would be found in the crowd; then, when we said that all X if some Y, we shoald mean that all X were incladed in the crowd of I's. But now our predicste is no longer Y, and has become 'included in the crowd of Y_{s}^{\prime} '. We must quantify that if all predicates are to be quantified, and state whether all or part of what is included in the crowd of Y^{\prime} ' be meant. Clearly part; so that our judgement will run ' All X are some things included in the class Y (or crowd of $\left.Y^{\prime} \mathrm{s}\right)$ '. But which things so included are they ? as before, themselves, the X^{\prime} s. If this answer be not accepted, and it be said that mome means 'included in the class of', then our new jadgement mast run 'All X are incladed in the class of things included in the cleses $Y^{\prime \prime}$. But now the last eleven words become the predicate, and it must again be quantified; we must say 'All X are some things included in the clase of things included in the clase Y^{\prime}. So the process goes on ad infinitwm. You cannot predicate of one cless the whole or part of another. You may compare the extension of two classes: e.g. When we say that male infants are more numerous than female; but then one class is not predicated of another; female infants do not inclade male infants and extend beyond them. You may predicate a genus of a species, and the genas as compared with the eppecies has a wider extension; bat it is not the extension of the genus which you predicate of the species, nor any part of it.

It may be thought that in discussing the quantification of the predicate we have been belabouring errors too trivial for notice. No one, of course, really supposes that the act of jadgement means any of these absurdities. But many people have supposed thata judgement compares the extension of two terms, or inclades as subject in or excludes it from a clase ; and they think of a clese as no many thinge or kinds of thing. Such views imply the absurdities that have been dragged to light; and the custom of elucidating the relation of terms in a judgement by the relative ponition of circles on paper,
[outside each other, one inside the other, or with a common eegrent, tonds, as hes been sid before, to make us think wrongly about - judgement precisely in the direction of these absurdities. It is of great importance, in epeaking of the distribation of terms (as we shall have to do frequently when examining the ayllogism), not to suppoee that the terms of a judgement are all taken in extension, and that we are alwaye identifying and distinguiehing all or part of what our terms denote. The doctrine of the quantification of the predicato flourishee upon this mistake, end a thorough examination of that doctrine is a good prophylectic meseure. ${ }^{1}$]
${ }^{2}$ Arehbishop Thomson (Lavee of Thought, pp. 187-189), though not conteating the doctrine of the quantification of the predicate, axcludes the forms of proposition η and - ('No X is nome $Y_{\text {' }}$ ' Some X is not wome Y^{\prime} ') on the ground that though conceivable they are not actual cases of negative predication. "It is not inconceivable that a man ahould ay "No birds are come snimala" (the \# of the Table), and yet auch a judgement is never ectasily made, because it has the comblance only, and not the power, of a denial. True though it is, it does not prevent our matring another judgement of the affirmakive lind, from the atme tarma; and "All birds are animale" is aleo true. Though euch a negetive jadgement in conceivable, it is uselem; and foeling thia, men in their daily convermation, an well as logicians in their treatives, have proscribed it--But the froitleanem of a nogative judgement where both terms are particular is even more manifeet; for "Some X is not some \boldsymbol{Y} " is true, whatever terms X and Y stand for, and therefore the judgement, as presupposed in every case, is not worth the troable of forming in any particular one. Thus if I delne the composition of common malt by mying "Common salt is chloride of sodium", I cannot provent another maying that "Some common alt is not eome chloride of sodium ", because ho may mean that the common ealt in this salt-collar is not the chloride of sodiam in that. A judgement of this eort is epurions apon two grounds; it denies nothing, becausit does not prevent any of the modes of affrmation; it decides nothing, inammuch an ita truth is preapponed with reference to any pair of conceptions whatover. In a liat of conceirable modes of predication, theme two are entitled to a plece.' In this pasage, the ridiculone nature of η and - is axcellently ahown; and the obeervation that they have the semblance only and not the power of a denial is very jush. But how then can they be negative judgements? A negative judgement is an act of thought that deniea, not a sentence that look negative on paper. It may be noticed that not only can we may 'Some malt is not some chloride of sodiam', but with equal trath 'Some salt is not some alt'. Now that meane 'One piece of alt is not another': a perfectly 'conceivable mode of predication --only, there is no quantification of the predicate in it. It is true that there is a difference for thought between distingrishing individuals from one another, and denging an attribute of a subject: a difierence which eecapes in the common aymbolic form ' X is not \boldsymbol{Y}. The difference arises through the content; for we cannot think and judge sbont the relations between individuale as wo think ant judge about the relations between universale, or of attribatee to a sabject. Hénce it is by something of a fiction thet we inclade all pomible judgementa under four forms A, E, I, and O : the fiotion being that singulars may be treated an univereal. It is well to bear in mind that the form of judgement is really different (although the difference comes through the matter, at was jost now atated; for form and matter, wo may repeat, are not rigidly

We may pase now to the opposition of propositione or judgoments.

Propositions having the mme subject and predicata, but differing in quantity, or quality, or both, are asid to be opposed to one another. The four forme of proposition A, E, I, O admit four kinds of opposition among them.

1. $\boldsymbol{A}-\boldsymbol{E}$. Whare the propositions differ in quality, and are bolh univermal, they are called oontrary to each other: evorylding in Aristotle is true, molling in Aristotle is true are contrary propositions. ${ }^{1}$
2. $I-O$. Where they differ in quality, and both are particular, they are called sub-oontrary : e.g.00me thinge in Arictotle are true, nowe thinge in Aristotle are not true.
3. $A-O, E-I$. Where they differ both in quantity and quality, they are called oontrediotory: e.g. everything in Aristofle is true, some chinge in Aristolle are not true: mo
 Mresminen feart death, wome M weonlmans foar death.
4. $A-I, E-O$. Where they differ in quantity but not in quality, they tre called subeltarn: a.g. everylhing in Aristotle is true, come thinge in Aristoth are true: no Mmombam feart death, como Mecoulmane do not fear death.

Contrary and contradictory are tarms in common use, though somotimes treated as equivalent; the origin of the terms suballorm
separated, like a mould and the jelly in it, eo an that the form in the anme whether the terme are singular or aniveraal); yet for cartain purpoees in the theory of ayllogism we need not sttend to the difference. But the real variety in the form of our jodgements is not recognised by quantifying the predicate: a procen which, instiond of bringing ont the trae features of thought, distorte and falaifies even the commoneat judgementa.
${ }^{1}$ Contraties are what stand furtheat apart upon a scale of some lind-rat
 illumination, higheat and lowest on the scale of olevation, or of pitch, \&c. Contrary propositions are thoee which stand furthest apart on the acale of quantity: one amerting that to be trae of all which the other emerta to be trua of none. The notion of contradiction belongs properly to judgemente only, and not to terms, though sometimes tranaforred to the latter, 4 and not- 1 (blue and not-blue, \&c.) being called oontradictory terme. But we have reen that mere not- \boldsymbol{A} in no term at all : there mant be some pocitive content. (See however Bradley, Logic, p. 119, for the view that all disparate or incompatible terme abould be treated as contraries: e.g. bloe and red. 'In logic the contrary should be simply the disparate.')
and anb-contrary may be seen in the above-given, and ancient, 'diagram of opposition'. I is placed under A, and O ander E, for the same reason that in setting out a clesesification we plece the species under the genus: the wider includes the narrower under it : A and I, \mathcal{B} and O are called subaltern, because in each pair one is subordinated to the other: I and O are called sub-contrary, because they are subordinated to the contrariea \boldsymbol{A} and E, their respective universale.

It will be observed that in order to overthrow an universal proposition, affirmative or negative, it is only neceseary to establish the particular negative or affirmative; that everything in Aristotle is true is refuted by showing something in his writings false; that nothing in Aristotle is true, by showing something true. We contradict the affirmation 'All men are liars' by saying ' not all', not by saying 'all not'. But of course the greater includes the less, and we refute a proposition by establishing its contrary, as well as by establishing its contradictory. In common speech therefore we are said to contradict a proposition when we advance another whose trath is inconsistent with that of the first, whether it be the contrary or the contradictory; and since the contrary imputes more error than the contradictory (for if a man tells me that all animale reason, I impute more error to him by replying that none do, than that eome don't) it may in a sense be said to contradict more fully. It is, however, convenient to have different words to mark the relation of A and E to each other, and their relations to O and I reapectively; and Logic confines the title of contradictory opposition to the latter.

Given the truth or falnity of any proposition, we can see at once which of the opposed propositions must be true, which false, and which (upon the information given us) remain doubtful. For contrary propositions cannot both be true, and therefore if A is given as true, E must be false, and vice verse : but they may both be false (for it is not necessary that either all babies should be dimgreeable, or else none of them), and therefore if one is given as false, the other remains doubtful. Contradictory propositions cannot both be trae, but vieither can they both be false; and therefore if A, E, I, or O is given as true, O, I, E, or A must reapectively be false, and vice versa. Subaltern propositions may both be true, or both false, or the particular may be true while
the universal is false; bat the particular cannot be false while the nnivermal is true, for the grester includes the less; bence given the trath of A or B, I or O is true, and given the falsity of I or O, 4 or E is false; bat given the falaity of Δ or E, I or O remains doubtful, and given the truth of I or $0, A$ or E remains doubtfal. Sub-contrary proposition cannot both be false (for in that case their reapective contradictories, which are contrary to one another, would both be true); but they may both be trae, just as contranies may both be falee; hence given the falsity of I, O is true, and vioe verse; bat given the truth of 1,0 remains doubtful, and vice versa.

Of two contrary or of two contradictory propositions one may be advanced againat the other, i.e. we may deny one, and advance the other in its place; and of two subaltern propositions, the particular may be adranced against the universal. If any one said 'Some animala resson', we could not answer 'No, but all do'; but if he said, 'All animals reason', we could answer, 'No, bat some do : Sub-contrary propositions, on the other band, cannot be advanced one against the other. 'Some animals reason': we cannot retort, 'No, but mome don't'; 'Some animals don't reason': we cannot retort, 'No (i.e. that is false), but some do'. We may indeed, to the staternent that some animals reason, reply, 'Yes, but come don't'; and to the atatement that some animals do not reason, 'Yes, but some do'. In these cases, however, the particular proposition 'Some don't reason', or 'Some do reason', is advanced not againat ita enb-contrary, 'Some do reason' or 'Some don't reagon', but againat the univeral proposition 'All reason' or ' None reason': which it is feared we might otherwise be supposed to allow, when we admit that some resson, or that some do not. Hence it hae been urged that we ought not to opeak of sub-contrary propositions as opposed ${ }^{1}$, nor include them in a list of the forms of opposition; but if they are not opposed, they are anyhow contrasted, and that may justify their continued inclasion. Given the trath or falsity of any proposition, the step by which we pass to the perception of the truth, falsity or doubtfulness of ite several opposites is in the strictest sense formal. It depends in no way
${ }^{1}$ Aristotle notices this in Anal. Pri. A. xv. 68b 27 rd ydp rid Tī ot rul
 are not').
upon the special content of the proposition, bat solely upon the necemenry relations, cccording to their quantity and quality, in reapect of truth and falaity, between propositions having the same subject and predicate. And since no other information need be given, except whether the one proposition is trae or falee, in order that we may determine the truth, falsity, or doubtfulneee of the remaining three, the procese of inference (if inference it is to be called) is immediate.

CHAPTER X

OF IMMRDIATE INFERENCES

Inference is a procese of thought which, etarting with one or more juidgements ', ends in another judgement made neceseary by the former. The latter, which, in relation to the judgement or judgements from which the process starts, is called a conclusion, must, as compared with them, be a new judgament; to ropeat in fresh words our original statement is not inference, any more than tranalation is inference. For the most part a new judgement is only got by putting together two judgementa, and as it were extracting what they yield. But there are a few conclusions which we appear to draw not from any 'putting together' of two judgemente, bat simply from the relation to one another of the terms in one judgement. This is called immediate inference, etymologically becanse (in contrast with syllogism ${ }^{2}$) it proceede withont the use of a middle term: bat, to put it more generally, becanse we seem to proceed from a given judgement to mnother, without anything further being required $a=2$ macse of paeaing to the conclusion. ${ }^{3}$

It was mentioned at the end of the last chapter, that when we infer, from the trath or falcity of a given proposition, ite various opposites to be true, or false, or doubtful, we perform an act of immediate inference. We have now to consider other forms of immediate inference, of which the principal are Conversion, Permulation (or Obvorsion) and Contraposition.
${ }^{1}$ Or, more generally, aloments, if we allow (with Bradley, Lagic, pp. 870378) that, e.8., $2+2=4$ is inference. But the above is not intended as a final defnition of inference.
${ }^{2}$ For the function of the middle term in ayllogiam, cf. infro, c. xi.

- All inference is immediate in the sense that from the prowievee we paen without the help of anything else to the concloaion; but this is called immediate in the sanse that from the given relation of two torms in a single proposition we paes without the holp of anything elee to a different propoaition. It is doubtfol, however, whether, $s 0$ far as there is any inference in it at all, it is really alweys immediate, eithar in thie or in the etymological sense. Cf. the discrasion pp. 217 af.

A proposition is oonverted, when ite subject is made the predicate, and vice veras, its quality (affirmative or negative) remaining unchanged : as, for example, when from ' No true Mussulman eate pork' we paes to 'No one who eate pork is a true Mussalman'. The original proposition is called the conoertend, and the new proposition ite converse.

Whether, and in what way, a proposition can be converted, depends on ite form, A, E, I, or O^{1} : because the procens of conversion is invalid, unlese it conforms to the following rule, that no term may be dietributed in the converse, which sace nol distributed in the converlend.' An 4 proposition is converted by limitation: an E or an I proposition aimply: and an O proposition not at all axcept throagh first permuling it.

A proposition is axid to be converted eamply, when the quantity of the converse is the same with that of the convertend. In an univerml negative proposition (E) both terms are distributed; in a particular affirmative proposition (I) both are- undistributed. Therefore their mutaal sabetitution in the process of simple conversion doen not distribute any term that wa not distributed before. Thus E, no X is Y, becomes E, no Y is X : a.g. 'no lewrers are parsons'-' no parsons are lawyers'; 'no true poet admires Mecaulay's Lays' - 'no one who admires Mecalay's Lays is a true poet "'; 'no snakes auckle their young'-' no mammals are makes ''; 'Chatham is not the younger Pitt'-'the younger Pitt is not Chatham'.

Again, I, some \bar{Y} is \bar{X}, becomes I, some \bar{X} is Y : e. g. ' some diamonds are bleck'-'some black stones are dismonds'; 'some ever-

1 The matter of some judgemente renders their converion annataral, even where the form sllowe of it: e.g. 'Civiligation opreads by the extermination of lower races.' Cf. pp. 218, infro.

- Another rale for convernion is sometimes given, to the offect that the terms (or the subject and predicate) of the converse mont be the mane as the terms (or the predicats and sabject) of the convertend. But this is not - rale to observe in convarting ; it expleins the process of convertion itgelf.
${ }^{3}$ n. M. Arnold, Lectures on Tramolating Homer, Popalar Edition, 1896, P. 171 : the queation before us is not whether the proposition mey be rightly contradicted, but how it may be rightly converted.

4 When the predicate of the convertend is not a subetantive or substan. tival term, we mast either subatitute for it in the converne a aubatantive, if there be one of equivalent meaning (as in this eano), or import come substantival expresion like 'one who (os in the previous examplel for the original predicate, now introduced into the subject, to qualify. We often ohooes the genus of the mbject about which we are spenting, as in the firt example of the converaion of I.
green abrabe flower brilliantly'-'some brilliant flowering shrabs are overgreen'; 'some victories are more fatal than defeat' 'some events more fatal than defent are victories'.
A proposition is said to be converted by limitation, or per scoidens, when, it being universal, ite converse is particular. In an universal affirmative proposition Y is predicated of all X; bat it may attach to other subjecte equali y, P, Q, and R; therefore what is Y need not be X, and we can only say that some Y is X, not that all Y in X. To use the language of distribwtion, the subject is distributed, the predicate not: if we meraly substituted each for the other, the original predicate, become the subject of an universal proposition, would be distributed; for 'all roses are deciduons' we should have 'everything deciduous is a poes'. We must therefore limit the extent to which we affirm our original subject rove of our original predicate decidmous; and hence such conversion is ealled 'conversion by limitation'. So A, all X is Y, becomes I, some Y is X : 'all men are mortal'-' some mortals are men'; 'all Roman priests are celibate '- 'some celibates are Roman priesta'; 'all isoccele trianglee have equal angles at the base'- -some triangles with equal angles at the base are isosceles '.'

In the leat example, ang one who knowa geometry will be tempted to convert simpliciter, and say that all triangles with equal angles at the base are iroscelea. He would not be wrong as a geometrician; bat he would need a knowledge of geometry, and not merely of lugic, to justify him. In conversion, we look solely to what is justified by the forn of the proposition to be converted, be it A, E, I, or O; in this respect 'all isosceles triangles have equal angles at the bese' is indiatinguiahable from 'all isocceles triangle have angles equal to two right angles'; the geometrician knows that it doee not follow from the latter, that all triangles haring angles equal to two right angles are isoscoles; neither therefore does it follow logically from the former, that all triangles having equal anglee at the bese are isosceles. The form of proposition 'all X is Y ' only justifies a conversion to ' some Y is X '; in order to convert to ' all Y is X ' we must know that X and Y necesitate each other, or that there is nothing accidental in the relation between them; this is not implied merely in the one being prodicable of the other, because the relation of a predicate to ita subject
${ }^{1}$ With this paragriph, ef. oupra, pp. 199, 200.
may be either accidental or essential. It must at the least be socidental, and therefore from its bare form, we are ontitled to convert an \boldsymbol{A} proposition as if Y were an accident of X; but we are not eatitled to do more. For this reason, conversion by limitation is called conversion per accidens (кard $\sigma v \mu \beta \beta_{\eta}{ }^{2} \delta \delta s$); if Y is an eccident of \bar{X}, i. e coincides in the same individual subjeot with X, then X is predicable of a subject which Y characterizes, and we may say that some Y is $X .{ }^{1}$

In a particular negative proposition (0), the subject is undistributed, the predicate distributed; if here we subetituted each for the other, the original subject, become the predicate of a negative proposition, would be distributed in the converse. And since the predicate of a negative judgement cannot, like the subject of a jadgement, be limited by a sign of 'particular' quantity, an 0 proposition is not convertible, except by negation : a process which will be explained later (p. 215). This is not always reslized, when we uee symbols, and forbid the pasagge from 'some X is not Y ' to 'some Y is not X^{\prime}; for it is quite possible that both of these propositions may be trae at once: e. g. come freemasons are not freethinken ${ }^{2}$, and some freethinkers are not freemasons. But although 'some X is not Y ' and 'some Y is not X ' may be true at once, yet we are not justified by the form of the one in passing to the other; and this becomes obvious by comparing such an example as the last (where both propositions are true) with another, where the converse is manifestly false: e.g. 'some men are not monks'-'some monks are not men'. In form the two propositions ('some freemacons are not freethinkers' and 'some man are not monks') are

[^94]the aame; and therefore formally the conversion must be invalid in the former case, since it is invalid in the latter.

It is indeed impossible, in converting a proposition, to treat the term quite like symbola, and to proceed solely by the consideration of the distribation of the terms in the convertend, without considering what the terms are. In an E proposition, for example, if both terms are proper names, the act of conversion is felt to be different from what it is where the subject is a general concrete term and the predicate attribative: in passing from 'no judge has any right to meddle in politice' to 'no one who has any right to meddle in politica is a judge', the character of the jadgement alters in a way that it doee not, when we paes from 'Chatham is not the younger Pitt' to 'the younger Pitt is not Chatham'. It is not natural to eay 'no one who has any right to meddle in politics is a judge'; and though it is natural enough to may 'no one who meddles in politics has any right to be a judge', this is not the converse of the proposition with which we started. It is equally natural to say 'Chatham is not the younger Pitt' and 'the younger Pitt is not Chatham': according as we are discoursing about the one or the other; for two individuals stand as it were on the same level in thought, and each may indifferently be distinguished from oither. Bat our rights depend apon our position, and not vice versis ; so that it is natural to deny certain righte to a man filling a certain position, but not to deny the position to a man pomessed of thoee righta Other examples of the same thing might be given. A proposition both whoee terms are singular is called an A proposition, but it cannot be converted per accidews: 'Chatham is the elder Pitt' can only become 'the elder Pitt is Chatham'. If the subject is and the predicate is not a singular term, conversion is a form without meaning; 'Chatham was eloquent' becomes ' an eloquent man was Chatham ', and however we may write it, the latter means jurt the same as the former; we cannot predicate Chatham of 'an eloquent man', for this is a general term, and that a singular. Again, ' Demosthenes and Cicero were the greateat orators of antiquity' becomes ' the greatest orators of antiquity were Demorthenes and Cicero'; we cannot eay 'some greatest orators of antiquity were Demoathenes and Cicero' without altering the force of the term 'greateet orators' from comparative to positive. 'Some men are Cbristians' is a proper, 'some Christians are men' an improper
mode of speeoh; religion can belong only to men, and we do not predicate of an attribate partially the subject presupposed by it. A difficulty arises again in a proposition not universal where some measure is given of the axtent to which the predicate characterizes the subject, e.g. by using such words as 'many' or 'few'; 'moat great men have been of obecure origin' converts to 'some men of obscure origin have been most great men '; but no one would ever may this, for the meaare 'most' applien to 'great men' as taken in extension, and therefore cannot be predicated of ' men of obecure origin '.

It would be absurd to that as conversion is a strictly formal process, we must therefore convert propositions by its rales, according to their form as A, B, or I. Logic investigates the actual nature and procedure of our thought; and when we find that our thought is not governed by the bare form of a judgement irrespective of its content, it is no use to pretend otherwise. The converaion of propositions may be stadied formally, with symbols for terms; but when real terms replece the symbols they must affect the judgement, and our treatment of it in conversion; for example, symbole, like X and Y in the proposition ' no X is Y ', are slways regarded as general terms, bat the sctual terms need not be general. This is said, not in order to discredit the sbetract and formal treatment of conversion, which is sound within ite limita ; but in order to emphasize the fact that the form and matter (or the form and content) of thought are not capable of separste consideration, like the mould and the pudding: what from one point of view in form in from another matter, and the same form in different kinde of content is not altogether the same, any more than is the same genue in different speoies. The importance of this feot mart excase the reiteration of it; meanwhile in a teatbook of Logic, as of any other acience, wo must consider typical casee, with a general caveat that the subject is thereby artificially simplified.

In converaion, the sabjeot and predicate were tranoposed, but otherwiee unaltered, and the quality of the proposition remained the same. In Permitation, or (as it has been aleo called) Obversion ${ }^{1}$, there is no transposition of terms, but the quality of the pro-

[^95]position in changed, and the predicate at the same time replaced by ita contradictory. It consista in fact of substituting for an affirmetive or negetive proposition an equivalent negative or affirmative of opposite quality, by means of negating the predicate.

Thus-
A, All X in Y, becomes E, No X is not- Y : All right angles are equal, No right angles are unequal; Barkis is willin', Barkis is not unwillin'.
E, No X is Y; becomes A, All X is not- \bar{Y} : No doge allowed, All doge forbidden; Lear is not mád, Lear is not-mad.
I, Some X is Y, becomes O, Some X is not not- Y : Some stretches of the road are level, Some atretches of the roed have no grendient.
0 , Some X is not Y, becomes I, Some X is not- Y : Some learned theories are not sense, Some learned theories are nonsense; Some swans are not white, Some swans are not not-white. $\lambda_{\text {cp......6! }}$
Further tranformation of a given proposition may be effected by a combination of Conversion and Permatation. The proceen of permuting and then converting is called Converalon by Nogation. The conclusion so obtained may be converted again, and this process of permating, converting, and permuting is called Contreporition.

All forme of proposition except I can be converted by negation; the proces is inapplicable to I, becanse it becomes O by permutation, and a particular negative, as we have seen, cannot be converted. For the same reason I cannot be contraposed.

In conversion by megation-
4 becomes E : All X is $Y \therefore$ No X is not- $Y \therefore$ No not- Y is X. All acids turn blue litmus-paper red \therefore No scids do not turn blue litmon-paper red \therefore Nothing that doee not turn blue litmus-paper red is an acid.
\boldsymbol{E} becomes I : No \boldsymbol{X} is $\boldsymbol{Y} \therefore$ All \boldsymbol{X} is not- $\boldsymbol{Y} \therefore$ Some not- \boldsymbol{Y} is \boldsymbol{X}. No stimalant nourishes \therefore All atimulante are innatritiones. \therefore Some things innutritious are atimulante.
0 becomes 1: Some \bar{X} is not $\boldsymbol{Y} \therefore$ Some \boldsymbol{X} is not- $\boldsymbol{Y} \therefore$ Some not- Y is X. Some sea-animals are not vertebrate \therefore Some sea-animals are invertebrate \therefore Some invertebratee are see-animals. Some thinge neceneary to life have no market-
value \therefore Some things that have no market-value are necessary to life.
This is the only way in which a perticular negative can be converted.

In contraposition ${ }^{1}$ -
4 becomes 1 : All X is $Y \therefore$ No not- Y is $X . \therefore$ All not- Y is not-X. All Arabe are hospitable \therefore All who are not-hospitable are not-Arabe.
E becomes $0:$ No X is $Y \therefore$ Some not- Y is $\bar{X} \therefore$ Some not- Y is not not-X. No unfriendly man is happy \therefore Some who are not happy are not friendly.
O becomes O : Some X is not $Y \therefore$ Some not- Y is $X \therefore$ Some not- Y is not not-X. Some reformers are not radicals \therefore Some who are not radicals are not not-reformers (are not opposed to reform).
The sbove procesees, when worked in symbols, might be supposed to be equally applicable to all judgementa. But when we apply them to concrete examples, we see at once (as with Conversion) that it is not so. It is indeed often convenient in discourse to make what wes predicated of a subject iteelf the subject and etartingpoint in our predication, or to lay strees on the affirmative value of a negative, or the negative value of an affirmative statement. But the use of these procesees is limited in part by the idiom and vocabulary of the language, in part by the logical character of the terms in the jadgement. The permatation of I to O looks almost ridiculous in symbolic form; bat where there exist two terma, the affirmation of one of which is equivalent to the denial of the other, there the procese is in practice perfectly natural. No one would pass from 'Steam is invisible' to 'Steam is not not-invisible'; but he might naturally paes to 'Steam is not visible'.

Contraposition, as involving the largeat number of stepe, and employing permatation twice, may seem to lead to the least natural modes of expression. For permatation introduces 'infinite' terma, not- Y and not- X; and infinite tarms do not ordinarily figare in speech; so that unless we can subetitute a term that is not infinite in form, our result seems fantastic. But we may see that

[^96]the process of thought involved in contraposition is a common one, (although the mode of expression may be awkward) if we look at it from the point of view of hypothetical judgement. Given that all lovers are jealons, it is possible to infer that all the not-jealons are not-lovers. No one would, however, express himself thum But the original proposition, if it is a true universal, atates a necessary connexion between the predicate and the subject; it involves the proposition that if any one is a lover be is jealous. Therefore, if any one is not jealous, he is not a lover; and this in an inference quite naturally expressed. 'If anything is X, it is $Y \therefore$ if it is not Y, it is not X '; we have here precisaly the same inference as in the contraposition of 1 , 'All X is $Y \therefore$ All not- Y is not- X.' We may interpret in a correaponding way the contraposition of E and O, if we bear in mind the modal or problematic force which may belong to the particular judgement. 'No X is Y ' will mean, ' If a thing is X, it is not Y^{\prime} : from this we cannot, however, infer that if it is not Y it is X; if a man is insufficiently fed, he cannot do a proper day's work; but it does not follow that if he cannot do a proper day's work, he is insufficiently fed; this may or may not be so. Hence we can only infer that ' If a thing is not Y, it may or may not be X ': and that is the force of 'Some not- Y is not- X ', regarded as a modal particular. Similarly with O; 'Some X is not Y ' will mean, ' If a thing is X, it may or may not be Y '; from which it follows that ' If a thing is not Y, it may or may not be X^{\prime}.
[The operations whose formal character has been considered in this chapter are called Immediste Inferences; but we have seen that one of them, Permatation, used to be regarded as belonging to the subject of Equipollency of Propositions, and J. S. Mill ${ }^{1}$ is not alone in so regarding them all. In his view we have been dealing merely with equivalent propositional forms ; the processes are 'inferences improperly so called'; and indeed they have once or twice been called tranoformations in the course of the text. Thus conceived, they would belong rather to a stady of language than to Logic. We must therefore consider whether there is really any inference involved in them or not.s

We must at the outset bear two things in mind: firstly, that in all inference there must be come movement of thought; we muat conclude with something not quite the same as what we started with; though the obviousnews of the inference is no ground for
' Logic, II. i. 2. 'Cf. Bndley's Logic, Bk. IIL. Pt. 1. c. ii. \$§ 80-87.
[denying that it is inference. Secondly, that the came form of proposition, d, E, I, or O, may be diveraly intended, and axpress different judgements, we have slready seen. I, for example, the particular affirmative, may be intended to asert the compatibility of attribates, or to make a statement aboat annemed individuals. If I say that some cities are episcopal sees, I may either have in mind particular cities not named, eny Durham, Winchester, and York, and make my assertion about them; or I mey wish to affirm generally that the status of a city and an epiecopal aee are compatible. In the former case, Darham, Winchester, and York are thought of for their own eake; in the latter, as instancee establishing the judgement. We may say that a proposition, taken as making an assertion abont individuals, whether these are specified by name, or indicated as some or all of a speoified kind, is intended distorioally; when it is taken as asserting a relation, whether of compatibility or of neceasary connexion (or separability or necessary disconnexion) between universale, that it is intended ceientifically. We shall find that the presence of inference, in come of the processes which we have to examine, depends on there being a trassition from one to the other of these modes of underatanding the proposition.

In the conversion of d to I, if convertend and converse are both understood historically, or both scientifically, there is no inference. All rumizante part the hoof \therefore some animale that part the hoof ruminate. If by the former statement I mean that varions species, which I could enumerate if I had leisure, but prefer to deaignate as all ruminants (i. e. all the ruminants), part the hoof, then I must know in making it that those cloven-footed species ruminato. The subjects of my thought are cows, atags, and camels, and so forth; I affirm that they part the boof; but I have recognized that they are all the ruminants, and can be so designated. In the converse, I am atill thinking of the ame animale; I deaignate them as cloven-footed, which 1 previoualy affirmed them to bo; and I affirm that they ruminate, which I had previously recognized. It is true that my former proposition apoke of 'all', and the latter of 'some'; and it might be urged that there is inference in seeing that I am not entitled to say that all cloven-footed animals ruminate. But surely I recognize this from the outset; when I say that all ruminante part the hoof, I know that is not equiralent to aaying that all cloven-footed animals ruminate; it can bardly be called inference to refrain from asoerting what I know I have no right to aseert ${ }^{1}$; and it is to be observed that when I assert that some cloven-footed animals ruminate, I do not positively assert that some do not; I merely restrict myself within the limite of what I heve a right to aesert.

[^97][Again, scientifically, the convertend aseerts that whatever raminatee parts the hoof; and the converse, that what parts the hoof may rominate. And I cannot know one property to be neceamalily connected with another, withoat knowing them to be compatible, or capeble of coexisting in the same individual. There is therefore no movement of thought, no transition to anything now, in pasaing from the former proposition to the latter. If, again, the inference be maid to lie in the limitation, in seeing that the right to infer a clovan foot from ramination does not involve the right to infer ramination from a cloven foot, the answer is as before; this should be known from the outset, and there is no inference in not inferring what you have no right to infer.

But now, suppose the proposition 'All X is Y ' to be undentood hintorically, and the converse 'Some Y is X ' ecientifically; then there is inference. If in fact all the ruminants do part the hoof, then generally ramination is compatible with a cloven foot. Set out in full, the argument would be that cows, and stage, and camels, and so forth, which rominate, part the hoof, and therefore an animal that perts the hoof may ruminate. But the inference is no longer immediate. It is really in the third figure of ayllogism. ${ }^{1}$

Similarly if the convertend is understood scientifically and the converse historically: because whatever raminates parts the hoof, therefore any given animals which raminate will do so, and they will be animals which exhibit both characters, so that nome clovenfooted animals ruminate. This also is inference, but not immedinte; for we are applying a general principle to particulars which fall under it, as in the first figure of syllogism.

The eimple conversion of I is to be similarly regarded. If 'Some X is Y^{\prime} be intended historically to assert that some thinge, which are X, are Y, then it means also that some things, which are Y, are \boldsymbol{X} : to realize one statement is to realize both, and there is no inference in passing from one to the other. If it be intended scientifically, to mean that Y is compatible with X, then it slready means also that X is compatible with Y. But if it be intended historically, to mean that some things, which could be named, and are X, are also Y, and the converse be intended scientifically, to asert in general that X is compatible with Y, then there is inference, but it is not immediate. We infer generally that Y may be \boldsymbol{X}, because certain individuals are in fact both X and Y; it is not from one relation between \boldsymbol{X} and \boldsymbol{Y} that we infer another, but from the relation of both as predicates to the same third term (those individuals) as subjects, we infer the compatibility between X and Y themselves. If, however, the convertand be intended scientifically, to assert the compatibility of Y with X, then the

[^98]' Litmitaseal
converse as an historical statement does not follow. There is CTS CNy ulubli of the Board of Trade; the latter office is compatible with the \imath Aikula, former; bat it cannot be inferred that some Presidents of the $-F_{n-4} \mathrm{zol}$, Board of Trade have been Secretaries for War.

With the simple conversion of E, the case seems to be different. Here, if both convertend and converse be taken scientifically, there seems to be inference. 'No X is $Y \therefore$ No Y is X ', understood acientifically, means, 'If anything is X, it is not $Y \therefore$ If anything is Y, it is not X.' This inference is of the same kind as what we found in the contraposition of A, and ahall meet with again in hypothetical reasoning. Again, if both be taken historically, there soems to be the aume form of inference. 'No mountain in Sngland is 5,000 high \therefore No mountain 5,000' high is in England'; I am not here, as in the conversion of A, considering the same individuals 98 my subject (though starting from a different charactar in them) in convertend and converse. I realize that if a given moantain 5,000 high (say the Rigi, whose height I might know but not ite situation) were in England, that would contradict the proposition that no mountain in England is 5,000' high; therefore the Rigi cannot be in England; and this seems to involve hypothetical reasoning. But if the convertend be intended historically, we cannot infer the converse in its ecientific intention. Becanse as a matter of fact ' No \bar{X} is Y ', it does not follow, so far as we can see, that what is Y is necessarily not X. If no Sikh smokes, but this is a mere fact about every Sikh, it does not follow that no smoker could ever be a Sikh. On the other hand, let the convertend be anderstood scientifically, and the converse historically, and there will be inference, for the converse in ite historical intention is only reached by first inferring the converse in its acientific intention, and applying the universal principle so obtained to all the actual cases of Y; again, however, the convertend, as understood acientifically, fails to assert the existence of any actaal савев.

The process of Permutation involves the use of the infinite or negative term not- Y in the predicate in lieu of Y. Now we have seen that an infinite term has not any meaning at all unlees it has come positive meaning; not- Y must mean something else than Y. ${ }^{1}$ We have seen also that the disjunctive judgement ' \boldsymbol{A} is either \boldsymbol{B} or C ' does not always imply than it cannot be both. Bat Permutation reste upon diejunction; Y and not- Y are alternatives, and it is assumed that if Y is affirmed or denied of any subject, not- Y can be denied or affirmed accordingly. Bearing in mind these
${ }^{1}$ Otherwise, the term in Y_{1} and the form not- \bar{Y} only ahows that \boldsymbol{Y} is being denied of comething in a judgement.
[considerations, we shall find that there is a certain difference in different cases, in respect of the presence of any real inference in permutation, according to the meaning attached to the negative term.

It is unneceesary here to separate universal and particular propositions. If we are told that X is not Y, and Y and not- Y are alternatives, one of which most attech to it, then since it does not exhibit Y, it muat exhibit the other, not- Y. We thus reach the affirmative, X is not- Y; and the question is whether that is any way different from the negative with which we atarted.

Now we cannot deny that there is any inference in disjanctive reasoning at all. When I argue that A is eithar B or C, and is not B, therefore it is C, there is clearly inference; and I coald not argue that, because A is not B, it is C, unless I were given the diejunctive premiss, A is either B or C, as well. But in permatation, my altornatives are not two different positive terms, like B and C, bat Y and not- Y. Is there any inference in eaying that because X is not Y, it is not- Y ?

It will be allowed that the conclusion would not hold anless X were either Y or not- Y. But it may be said that this, the 'principle of Excluded Middle', though true, is not a premise of inference. No one knows what he means in saying that X is not Y, unless he sees that in that case it is not- Y : any more than he can know what he means in earing that X is Y, unlese he see that in that case it is not not-Y. If a proposition in true, its contradictory is false; but there is no step from the trath of the one to the falsity of the other, no movement of thought; since the trath of the one is not apprehended withont apprehending the falsity of the other.

If the infinite term not- Y were parely negative, this view of the matter would demand seeent. But $P_{\text {and mat- }} \boldsymbol{Y}$ are in practice always alternatives within some definite limite Y may be $b / m e$, and then not- Y will be of some colour not bluc: or Y may be Englishspeaking, and not-Y speaking some language not English. And in pasing from one of these predicates to the other, there is inference, and we do not rely merely on the law of Excluded Middle. 'Noble blood is not blue \therefore it is not-blue': if this means ' of a colour notblue', we require the further premiss that it is either blue or of some other colour. We thus pass from a determinate positive predicate to anothor predicate less determinate, bat atill positive.

If however there is no positive alternative meaning in the predicate not- Y, then indeed there is no inference, bat only equipollency. 'Steam is not visible \therefore it is invisible' seems a mere sabatitution of one equivalent expreacion for another. It follows, that we cannot tell by the mere symbolic form whether the permatation of a negative proposition contains any real inference or not, but must look to
[the content ${ }^{1}$; and if it contains real inference, the inference is digjunctive.

The permutation of an affirmative proposition may, like this last, be no real process of inference. We pees here from ' \bar{X} is Y ' to ' X is not not- \bar{Y} '. It is not alwrys possible to find in this any other meaning than that from which we started. We cannot always interpret not- Y to meap ' posseseed of some other of the range of alternatives to which \boldsymbol{Y} belongs'; if a subject must display some one out of a given range of alternativea and does not display Y, it will display one of the othere; but if it does display Y, we cannot be sure that it may not display one of the others as well. If a man holds offlce in the Government, and does not hold an office that entitles him to Cabinet rank, be must hold an office that does not entitle him to Cabinet rank; but if be does hold an office that $s o$ entitles him, he may also hold one that does not. Equally, if not- Y is quite unlimited in range, and includes everything whatever except Y, it will not follow that because X is Y, it is not aloo not- Y; becanse we can predicate of a goose that it hisses, we are not precluded from applying any predicate but hisaing. The only sense, therefore, in which it is true to say that X is not not- Y, is one in which we deny no alternative, bat only deny the denial of \boldsymbol{Y}; and that is juat equivalent to the affirmation of \boldsymbol{Y}, or at least can hardly be said to involve any inference from it. If however we have in mind a range of matually exolusive alternatives among which \boldsymbol{Y} is one, then permatation takes us from the affirmation of Y to the denial of the rest; and this is again disjunctive ressoning, wherein the conclasion will be more or less definite according to the definitivenese of our knowledge of the alternmtives to \boldsymbol{Y}. But so far as there is inference here, there is no use of an infinite term; where not- Y is really infinite or unlimited, the only sense in which the permutation of an affirmative proposition is logically justifiable is one in which it involves no step of inference. ${ }^{\text {? }}$

We have already dealt with Contraposition $e 0$ far as it can
${ }^{1}$ The reader mey be reminded, that among the range of alternatives which the denial of a positive term leares open, the corresponding negative term has often come to aignify one only. Nnt-blue may cover all colours but blue; but wnfriendly does not cover all the alternatives to friondly; it implies a definite degree of hortility which may be abeont in those who are not positively friend y to us. But this is a matter of tho interprotation of language rather than ode of Logic.

This is no doabt why Wallis (cf. p. 216, n. 1, mupra) did not diatioguiah contraposition from conversion by negation. 'Hanc formulam locum habere docent in Particulari negative Atque huine potimimam, cause videtur fuise introducte: at quae per neatram reliquarum converti poseit. Puta. Aliquod snimal non eat homo: ergo, Aliquod non-homo non eat nananimal; een (quod tantandem est) Aliquod non-homo ant animel; sen, Aliquod quod non eat homo, eat tamen animal.' loc. cit.
[be treated as a mode of inference from hypothetical propoeitions. It is hardly necesary to deal at length with conversion by negation. The conversion of O by negation is permutation, and then the simple conversion of I. The general result of our investigation is, that from the aymbolic form of these processes it cannot be determined whether they contain any real inference or no; that where there is real inference, it is either, as in the conversion of E and the contraposition of A, of the kind that we shall study in dealing with bypothetical arguments : or, as in the permutation of \bar{E} and O, of the kind that we shall study in dealing with disjonctive arguments ; or, as in the conversion of d and I, and that of O by negation, it involves suppreseed syllogism. Immediate inferences, therefore, so far as they are inferencea, are not a distinct kind of inference; so far as they seem distinct, and apecially unquestionable, it is because they merely bring out another arpect of what we have alreedy intended in a propontion, without any freah step in thought. This result may throw some doabt upon the approprinteness of the name by which they have become know.]

The immediate inferences which we have considered so far have all been of a more or lesa formal character; as is ahown by the fact that they have been capable of explanation, up to a point, by using symbols and not real terma. There are certain kinds of inferencea, which have been called immediate, that cannot be axhibited by symbole at all, bnt only in concreto. One of these is known as Immadiate Inference by Δ dided Determinaste: in which we add the same qualification to both exbject and predicate in a judgement, and hold the result of our operation to be true, on the strength of the trath of the original judgement; a.g. 'A negro is a fellow creature \therefore a negro in suffering is a fellow creature in suffering'. Another is called Immodiate Inforonce by Comples Concoption: in which the sabject and predicuts of a given judgement are used to qualify in some way the same term, and thus complex concepta are formed, that are made subject and predicate of a new jodgement, e. g. 'Physics is a science \therefore. physical treatioes are scientific treatises'. The following examples, some of them sound and some unsound, but the sound identical in form with the unsound, will serve to show that the ground of the soundness of these argumenta does not lie in the form of them :-

[^99]The horse in an animal \therefore the head of a horse is the head of an animal.

Horsen are animaln \therefore the greater number of horses is the greater number of animala.

A shark is not a mammal \therefore the anatomy of a shark is not the anatomy of a mammal.

A ahark is not a mammal \therefore the food of a ahark is not the food of a mammal.

A ahark is not $\mathrm{a} \operatorname{dog} \therefore$ the owner of a shark is not the owner of a dog.

It is not worth while multiplying arguments to show how entirely the validity of ruch inferences an these involves their content. It would not be poseible to reduce them to a definite namber of fixed typea, though in corsidering genemilly which are valid, some of Aristotle's observetions in the Sophistici Elonchi, eqpeoially those on what he calls the Fallacy of Accident, would be pertinent. But their mention here will serve to illustrate, what it is well to realize early, that inference is not a purely formal process; that arguments are not all built on the principle of American watches, with interchangeable parts ${ }^{1}$, so that terms from one may be transferred to another, without interfering with the working of the inference; and that the study of inference, lize the study of life, is largely a matter of examining lypes: though there are a certain namber of common forms, which recur identically in divers contents. One of the moot famoue of these common forms is the Syllogiam, to which we must now proceed; it hae often been regarded as the form of all inference whatover that is not 'immediate'; it is indeed highly genaral, and applicable to all kinds of subject-matter; though the natare even of it cannot be profitably atudied altogether in the abotract, but is to some extent affected by the concrete character of ite terms.

[^100]
CHAPTER XI

OF SYLLOGISM IN GENERAL

Abistotle, who was the first person to work out the theory of syllogism, though not, of conrse, (an Locke malicionaly anggesta his followers claimed) the fint to reason ayllogistically, defines
 кeludyon if dydykns ourßalvat rî raûra elvai ${ }^{1}$: that is to eny, 'discourse in which certain things being posited, something elee than what is posited necessarily follows on their being true'.

This definition is too wide. It covers, as the word ayllogism in its etymological signification itself covers, every argument in which from a consideration of two traths we infer a third-every argument in which (to use a homely phrase) we 'put two and two together', and find a certain conclasion necemarily following ${ }^{2}$. Bat neither by Aristotle, when he investigated in his Prior Amalytice the various forms of syllogism, nor by the world, which has followed Aristotle, has the term been actually used so comprehensively. A gyllogism is actually an argament in which, from the given relation of two terms, in the may of oubject and prodicate, to the same third term, there follows necessarily a relation, in the way of sulject and predicato, between those two terms themselves. ${ }^{3}$

Erample will best explain what is here meant by the words italicized. If A is equal to B, and B is equal to C, then A is equal to C. If a bullet travels faster than a horse, and a horse travels faster than a man, then a ballet travels faster than a man. Now here the terms are A, B, and C : or a ballet, a horse, and a man ; but the relations between the terms are in the one case relations of

[^101]quantity, in the other of velocity. A and B are not related as subject and predicate, for I do not say of A that it is B, but only that it is equal (in quantity) to B; a bullet and a horne are not related as subject and predicate, for a bullet is not a horse; its asserted relation to a horse is in the way of travelling faster, not in the way of being a aubject whereof borse is a predicate. No doubt it is a predicate of a ballet, that it travele faster than a horre, as it is a predicate of \boldsymbol{A} to be equal to \boldsymbol{B}; but then what I proceed in my argument to compare with C is B itself, and not that which is equal to it; what I eay travele faster than a man is a horse, and not what travels faster than a borse. A, B, and C, a bullet, a horse, and a man, are the terms which I compare, the former in respect of quantity, the latter of velocity; and from the given relations of Δ and C to the common term B, in the way of quantity, I deduce a relation between Δ and C themselves in that respect; or from the given relations of a bullet and a man to a horse in the way of velocity, I deduce a relation in the way of velocity between a ballet and a man.

Now the relations between the terms of an argument may be in the way of subject and predicate; and then the argument is a syllogiam. Let us for the present use the aymbols X, Y, and Z to represent terms related in this way, Suppose that X is predicated of Y, and Y of Z; then X must be predicable of Z. For example, silver prints fade in the sun; and the photographs which I have bought are silver prints ; therefore they fade in the sun. Here the torm common to the two presicses (for sach the given propositions are called, from which the conclusion is deduced) is silver printe (η): that is predicable of the photographe which 1 have bought (Z), and of that is predicable Kefade in the oun (\bar{X}); hence xefade in the sum (X) is predicable of the photographe which I have bought (Z). Or again, Y may be a predicate affirmed or denied both of X and Z; in the Dreyfus affair, the French War Office frequently argued that the man who wrote the famous ' borderesu' was on the General Staff: Esterhazy whe not on the General Staff, and therefore did not write it ; here \boldsymbol{Y} (being on the General Slaff) is affirmed of X (the man who wrote the ' bordereaw') and denied of Z (Esterkazy); and hence \bar{Z} ia denied of Z -Eaterhazy did not write the 'bordereau'. Yet again, \boldsymbol{Y} may be a subject of which both X and Z are predicates affirmed or denied; then X may be predicable of Z, or vice versa. The horse is atrong,
and is an animal that lives exalusivaly upon a vegetable diet; therefore an animal that lives exolusively upon a vegetable diet may be atrong: Here we have two terme, atrong (\bar{X}) and being am aximal that lives esolurively apon a vegotable diel (Z), affirmed as predicates of the same torm (Y) the horce; and we hence deduce that X, atrong, is predicable of Z, an animal that lives exclnoively apon a vegetable diel, not indeed necemarily and univerally, bat as a posaibility in certain cases.

These examples may perhaps explain what is meant by ferms being related in the way of subject and predioate, and how the relation of two terme in that way to a common third term may necessitate their relation in the way of subject and predicato to one another.

What is here called a relation in the way of subject and predicale may be also called a relation in the way of subject and atiribule; as it is called, for example, by Mr. Bradley in bis Logic, Bk. II. Pt. i. c. iv. $\$ 10$ and elsewhere. If the word attribute is ased, it muat be understood generally of anything predicated ${ }^{2}$; it is an attribate of Baal to be a god, to be talking, to pursue his enemies, to be on a journey, to be aleep, to need awakening, to bave 450 prophets in Israel, to be worabipped by the Philistines; whatever can be affirmed or denied of him is an attribute affirmed or denied; the attribute may be in any category, of substance (as when we may that he is a god), of quality, time, place, state, relation, occ.; the only thing neceseary is that it abould be related to him as a predicate to a subject, not (for example) as an uncle to a nephew, as yestarday to to-day, as canse to effect, as here to there, as means to end, as more to less, \&c.; all of these are relations in which terms may stand to one another, if we mean by terms distinct subjects of thought, and not merely the subject and predicate into which the judgement which affirme their relation is resoluble. Thus when I say that the Old Pretender was nephew to Charles II, he and Charles II may be called the terms placed (in this judgement) in a relation of coneanguinity; he and 'nephew to Charlee II' are the terme placed in a relation of subject and attribute. When I eay that Edinbargh is weat of Liverpool, Edinburgh and Liverpool are the tarms pleced in a apece-relation; but Edinbargh and 'west of Liverpool' the terms placed in a relation of subject and attribute.

[^102]Understanding the word in this comprehensive sence, we may say that the theory of ayllogirm is the theory of inference in the domain ${ }^{1}$ of aubject and attribute, juat as well as in the domain of enbject and predicate. Bat it is important to remember that 'attribate' is baing used in a wider sense than it usually bears; we ahould not ordinarily call it an attribute of Mr. Pickwick to have been once imponnded ; or of Becky Sharp to have thrown Dr. Johneon's Dictionary out of the carriage window ; the word is not ordinarily anderstood to inolude actions, or the casual relations of one thing to another; bat in its present use, it inclodes every predicate. The advantage of using it is this, that it explains what we mean by predicate. Thinge may be related in space, time, quantity, degree, consanguinity, or as cause and effect : all this conveys a pretty definite meaning to us. They may be rolated in the way of subject and predicate; bat what, we may aek, is the relation of a predicate to its subject? it is that of an attribate-charaoter attributed or belonging to it. In explaining predicate as attribate we subetituto, we may eay, a word expreaing a real, for a word expressing a logical relation. Blue is an attributo of the gentian really and always: a predicate, only when one j wdges that the gentian is blue. It is true that in the theory of ayllogirm we have to do with attributes only eo far ae they are predicated; but we think of our predicatee ase attributes.

It has often been held that the syllogism is the type of all

[^103]reaconing, except the inferences called immediate. ${ }^{1}$ No one has done more to diepel this illuaion than Mr. Bradley, in his Logic; though perhape the zeal of an iconoclast hae prevented him from dwelling enough on the fact that the syllogism formulates reasoning which is very frequent in occurrence. But our present buniness is to become familine with the theory of eyllogiam on its formal side. There is a procision and completeness aboat this theory, which have made logicians dwell on it with eomething of an artist's concentration; and the truth of science has sometimes been ecrificed to the neatnese of exposition.

The buaines of syllogism is to eatablish a relation in the way of subject and predicate between two terms, by means of their reletions in that way to the same third term. But the judgement which relates two terms as subject and predicate may be univeral or particular, affirmative or negative. Moreover, we have seen that there are various ways in which the two terms that are to be brought together in the conclusion may be related to a common third term; both may be predicated of it, or it of both, or one of it and it of the other. Therefore a vary general problem presents itealf to us, which may be stated thas-writing Δ for any subjeot, P for the predicate which is to be brought into relation to it, and M for the third or middle term whose relations with S and P are to bring them into relation with each other. What must be the quantity and quality of the propositions (or premisees) connecting S and P respectively with M, and how muat \boldsymbol{M} be related (i. e. as aubject or as predicate) to S and P in thene promiseses, in order to establish in the conalasion s proposition whoee terms are S and P, of the several forms A, E, I, and O ? In other words, what forms of premiseee will prove that all S is P, no S is P, some S is P, or some S is not P, by means of the relations, in the way of subject and predicate, of S and P respectively to M ? Or, yet again, what relations in the way of anbject and predicato between two torme S and P respertively and a common third term M will establich what relatione in the way of anbject and predicate between those troo torme thempelves ? This is the question, put in its most abstract form, to which the formal part of the theory of syllogism is an answer.
${ }^{1}$ a.g. Hobbes, Art of Rhatoric, BL. I. c. i, 'sll inferences being syllegisme' : a. Molesworth's ed, Eingliah Works, vi. 428.

CHAPTER XII

OF THE MOODS AND FIGURES OF SYLLOGISM

A. Nomenolatare. 1. In any syllogism, there are two propositions taken as trae, and another inferred or following from them. The latter is called the oonoluation (Lat. quacetio or conclusio, Gl. \quad т $\delta \beta \beta \lambda \mu a$ or $\sigma \tau \mu \pi d \rho a \sigma \mu a)$: the former the promisees (Lat. preemisea, Gk. тpordects).

It was said, that the premienes are takon af true: whether they are true or falee, the conolusion which they field is the same; only that if they are true, it is true, and if they are false, it is probably false. ${ }^{1}$ We are not concerned, therefore, in the formal theory of syllogism, with the trath or falsebood of our premisses or our conclusion, but only with the validity of our recooning: we wish to know, if the premisses are granted, what must be granted as following from them. If our reseoning be correct, a man cannot admit the premisees, and deny the conclusion. Suppose that a man admits that every restriction apon freedorn of contract is mischievous, and udmits that the marriage laws restrict freedom of contract, then he must admit the marriage laws to be mischievona,

It has been made a reprosech to the theory of syllogism, that it looks only to the cogency of the inference, and not to the truth of the premisses. We need rules, it is said, by which to determine whether a proposition is actually true, and not merely whether it is true, upon the hypothesis that certain other propositions are so. The theory of ayllogism is decried as a Logic of Consistency; for the most that it can do is to furaish rules by which to judge whether diflerent assertions are consistent with one another. In rivalry with the Logic of Consistency, some writers have projected

[^104]a Logio of Truth, and offered it to the world under the name of Induction. ${ }^{1}$ But it has been unfortanately discovered that the 'Induotive Methode' that were to teat the trath of the premisese, from which the doctrine of sylloglom enquires what may be inferred, suffered from the mame defect as the syllogiam itself; for they also were procesees of inference, in which conalasions were drawn from premisees; their conclasions were only true, if the premisese were true; they ahowed themselves quite anable to determine whether their premimen were true or not, though it was generally juat on that point that diaputes were most pronounced.

The fact is, that so fir a reasoning can be reduoed to fired forms at all, and these forms studied in the abotract-whether or not the forme are syllogistic-we muat dieregard the trath of the premimes ; for in expounding an abstract form of reaconing we may even use symbole for terms ${ }^{2}$, i. o. we do not troable ourselves to ask what in partionlar the terms are at all; and bence we cannot be asking whether the judgement which connecta them is trae.

Given then the premimes, the conolvion follows necesarily; but it may neverthelen be false, if the premisen are falce. The premisses, however, need not in the fint place be given, they may be ranted.

Supposing a man to have admitted that whatever discouragee thrift and independence is evil; and to have admitted that an universal aystem of pensions in old age at the coort of the rtate discouragee thrift and independence : then be mart admit as a conclusion that auch a ayatem is evil. Here, and to such a man, the conclusion presenta itwelf in the first place an a consequence of what is already granted or 'given'. But supposing a man to be in doubt whether an univermal ryatem of pencions in old age at the cost of the state is evil or not, and to be soanting come proof, one way or the other; and that a friend ofere him the above 'premisese', as ahowing that it is ovil : then, and to him, the 'conolusion' presents itaelf in the first place as a question or problem, abont which he wants to know whether he is to affirm or deny it ; and ayllogian is a proceses of finding proof, rather than of drawing consequonces.

It makes of course no differonce to the form of promiseses which
${ }^{1}$ Cf. Mill's Logic, III. iii 9.
${ }^{2}$ As J.S. Mill does in expounding his Inductive Methode: bot his eymbole are very inadoquate.
will catablish a particular form of conclusion, whether the premises be first known, and the conclacion diccovered as a consequence : or the conclacion raised es a problem, and the premistee discovered to settle it. And in either cese alike, the premineen are 'given' in the sense of being admitted and not proved in the argament. But they are not alway 'given' in the sense of being that with whioh a man begins: our thought is as often occupied in looking for premisess to establish what we beliove or suspect, as in looking at premisees to see what follows from them. And that is why Aristotle need the expreesions $\pi \rho \delta \beta \lambda \pi \mu a$ and $\pi \rho o \sigma^{*} d \sigma e t s$. For him, the conclusion whe generally regerded as something to be proved ${ }^{1}$: the pramieses, as something proffered in proof of it; and so he asked rather, ' What kinds of premisess are required to prove various kinds of concluaion ($(1, E, I$, and O)?' than 'What kinde of conalusion follow from various combinations of premisess?' But 80 scon as he had answered his question, and said 'These hinds of premises prove the various kinds of conclasion ', then other people could look at the matter from the side of the premisses first. To them, the premisees were somothing which, if given, necessitated a certain form of conclusion : rather than something which, if a certain form of conclasion were to be established, must be given.
2. The premisses are called respectivaly the major and minor premise. This nomenclature is adjusted to that of the terme in the argament. There are, as we have seen, three terms in a syllogism : two, which form the subject and predicate of the concluaion, and one with which eech of the former is brought into relation (in the way of subjeot and predicate) in one of the premisess. The anbject and predicate of the conclusion are called respectively the minor and the major terms: the term common to the two promisses is called the middle torm. The major premisa is the premies in

[^105]which the major term occurs, and the minor premise that in which the minor term occars. Than in the ayllggism

All organioms are fortal Man is an orgainism
\therefore Mà is mortal
the major term in mortal, and the roajor premin all organisme are mortal; the minor term man, and the minor premisa mas is an organion ; the middle term, organism.

It will be noticed that each term in a syllogiam appears twice: the major and minor terme each in ite reapeotive pramim and in the conolasion, the middle tarm in both premisses bat not in the conalusion.

In giving examples of syllogism, it is ural to write down the major premise first; bat in ordinary life and conversation, no particular order is obeerved; nor is it mecessarily the mejor premiss that is written first in a logical arample. ${ }^{1}$ The only mode of determining the major premise is to look for the premies which contains the predicate of the conclusion.
3. Syllogisme are mid to differ in Agare ($\sigma x \hat{\jmath} \mu$ a) socording to the position of the middle term in the premisees: (i) The middle tern may be subject of the major premiss, and predicate of the minor: in this caso Aristotle called the ayllogism of the firat (or perfect) figare. The example just given belongs to the first figure, no aloo doee the following:-

> No insecta haje elght legs
> Watpe are insects p.
\therefore Watp have not eight lega.
It is convenient to have a conventional symboliam, in which to represent ayllogioms according to their form; we ahall use the lettors P, M, and S. S ($=$ subject, of the conclusion) will always indicate the minor term, P ($=$ predicate, of the conclusion) the major term, and M the middle. Thus the figare of both these examples (i.e. their form, so far as it depende merely on the position of the terms in the premises) may be written

$$
\begin{array}{r}
M P \\
S M \\
\therefore S P
\end{array}
$$

${ }^{1}$ Cf Locke, Remay, IV. xvii. 8 (fourth or later edition).
${ }^{2}$ Cf. c. 5i, enpra, pp. 226-227.

If wo wished to indicate in our aymbols the charncter of the propositions which compose the syllogimn (i. e. whether univermal or particular, affirmative or negative), we ahould have to write our two examples differsatly. The former is of the type

> All M is P
> All S is M
> \therefore All S is P
the latter of the type

> No M is P
> All S is M
> \therefore No S is P.
(ii) The middle term may be predicate in both premisees, the figure of the syllogism being indicated ae followe:-

$$
\begin{array}{r}
P M \\
S M \\
\therefore S P
\end{array}
$$

e.g. No ineecte have eight lege Spidens have oight lege
\therefore Spiders aro not insecto.
Syllogiame in which the middle term is thue pleced were called by Aristotle of the second figure.
(iii) The middle term may be subject in both premisees, the figure of the syllogim being indicated an follows:-

$$
\begin{array}{r}
M P \\
M 8 \\
\therefore B P
\end{array}
$$

e.g. The Veddahe of Ceylon show great conjugal fidelity The Veddahs of Ceylon are savages
\therefore Some anvages ahow great conjugal fidelity.
Syllogisms in which the middle term is subject in both premises were called by Aristotle of the thind Gigure.
(iv) Aristotle recognized only these three figures. But he pointed out ${ }^{1}$ that the premiseses of a syllogism in the firat figure would cometimes justify you in concluding to a particular proposition in which the minor term was predicated of the major, oven though no ${ }^{1}$ Amal. Pri. a vii. 298 19-27 (of. p. 258, n. 8, infra).
conclusion was pomible that predicated the major of the minor. For example, from the preminees

Some parliamentary voters are freaholders
No women are parliamentary voters
it is impossible to determine whether any women are freeholders or not (for a reseon which will be explained later); but we can conclade that some freeholders are not women.

Again, from the premimee
All persons who have the frunchise are eligible to Parliament ${ }^{1}$
No woman has the franchise
we cannot conclude that women are not aligible to Parliament (for others might be eligible besidee thoee who bave the franchive); but we can conclude that some persons who are eligible are not women.

The famous phyrician Galen is anid by Averroee to have referred arguments of this kind to a eeparate and fourth figure (mometimes called after him the Galenian figure), in which the middle tarm is predicate of the major premise and subjeot of the minor: the figure being accordingly aymbolized

$$
\begin{array}{r}
P M \\
M B \\
\therefore B P
\end{array}
$$

The theory of syllogiam has been mach darkened by this addition. ${ }^{\text {a }}$ For in erecting these arguments into a separate figure it is implied that the diatinction between major and minor term is arbitrary, one of plece and not of function. The meaning of that distinction must be considered next.
4. We have said that the major term is the predicate of the concluaion, and the minor the subject. But why are they called major and minor? Did Aristotle merely want shorter names, to avoid the constant repetition of such cumbrous expreseions as 'subjeot of the conclasion' and 'predicate of the conclasion'? Are the names chosen arbitrary? And would it have been equally appropriste to call the subject of the conclusion the major, and the
${ }^{1}$ If the premin had to be true, the olergy must be exoepted.
2 In the second and third Ggures, where the middle term occuples the same position in both premines, either premise may be regarded an major, without affecting the entuation of the middle torm: and hence there is no ponibility of oreoting a separate figure bearing the ame rolation to them an the foarth does to the fliot.
predicate the minor term? Or, on the contrary, doen the choice of names indicate a real feature of the relation between subject and predicate in a judgement? Is there a reason why the predicate should be called the major term, and the sabject the minor?

Aristotle conceived that there was such a reason, not indeed in all judgemente, but in moot and especially in acientific judgements (i. e judgementa which really express knowledge). We shall do best to look first st judgements in which the distinction of major and minor term is arbitrary. 'Some scholars are stateamen' might be es well expressed by eaying 'Some stateamen are scholare'; for here the two terms or concepts have no neocesary relation: it is only sacoincident in the same individual that atateaman can be predicated of acholar, or vice versa; and there is no more reason for making one term enbject than the other. 'Some poulterere are not fishmongers' is a jodgement of the same kind: the two tradea are frequently conjoined, but merely conjoined, and as there would be no more reason for making the sale of fish an attribute of a poulterar, than the aale of poultry an attribute of a fishmonger, so in the negative judgement, each term is with equal propriety denied of the other. But where the subject of a judgement is a concrete thing or person, and the predicate an attribute: or where, though the subject is an abstract term, yet the predicate belongs to $i t$, and is not merely coincident with it in the asme thing; there the two terme cannot equally well be predicated of each other. We cay that Cecear was a great general ; if wo said 's great general was Creasi', we should still be understood to make Caesar the subject, and to have merely inverted the unual order of words in the sentence. We any that diamonds glittar, rether than that come glittering things are diamonds; that blue is a colour, rather than that a colour is blua. ${ }^{1}$ To say that a colour may be blue is natural enough; just as it is to say that a atone may be a diamond ; but etill wo predicate the genus of the species, and not the species of the genus : it is not the genus colour, but colour in some particular case, not the genus atone, but some particular mineral that is blue or that is diamond. Commonly, except where they are merely coincident attributes ${ }^{2}$, the predicate is a wider term, or more generic,

[^106]than the sabject in jodgement; it is eomething which belongs to this and may balong to other subjecta, not a part of the ertension of the subject iteelf. It is nataral to predicate the genus of the apecies, the attribate of the concrets thing. In ecience erpecially, whose judgemente ahould be neceasary and univeral, the predicate, if not commensunate with the subject, must be the wider term. We cannot predicate oniverally of any torm what is only part of its axtension. If stone is a wider or more comprehensive term than diamond, other things beaides dinmonds aro atones, and therefore that proposition must be particular in which diamond is predicated of atone. A diamond is a stone, a stone may be a diamond; blue is a colour, a colour may be blue

In calling the predicate of the conclusion in asylloginm the major term, then, Aristotle choes a name which wes appropriate, both when the predicate is related to the subject as attribute to concrete thing, and when it is related to the subjeot as the more to the leas generic. And by the name major he wished to indicate not (as is cometimes mid) that the predicate denoted the larger class; for he did not think of a predicate an a collection of things, including a maller collection (denoted by the subject-term) within it; he meant, that it was the more comprebensive notion : embracing as it were all the subjecte of which it could be predicated, but ae a character in them and not a clace in which they were. ${ }^{1}$
of the thing they denote, if they aro not in the calegory of subetance: cf. supre, p. 25, n. 1.
in indopting these expremions, however, Aristotle had not in mind what in the Pootorior Analytice he rightly recognises as characteristic of acience, that it aima at demonotrating commersurate judgementa. Btill, there are many acientific jodgemente which have not that charactor, and oven in thoee that have it, the predicate, conoidered apart from the demonstration. no, like any other predicate, conceived ese what does belong to thin gubject, and might belong to othera. It is only in the demunstration by which it is shown to belong to one rubject, that we come to realize it can belong to that aubject alone. If we mee, for exmmplo, in proving that the anglo in 4 nemicircle is a right angle, that the proof hingea apon a feature which cannot belong to the angle in another eegment (vis that the bese of the triangle pames through the centre of the circle), then we see that the prodicate is commensurate with the enbject: and then also the predicate if I maly mo expreme myeelf) sinla into the concrete nature of the subject, and becomes a necessary part of the aubject-concept. While a demonatration is atill wanted by ue, to ahow ua that the angle in a aemicircle in a right angle, we have no ground for supposing that that in not a property of angles in nome other negmenta as well : so moon as we realize that it can be the property of none other, we have incorporated the demonstration with the sabjeotconcept (of the anglo in a nemicircie) and major, minor, and middle

The middle term takes ita name not simply from being a point of connerion between the other two, but from being really an intermediste concept. This it is, however, only in the firnt figare. It is only there that the middle term is predicated of the minor, and the major predicated of it. In the socond, it is predicate in each premise; in the third, a subjeot, of which both major and minor terms are predicated. But that which in the first figure is really a middle term between the major and minor serves equally in the others to be the means of establishing that relation between the major and minor which we wiah to prove; and the nomenclatare that is fixed by the first figure is extended to thern all.

We can now see that Galen was wrong in adding a fourth figure to the ayllogism. Where the same term M is predicated of one term Z and is the sabject of which another, X, is predicated ${ }^{1}$, there X is the more comprehensive term, and Z the lees comprehensive: X is really and in our thought the major, and Z the minor. We do not change this fact, by framing a forced and artificial judgement, in which the naturally minor term is predicated of the naturally major. Let us take an example.

All organisms are mortal

Man is an organiam
\therefore Man is mortal
is a syllogism in the first figure. But the premises allow us to conclude that some mortals are men. None the less, man is not really a predicate of mortal ; this conclusion affirms of the subject mortal a predicate man, that is naturally related to it as its subject or as minor term to major. Nor is it otherwise, even where the premisses allow no conclusion to be drawn in which the naturally major term is predicate. Take one of the examples given on p. 285 ; from the premisees

All persons who have the franchise are eligible to Parliament
No woman has the franchise
torms have for us lont their isolation. Demonatration, when complete and while completely realized by the mind, may be aaid to collapte into e judgement whoee torms are interfused. Bat the major term, while wositing to be domonstrated, is atill the mora comprebensive notion, oven in regard to a mbject with which it is to be proved commenaurate; while if it in not commensurate, it remains the more comprehensive. Cf. p. 807, infra.
${ }^{1}$ I use the aymbole Z and X for S and P hero, in order not to seem, by taking letter which auggent 'subject' and 'predicate ', to prejudge the question, which term ahould be made the arbject.
we can draw no conclusion ase to whether women are eligible to Parliament; bat we can conclade that nome persons aligible to Parliament are not women. Yet what an unnatural jodgement is this. To be a woman is not conceivable as an attribate of eligibility to Parliament; but eligibility to Parliament is conceivable as an attribute of women; hence we might properly say that some women are not eligible to Parliament ; but it in forced and artificial to eay that some eligibles to Parliament are not women. ${ }^{1}$ Though we aay it, we feel that we are making that a predicate which should be sabject, and that a subject which should be predicate. It is true that this conclusion is got, and is all that can be got, out of the premisses: but it is of no scientific nolue. Either the fact is that no one eligible to Parliament is a womanand that ought to be expressed conversely, that no woman is oligible to Parliament; or else if eome persons eligible to Parlizment are women and some are not, we want to know what women and what men are eligible; bat no one who had any knowledge of what qualifies and disqualifies for election to Parliament would express any part of that knowledge in anch a proposition as that ' come eligibles to Parliament are not women'.

The introduction of the fourth figure then reata on the erroneons idee that a term is made a major or minor term by being thruat into the position of predicate or subject in a proposition; whereas in fact a term is made predicate rather than subject when it in in ite own nature, by comparison with the subject, a 'major' term: i. o. a torm more aniversal, sbatract, generic, or comprehensive, than the other.

Bat the forrth figure has been taught for so many centaries among the 'moods and figures' of the syllogism, that for the sake of the history of Logic we cannot altogether ignore it, even while we recognize the error in which it had its birth.
3. The last paragraph spoke of moods and figures of the syllogism. The difference of figarea has already been explained to depend on

[^107]the position of the middle term in the premisen. The difference of mood depends on the quantity and quality of the propositions composing the syllogism. This may be the same in different figares, or different in the mane figure: e.g. in the syllogisms

All organiame are mortal

Man ia an organiam
\therefore Man is mortal :
and No unlicensed body may all liquor to atrangere A college is unlicensed
\therefore A college may not eell liquor to strangers :
the figure is the same (the first), but the component propositions are in one case of the form A, A, A, and in the other of the form $\boldsymbol{E}, \boldsymbol{A}, \boldsymbol{E}$. If the acond ayllogiom be now compared with the following :

No good comrade avoids plesure
All ascetica avoid pleasure
\therefore No ascetic is a good comrade :
it will be seen that the component propositiona are of the same form in both, E, d, E : but the figare is different.

The different moods have received distinct names in the varions figures wherein they occor; and bence what are called the 'moodnames' of the varions forms of syllogim indicate both figure and mood. What moods are possible in what figares-i.e. what combinations of premisses, as detarmined by their quantity and quality, will yield what form of conclusion (A, E, I, and O) with each position of the middle term-is the general problem to whioh the formal part of the theory of ayllogiem has to find an anower. We are now familiar with the technical terms thes we shall employ in solving the problem. We must next consider the solution.
B. The only method of originally determining what combinations of premisses will yield what conclusion is to try them all, with each position of the middle term, and see. This is what Aristotle did, in the Prior Analytics. But when it bas been done, it is possible to review the result, and there recognize the nature of the faults committed in those which are invalid, and the rules which therefore must be observed (whether in all syllogisms, or in those of a particular figure) in order to validity. These rulea may then be placed in the
forefront of our exposition; it may be shown, by the help of an example, that the breach of them brings invalidity; and in each figure, out of the whole number of ways in which it is mathematically possiblo to combine two premisses, when each of them may have either of tour forms, we can moertain which in each figure are conformable to the rale that we have found neceseary to be obverved in that figure.

The syllogism is now generally tanght in the latter manner, which is the more formal and systematic. But the other is the more natural, and we shall therefore begin, for the first figure, with that.

A valid mood of syllogism is immedistely seen to be valid by any one who considers it in a particalar example, and though the axample is particular, the form of inference is seen to be ralid universally. The beat way, on the other hand, to show that a roood is invalid, is to produce examples in which the premieses and conclusion are of the quality and quantity which that mood requires, and show by them that while the premisges are true, the conolusion may be indifferently true or falce. For if you cannot rely on a form of argament to produce a true conclusion from true premises, it certainly is not a valid form.

Now in the flrat figure the middle term is subject of the major premian and predicate of the minor. Let us take the possibilities in order.

1. Both promieses wniversal.
a. both affirmative; the mood is valid, and the conclasion 4 :

All organisms are mortal	All M is P
Man is an organism	All B is M
\therefore Man is mortal ${ }^{1}$	\therefore All B is P

b. both megative; no conclusion follows:

Sounde have no scent
Colours are not counde
No M is $P \quad 0$
\therefore Coloura have no scent
No S is M (2)
Sounde are not visible
Colours are not sounds
\therefore Colours are not visible ${ }^{1}$

[^108]c. one affirmative and the other negative:
i. the major negative; the mood is valid, and the conclusion E :
No Protentant acknowledges the Pope No M is P
Latherans are Protentants
All S is M
\therefore No Latheran ecknowledges the Pope \therefore No B is P
ii. the minor eagative; no conclusion follows:

Lutherans are Protestante
Calviniste are not Latherans
\therefore Calvinists are not Protestants
Latherans are Protestants
Romanists are not Latherans
\therefore Romanista are not Protestants
2. One premices wniversal, and one particular.
a. both affirmative :
e i. major saiversal, minor particular ; the mood is valid and the conclusion I :
What raises prices injures the consumar All M is P
Some import-dutiea raise prices
Some S is M
\therefore Some import-daties injure the consumer \therefore Same B is P
ii. major partioular, minor sniversal; no conclusion followe :

Some tares are levied at death
Some M is P
Excise-duties (or Legacy-daties) are tares
All B in M
\therefore Excise-datiee (or Legacy-daties) are levied at death \therefore
b. both negative:
i. major wniversal, minor particular; no conclumion followe:

Starches contain no nitrogen \quad No M is P
Some foods (or flesh-foods) are not starches ${ }^{1}$ Some S is not M
\therefore Some foods (or flesh-foods) contain no nitrogen
univeral, it hes not been thought necemary to mark the quantity in that way. But with aymbole, because there is then no content to guide us, this in nocemary.

It is true that no fleoh-foode are atarches. But if with premisses true and of the above form the conclumion is to be false, it is imposible to find an example where it would not be equally true to eaunaiate the minor premim univernally. For muppose that only some S is not \boldsymbol{M} : then some S is M, and with the help of the major premian, no M is P, it will follow that come S is not P. Bat this conclation wes to be filse; therefore no S can be M.
ii. major particular, minor universal; no conchasion follows :

Some quadrilaterals contain no right angles Some M is not P The triangle in a semicircle (or The penta- No S is M gon) is not a quedrilateral
\therefore The trisngle in a semicircle (or The penta-
gon) contains no right angle
c. one affirmalive, and the other megative:
i. major affirmative and meiversal, minor megative and particular; no conclusion follows:
All living thinge change (or contain carbon) All M is P
Some compounds are not living
Some S is not M
\therefore Some compounds do not change (or do not \therefore
contain carbon)
ii. major negative and universal, minor affrmative and particular; the mood is valid, and the conclusion 0 :
No political offence is extraditable
Some marders are political offences
No M is P
Some murders are not extruditable

Some S is M
\therefore Some S is not P
iii. major affirmative and particular, minor negative and meiversal; no conclusion follows:
Some triders are freeholders (or are members
of Parliament)
Some M is P
No parson trades
\therefore No parson is a freeholder (or is a member of Parliament)
iv. mqjor megative and partienlar, minor affrmative and wniversal; no conclusion follows:

Some plantes are not edible
Beans (or Monkahoods) are plants
\therefore Beans (or Monkshoods) are not edible

Some M is not P All S is M
8. Bolk premisees partieular.
a. both affirmative; no conclasion followe:

Some Germans are Protertanta
Some Calvinista (or Romanista) are Germans
Some M is P Some S is M
\therefore Some Calvinista (or Romaniata) are Proteatanta \therefore
b. both megative; no conclusion follows :

Some things profitable are not pleasant Some M is not P
Some things popalar (or plessant) are not Some S is not M profitable $\quad \therefore$
\therefore Some things popalar (or pleasant) are not pleacant
c. major affirmative, minor megatioe:

Some laxaries are tared
Some M is P
Brandy (or A cart) for some purposes is not a luxary

Some S is not M
\therefore Some S is not P
\therefore Brandy (or A cart) for some parpoess is not taxed
d. major megative, minor affirmatire:

Some men of acience do not study philosophy
Some rich men (or philooophers) are men of science

Some M is not P Some S is M \therefore Some S is not P
\therefore Some rich men (or philoeophers) do not stady philosophy
This exhaunta the possible varieties in form of premiseen, 80 far as the firat figure is concerned; and we have found only four which give any conclasion, namely (to represent them by the accepted aymbols, and add the aymbol for the conclusion) AAA $A I I$
EAE EIO

Since the thirteenth century, logicians have given to each of these moods, as well as to those in the remaining figures, a separate name, in which the vowels in order indicate the quality and quantity of the major and minor premisees and the conclusion. The names of theee moods of the first figure are Berbars, Celarent, Darii, Ferio: and syllogisms of those types are called syllogisms in Barbars, Celarent, \&c. ${ }^{1}$

[^109]But an addition has to be made. If the minor premias is an universal negative proposition, and the major is affirmative, whether universal or particular, then though no conclusion can be drawn in which the major term is denied (or affirmed) of the minor, it is possible to draw a particular conclusion in which the minor term is denied of the major. Thus in 1. c. ii. from the premisees

> Latherans are Protestants
> Calvinists (or Romanists) are not Lutherans
it was impossible to infer whether Calvinists or Romanists were Protestants : the former in fact being so, and not the latter. But it is possible to infer that some Protestante are not Calvinista (or Romanista). And in 2. c. iii. from the premiseen

> Some traders are $\left\{\begin{array}{l}\text { freeholders } \\ \text { members of Parliament }\end{array}\right.$
> No parson trades
it was imposible to infer whether any parson whe a freeholder, or a member of Parliament: none of them, in fact, being eligible in the latter capacity, while a rector or vicar is legally a freeholder. But it is possible again to infer that

$$
\text { Some }\left\{\begin{array}{l}
\text { freeholders } \\
\text { members of Parlinment }
\end{array}\right\} \text { are not parsons. }
$$

Doubtless no member of Parliament is a parson, as no Romaniet is
redaction of the moods in the mocond and third figures to the fint (0. next chapter) is found in the margin of the troatise attribated to Michael
 ing to Prantl, in the eame hand as the text, ii. 275, Δ bsch. xr. Anm. 48). Prantl believes the work of William Shyreswood to be borrowed from, and that of Petrus Hispanus to be a mere tranplation of, the Symopeis of Psellua. In an article, however, by R. Stapper (Die Summulee Logicalee des Petrus Hispenus und ihr Veriallnief zw Michael Prellua, publinhed in the Fertechrift sum elfhundertjahrionn Jubilaum det deutechen Campo Santo in Rom, Freiburg im Breiggau, 1897, pp. 180 eq.; cf. also his Popet Johannee XXI. pp. 16-19, Manster i . W., 1898), remon is ahown for thinking that the ascription of the Synoperis to Micheel Prollus it erroneoua, and that it is really Δ tranalation of the Summula: : the Augbburg M8. in which the mecription occors contains aloo chapters lacking in tho Summulac, and partly identical with other works of Peollus ; these may have led to his name being placed in the title, which Stapper conceives to be in a hand fifty year leter than the balk of the MS. No other MS. aecribes the work to Puellun; all the rest profeen to to tranalations from the Latin; eeves give the name of Petrus Hippanus an author, and four that of Georgius scholarion (Gennadian) an tranalator. Cf. aleo Sir William Hamilton's Discumione, 2nd od, Pp. 128, 671 aq.: who, howover, wrote bofore Prantlis work appeared
a Protestant; and those who know this would not troable to enunciate the subaltern, or particular, propositions ; but our premisees do not inform us of the universal; what they do tell us is the truth, even if not the whole truth.

We heve thus two further isdirect moods, i. e. moods in which the minor term is concluded of the major instead of the major of the minor, viz.

$$
\begin{array}{cc}
A E O & \text { All } \\
\text { IEO } & \text { Some } P \text { is } P \\
& \text { No } S \text { is } M \\
& \therefore \text { Some } P \text { is not } S
\end{array}
$$

And there are other indirect moode aleo. For in Barbera, Celarent, and Darii, it is possible, instead of drawing the direct and natural conclasion, to draw the converse, wherein the major term will be subject and the minor predicate. Thus in 1. a. we might have concluded 'Some mortals are men', in 1. c.i. 'No one who acknowledges the Pope is a Lutheran', in 2. a. i. 'Some things that injure the consumer are import-duties'. There are thus five indirect moods in all: and the whole nine are given in the first two lines of the following haxameters (it is to be noted that the axtra syllables after the third, in the fifth and ninth names, are inserted metri gratia, and bave no significance) :-

> Barbara Celarent Darii Ferio, Baralipton, Colantea Dabitia Fapemo Frisesomorum ${ }^{1}$:
> Cesare Cameatree Festino Baroco: Darapti
> Felapton Dieamia Datisi Bocardo Ferison.

The first four names in the third line belong to the valid moods in the second figure: the remainder to those in the third. It would be possible to show what moods are valid in these figures by experimenting with all the combinations of premiss possible in respect of quality and quantity when the middle term whs respectively predicate or subject in each premise. But any one who has followed the process for the first figure can work it out for himself in the others; and we may proceed now to the enuncistion of the rules of syllogism, and the briefer dedaction of the valid moods from them.

[^110]C. The 8yllogietio Rules are eight in number, viz.

1. A ayllogiem must oontaln throe, and only throe torma. The neceseity of this rule is manifert; for we have seen that a syllogism is an argament in which a relation (in the way of subject and predicate) is eatablished between two terms, in virtae of their common relation (in that reopect) to a third term. Hence without a third term, there is no syllogiem : and if the terms of the conclusion were not related to the same third term, there would be no relation established between themselves, and eo again, no cyllogim.

For example, we can draw no conclasion berely from the premisses Reptiles are vertebrale and The crocodile is a lizard. Any one who know that lizards are reptiles might infer that the crocodile is vertebrate: bat the inference requires the pramiss Liearde are reptites no less than the other two; and falls really into two syllogisms, each containing three terms: though four terms oceur in the whole argament, viz. :
(i) Reptiles are vertebrate Lizarde are reptiles
\therefore Lizards are vertebrate
(ii) Lizarde are vertebrate

The crocodile is a lizard
\therefore The crocodile is vertebrate
If the middle term is used equivocally-i. e. in different senses in the two premisee-there will in reality be four terms, and no conclusion is possible; e. g. it is true that no regetable has a heart: it is also true that a good leliwce has a heart: but to have a heart means something different in these two propositions, and it would be fallecions to conclude that a loturce in mot a vegetalle. ${ }^{1}$

A breach of this first rule is technically known as the fallecy of Qnaternio Terminorwm or of Pour Terme ; and where it arisen through the equivocal use of the middle term, as the fallacy of ambiguoue middle.
2. The middle torm muat be distributed in one premise at loest.

It will be remembered that a term is distributed, when used with

[^111]reference to ite whole extension; and undistributed, when used with reference to a part of its extension only. Thus in the proposition $\mathbf{A l l}$ jealous men are suopicions, the term jealows man is distributed (for I expressly refer to all that falls within the range of it); bat the term suspicious is undistribated, for I consider it only as characterixing the jealous, and it may very well have a wider range than that. If again I aay that Some jealow mem have killed their wioes, in this proposition neither term is distributed.

Now when the middle term is undistribated in both premisses, it may refer in each to a different part of ita extansion; and then the major and minor terms are not brought into relation with the aame term in the premisess at all : hence no conclusion can be drawn. ${ }^{1}$

Examples from the three figures will make plain what is perhaps hard at first to grasp in an abstract statement. If a Presbyterian is a Christian, and some Christians think that the order of bichops was inetituted by Christ, it does not follow that a Preabytarian thinks thie. Christian is a term that includea more than Presbyterian ; if all Christians thought that the order of bishope was instituted by Christ, then it would follow that Presbyterians thought so; but if only some Christians think it, how am I to tell that the Presbyterians are among these ? Again, in the second figure, from the premisses Birde fly and Eagles fly, I cannot infer that an eagle is a bird; for though birds fly, many creatures may fly which are not birds, and an eagle might be one of these. If in either premiss the middle term were used with reference to its whole extension : if nothing flew but birds, or nothing flew but eagles, and if my premise informed me of this: then I could conclade that all eagles were birds, or that all birds were eagles; bat as it is, I can make no inference. Inference is as obviously impossible, with the middle term undistributed, in the third Ggure. Granted that come cripples are Tories,

[^112]and some cripples are tailors: I cannot hence determine whether or not some tailors are Tories: for the cripplea that are tailors may not be the same cripples as are Tories, and if not, the inference would be false. But if in either premise the middle term were distributed : if cripples were referred to in the whole extension of the term, and all eripples were spoken of : then a conclasion would follow. For whether all cripples were tailors, and some Tories, or vice verse, in either case the some of whom the one term was predicable would be included among the all of whom the other tarm was predicable, and then these two terms (tailor and Fory) would be predicable-not universally, but in a particalar judgement-one of the other.

A breach of this rule is technically known as the fallacy of undiotributed middle.
[It is in the third figure, where the middle term is sabject in both premisses, that the necessity of distributing it once at least is most obvious. Plainly, there, to say that it is used with reference to a part of its extension only is to say that only part of what it denoter is spoken of; and if this is a different part in the two premisses, there is not really any middle term. Some vertebrates fly, and some are rodents : bat they are not the same vertebrates; swallows e.g. fly, and rats are rodents; and it is obvious that our premiases do not justify the inference that the same thing flies and is a rodent. But where the middle term is not subject, there is a certain awkwardness in talking of its distribution. This has already been noticed in discuseing the 'quantification of the predicate'. It was then ahown that the predicate of a proposition is never really thought of in extension. And yet in explaining the present rule of syllogiam, one is tempted to speak as if it were so thought of A general demonstration of the rule is wanted, applicable equally to any figure; and it is easy to say that if the middle term is undistributed in both premisses, the major and minor may be brought into relation only with different parts of its extension, and therefore not with the same tarm at all. Or if we speak of agreament between them and the middle term, we have a more seductive formuls: we can illustrate with circles, thas :

Fig.1.

Fic. 2

Fia.s.

${ }^{\prime}$ Cf. c. ix. pp. 198 aq., oupra.
[The inclusion of one ares, wholly or partially, within another symbolizes an affirmative judgement, universal or particular : it is plain that the area S may fall wholly within M, and M pertially within P, and yet S may lie wholly outaide P. This is sapposed to show for Fig. 1, that with an updistributed middle we can draw no conclusion; and the other diagrams are as readily interpreted.

Yet a ayllogism does not really compare the extension of three tarms, and Euler's diagrams pat us into a wrong train of thought. It is true, that unleas the middle term be distribated once at least, there is no point of identity in the premisses; and all reasoning proceeds in some way by help of an identity. It is not true that the point of identity need consist in the same objects being denoted -in the reference to the same part of the ertension of the middle term in both premisses (for which referring to the whole extension in one of them would be an obvious security). In the third figare it is on this, no donbt, that the inference hinges; but not in the second, or the first. On the contrary, the inconclusiveness of an argument in the second figare with undistribated middle is best expreseed by aaying that it does not follow, because the same predicate attaches to two subjects, that these can be predicated one of the other: and in the first figure, that unless P is connected necessarily and universally with \bar{M}, it is clear that what is M need not be $P .^{1}$

If this discussion of the Undistributed Middle should seem too lengthy, it must be remembered (1) that for working purposes, in order to determine the correctness of a syllogism, the main thing to look to is the distribution of terms : and hence (2) that it is of great importance, in the theory of syllogistic inference, not to misunderatand this reference to distribution. In a later chapter (c. xiv) it will be necessary to consider whether the different figures of syllogism are really different types of reasoning, or the same; and the present discusion will throw light on that enquiry.]
8. From two negative premisses nothing oan be inferred. A negative proposition denies between its terms the relation of anbject and predicate. It is clear that if the major and minor terms are both denied to stand in that relation to the middle term, we cannot tell whether or not they are related as subject and predicate to one another. Ruminant may not be predicable of rodent, or vice verse : neither carnivorous of ruminant, or vice versa : we cannot infer anything as to the relation of carnivorous and rodent.
${ }^{1}$ The fourth figure bee not been considered in this note, but in this matter it raises no question that is different from those that arise on the

4. If either promise is negative, the oonaluion must be negetive. The same kind of reflection will justify this rale, as the last. Two terms stand in the relation of subject and predicate; between one of them and a third term the same relation is denied; if any inference is possible ${ }^{1}$, it can only be to deny the relation also between the other and the third term.
6. The conoludion oannot be negative, nnlee one premie is negative. This rule is the converse of the last, and equally obvious. If both premisses are affirmative, and if they justify a conclusion at all, they mnst eatablish and not refute our right to predicate the major of the minor.
6. No tarm may be distributed in the conolnaion, which was not dimabuted in its promisa. For if a term is nndistribated in the promisses, it is there used with reference to part of its extension only; and this does not justify us in a conclusion which nses it with reference to ite whole extension.

A breach of this rale is called an illicit procses of the major, or ninor, tern, as the case may be.
[With an illicit process of the minor term, if (as in the first and second figures) the minor term is subject in its own premiss, it is obvious that we are treating information about a part of the extension of the term as if it were information sbout the whole. If allis P, and some S is M, we can only infer that some S, and not all S, is P. Where the minor term is predicate in its own premise, or with an illicit process of the major term, the matter requires a little more reflection. The predicate of a judgement (and the major term is always predicate in the conclusion) not being thought in extension, there is some danger here again lest we should misunderstand a reference to its distribution. Take the following example of illicit procese of the minor term, where the minor term is predicate in the minor premise :

To make a corner in wheat produces great misery
To make a corner in wheat is gambling
\therefore All gambling produces great misery.
${ }^{1}$ It may happen, where the promiees juetify no inference, that an afinmative concluaion would in fact be true; e. g. if some M is not P, and all S is M, it may be trae that all S is P. Here of course the middle term is ondistribated, and therefore there is no real point of identity in the ergoment. However, it is worth while noticing that the proof of this rule also is difficult to express in a quite abstract way. The notion of agroement is employed here again, but merite the meme proteat as befors: if one term agreen with a seconch, and that disagrees with a third, the firat will dimagree with the third; but the relation between subject and predicate is too loosely described as one of agreement or dimgreement.
[My premisses do not primarily give me information about gambling; nevertheless, if there were no gambling except a corner in wheat, the minor term would be commensurate with the middle, and what is predicated universally of the latter could be predicated universally of the former. As it is, however, for all the information that is given me, the minor term may be (and in fact it is) of wider extension than the middle; for there are many other modes of gambling besides making a corner in wheat. It is used therefore with reference to a part of ite extension only, in the minor premise; and it is that part which I am told in the major produces great misery. I have no right to extend that information to the whole axtension of the term, and say that all gambling produces great misery ; my only proper conclusion is that some gambling does so. Agrin, with regard to the major term: if I argue that productive expenditure benefits the country, and expenditure on art is not productive ; and that consequently expenditure on art is of no benefit to the country : I am guilty of an illicit process of the major term. It may not at first sight appear that I have treated information given me about a part of what benefits the country as if it were information about everything that does so. And indeed expenditure which benefits the country is not directly the subject of my thought. Yet it is plain that though productive expenditare may benefit the country, it need not be the only form of expenditure to do so; snd hence expenditure on art, though not productive, may be of benefit to the country for some other reason. Yet my conclusion would only be justified if I knew every reason why expenditure could benefit the country, and knew that none of them applied to expenditure on art : whereas my major premiss mentions one ground, and not the sole ground, on which expenditure is beneficial. It is therefore true in effect to say that in the conclusion I treat as referring to its whole extension information which was confined to a part of the extension of the major term; though none the less the extension of the major term is not the proper subject of my thought. ${ }^{1}$]

There remain two rules which are corollaries of those already given, viz.
7. From two partioular premisese nothing oan be inforred, and
${ }^{1}$ Beginden imagine sometimee that the fallecy of illicit process is com. mitted, if a term which is distributed in the promies is undistributed in the conclasion. This is of conres, not the cape. I muat not presume on more information than is given me, but there is no reacon why f thould not uno lese.

It will be noticed, therofore, that no particular conclusion can be vitiated by an illicit procese of the minor term : and no affrmativo conclosion by an illicit process of the major.
8. If either premise is partionlar, the conoluaion muat be partioular.

The truth of these rules is not evident at first sight; and they can only be established generally-i. e. without reference to mood and figore-by considering what combinations of premises there are, both of which, or one of them, is particalar; and it will then be seen either that there are not enough terms distribated in these premisess to warrant a conclasion at all; or not enough to warrant an universal conclasion, i. e. one that distributes the minor term.

If both premisses are particular, they must either be both affirmotive (I and I), or both negative (O and O), or one affirmative and the other negative (I and O). But in a particalar afflrmative proposition neither sabjeot nor predicate is distributed; so that the combination of premisees II contains no distributed terms, and therefore-since the middle term must be distribated if any inference is to be drawn-will yield no conclasion. From 00, two negative propositions, a conclusion is imposaible. From I and O, if there were any conclasion, it would be negative; but as the predicate of a negative proposition is distribated, the major term (the predicate of the conclusion) would be distribated in the conclusion; therefore the major term should be distribated in ite premiss; and since the middle term must be distributed in the premisses also, we require premisees with two terms distributed in them, to obtain a conclusion; now the combination of a particular affirmative with a particular negative provides only one distribated tarm, viz. the predicate of the latter (O); and therefore from them aleo a concluaion is impossible.

A similar line of reaconing will establish rale 8; no combinetion of premisees, whereof one is particalar, contains enough distributed terms to allow of an universal conchusion. For again, either both are affirmative (Δ and I), or both negative (B and O), or one affirmative and the other negative (A and $O: B$ and η). The two negative premisses may be struck out as before. The combination of Δ with I contains only one distributed term, the subjeot of the univarsal affirmative (4); and as the middle term must be distribated if the reasoning is to be valid, the sabject of Λ must be the middle term ; hence the minor term will be one of those that are undistributed in the pramisses, and therefore also in the conctusion (of which it is the subject) it must be undistribated-i. a. the
conclanion must be particular. The combinations \mathbb{d} and O, E and I both contain two distribated terms; viz. in the former the sabject of the universal affirmative and the predicate of the particular negative, in the latter the sabject and predicate of the universal negative; bat both of them require negative conalasions, in which the major term is distribated; in both therefore the terms distribated in the premieses must be the major and middle, and the minor term be one of those that are undistribated, so that the conclusion again will be particular.

The above rules are all contained in four rude hexameter lines:
Distribuas medium, nec quartue terminus adrit;
Utraque nee praemisee negans, nee particularis;
Sectetur partem conclasio detariorem;
Et non diatribuat, niai cum praemisea, negetre.
The third line (that the conclusion mast conform to the inferior part of the premisees) covers both the fourth and eighth rules; a negative being considered inferior to an affirmative, and a particular to an univeraal judgement. The fourth line (that the conclusion must not distribate any term, unless the premiss doen so, nor be negative unless a premiss is so) gives the sixth rale, and the fifth.
D. Determination of the moode valid in the coveral figures.

We have seen that syllogisms are distinguished in mood according to the quantity and quality of the propositions composing them; and in figure according to the position of the middle term in the premisees. The validity of a syllogism, and the character of the conclusion that can be drawn, depend very largely on the distribation of the several tarms-middle, major, and minor-in the premisess and this again on the question whether the middle term is subject, and one of the others predicate, in a premisa, or vice versa Hence s combination of premisses which yields a conclusion in one figare, may yield none in another : e. g. $\Delta \| M$ is $P, A l l S$ is M yields the conclamion $A \| S$ is P; bat $A l l P$ is $M, A \| B$ is M yields no conclusion, though the quantity and quality of the premissea are unchanged. We ahall therefore have to take the poesible combinations of premimes in each figure in tarn, strike ont those which yield no conclusion in that figure, and ank what kind of
conclusion-i.e. whether universal or particular ${ }^{1}$ - the othere gield in it.
Now as there are four kinds of proposition, so far as quantity and quality are concerned- A, E, I, and O-and our premisees must be two in namber, thare are sixteen combinations of premisees mathematically ponible. It is not, however, necessary to try the validity of all sixteen combinations in each figure in tarn; for eight can be shown to yield no conclusion on grounds which are applicable to all four figures alike, and without reference to the position of the middle term.

The sixteen combinations of premises mathematically possible are as follows : they are indicated by the conventional vowels, and the major premiss in all cases by the vowel which stande firot.

$A A$	$E d$	$I A$	$O A$
$A B$	$E N$	$I B$	$O E$
$A I$	$E I$	$I I$	$O I$
$A O$	$E O$	10	00

Of these, the combinations $E E, E O, O E, O O$ may be atruck out, because both premisses of a syllogism cannot be negative; II, IO, OI (and 00 again) becanse both cannot be affemative; while IE (if we do not consider indireet conclasions) would involve an illicit process of the major term : for the concluaion being negative would distribute the major term, while the major premise is a particalar affirmative proposition, and therefore, whether it atood as rubject or predicate, the major term would not be distribated in it.:

There remain eight combinations of pramisses, on whose validity we cannot pronounce withont referance to the figure and the position of the middle term, viz.

$$
\begin{array}{llllllll}
A d & A E & A I & A O & E A & E I & I A & O A
\end{array}
$$

It will be found that four of them are valid in the first figure, four in the aecond, end six in the third; there are almo five indirect moods of the first, or moods of the foorth, figure: making in all nineteen moode.

[^113]In the firat ifgre, the middle term is subject of the major premiss and predicate of the minor : hence in this figure $\quad \boldsymbol{M} P$

1. The eninor promice mast be affirmative : for if it were $S M$ negative, the conclasion would be negative, and wo distri- $S P$ bate the majortarm P; the major tarm must therefore be distributed in the major premiss; but as it is there predicate, it cannot be distribated unless the major premise is also negative (since no afirmative proposition distribates ita predicate): we sbould thas have two negative premistes, or alse an illicit proceen of the major term.
2. The major promise must be eniversal: for since the minor is affirmative, its predicate M, the middle term, will be undistribated; therefore M must be distributed in the major premisa ; and for this purpose the major premiss, of which it is the subject, must be universal.

In this figare, therefore, the premiseses $A E, 4 O$ are invalid, by rule 1: IA, 04 by rale 2^{1}; $14, E A, A I, 4 O$ are valid. The conclusions which they yield will be respectively A (universad affirmative), \boldsymbol{E} (univeral negative), I (particular affirmative), and O (particular negative); and the moodo-in which the quantity and quality of the conclusion are indicated, as well as of the pre-misees-are AAA, EAE, AII, 4OO. Their namee are Barbank, Celarent, Darii, Ferio. But in the firt three of these moods, as we have seen, the converse conclusions can also be drawn; and with the premisses $A E, I E$, a particular conclasion follows denying 8 of P; and so we get also the indirect moods $\triangle A I, E A E, A I I, ~ \triangle E O$, IEO, whose namee are Baralipton, Celantes, Dabitis, Fapesmo, Frisesomoram.

In the eooond figure the middle term is predicate in $P M$ both pramisees : hence in it $S M$

1. One premine mat be regative, for otherwise the middle $S P$ term would be fistributed.
2. The major premiec muat be wniversal: for since one premiso is negative, the conclusion will be negative, and so distribate the major

[^114]term $\boldsymbol{P}: \boldsymbol{P}$ must therefore be distributed in the major premiss; i. e. as it is here the subject thereof, the msjor premiss must be universal.

Hence the premisses $4 A, A I, I A$ are invalid, by rale 1 : the premisses $O A$ (and $I A$ again) by rule $2^{1} ; E A, A E, E I, A O$ are valid. The moods are therefore $\operatorname{BAE}, \triangle E E, E I O, A O O$; their mood-namea are Cesare, Camestres, Festino, and Baroco.

In the third figare the middle term is eubject in both $M P$ premisees: hence in it $M S$

1. The minor promise must be affirmative, for the ame reseon $8 P$ as in Fig. 1 (the major term, in both figures, being similarly placed in its premiss).

This rule exclades the premisses $A B, A O^{*}$: the remsining combinations, $A A, A I, E A, E I, I A, O A$, are valid. But because the minor term in this figure is predicate of the minor premiss, and the latter is affirmative, the minor term will not be distribnted in it; hence it mast not be distributed in the conclusion; and therafore in sll cases
2. The comelwion will be particular.

The moods are consequently AAI, IAI, AII, EAO, OAO, EIO: their mood-names are Derkpti, Disamis, Datisi, Felapton, Bocardo, Ferison.
[It is impossible at this point to pess over the fourth Agure, in which the middle term is predicate of the major premiss, and subject of the minor, thus (1) $P M$

It is clear, however, that if the premisses of a syllogism in the first figure be transpoeed and the conclusion converted, we get jurt the same srrangement of terms, (2) $8 M$

HP
$\therefore P 8$
${ }^{1}$ e.g. from Some (or All) daisies have a great number of flowers within a singlo calyx, All (or Some) composita have a great number of flowers within a single calyx it cannot be inferred that Some, or All, compoita are daieice (AA, AI, IA) : nor from Some annuale are not (or ara) hardy, $1 l_{l}$ poppice ary hardy, that Some poppies are not (or arr) annwale (OA, IA).
${ }^{3}$ e.g. from the premisen $\Delta l l$ astriches have wimgs, No astriches can (or Some osfriches cannot) fly, it cannot be inferred that No creaturwe that can fy hare wings or that Some creatures that can fly how no winge ($\mathbf{L E}, \mathbf{4 O}$).
[the only difference being that P is now the symbol for the sabject, and δ for the predicate of the conclusion, instead of vice versa Now the order in which the premisses are written down makes no difference to the real relation of the terms in them to one another. In (2) P is still functionally the major term; and the premisses are really premisses in the first Ggare, $\frac{M P}{S} \boldsymbol{M} \boldsymbol{\prime}^{\prime}$, from which a conclusion is drawn wherein the minor term becomes predicate to the major. Thus any mood in the fourth figure can be looked at sea mood in the first figare, predicating the minor term in the conclusion of the major: in other words, as an indirect mood of the first figure.

It was stated at the beginning of the chapter that, according to the anthority of Averroes, the first person to regard such moods as belonging to a distinct figure was Galan. ${ }^{1}$ Averroes himself disagreed with that view of them, and in thia he was followed by Zabarelle 2, one of the greateat of the scholartic commentators upon Aristotile, whose De Quarta Figwra Syllogissi Liber is etill worth reading on the subject; though in the ressons be gives for not regarding the Galenian as really a fourth and independent figare he relies in part upon the questionable analysia which regards all syllogism an an application of the principle called the Dictum de omni et nullo (ef. infra, p. 274).

Aristotle, as already remarked, recognized the posibility of concluding indirectly in the first figare; though only by the way. He remarks in one place' : 'It is clear that in all the figares, when there is no proper ayllogiem, if both preminees are affirmative or both negative nothing at all necessarily follows, bat if one is afifmetive and one negative, and the negative is universal, a ayllogiam always arises with the minor as predicate to the major: e. g. if all or some B is A, and no C is B; for, converting the premisses, it is neoessary that some d should not be C. And similarly in the other figures; for by means of convergion a syllogism always arises. This covers the moods Fapeamo and Frisesomorum in Fig. 1. With regard to Figs. 2 and 8 it is plain from Aristotle's language that though the major premien cannot be dirtinguished by the position

[^115][in it of the middle term, since this occupies the same position in both premises, whether as predicate or as subject of major and of minor terms, yet in his view it was not arbitrary which term is regarded as the major; it would be the term which, as compared with the minor, is of wider extension, or as Zabarells says, higher in predicamental order. Thus if I say that

Some roses are fragrant
and The Baronese Rothschild is not fragrant
I can conclude that some roses are not Baroness Rothschilds. Now naturally, rose is a predicate belonging to the particular variety Baronese Rothschild, and not Baroness Rothechild a predicate to be affirmed or denied of rose. We may be said, therefore, to be concluding the minor of the major. But in many and probably in most cases of syllogiom in these figures it would be difficalt to sany which of the two terme was naturally major and which naturally minor, for they are not generally terms belonging to one series in a claseification. Hence we can transpose the premisses; and in any cace this produces no appearance of a new figare, as transposing the premisees in Fig. 1 does, becsuse the middle term still retains the same relation to what is now treated as major term which it held towards what was before so treated. We now have

> The Baronese Rothechild ie not fragrant Some roees are fragrant
> \therefore Some roees are not Baroneen Rothechilds
which is in the recogrized mood Feetino of the second figure. Similarly AEO would be regarded as Cesare, by transposition of the pramises; and in Fig. 8 AEO as Felapton, and IEO as Ferison. But in Fig. 1, if we transpose the premisees in the moods $A E O$ and IEO, we no longer have the right poition of the middle term. They must therefore be regarded either as moods of the first figure concluding indirectly, E being the minor premise: or if E be considered major premiss (as containing the term which is predicate in the conclasion) they must be referred to a fourth figare in which the major term is subject of the major premiss and the minor term predicate of the minor premiss.

Elsewhere ${ }^{1}$ Aristotle pointa out that 'whereas some syllogiems are universal [in their conclusion] and eome particular, those which

[^116][are universal almays have more conclasions than one, and so do those which are affirmative among the particular, but those which are negative among them have only the [direct] conclusion. For the other propositions convert, but the [particular] negative does not'. He meens that any syllogism concluding to E, No S is P, implicitly gives also the conclasion No P is S, and any concluding to A or I, All S is P or Some S is P, implicitly gives also the conclusion Some P is S. We have therefore here a recognition of the possibility of the first three indirect moods of Fig. 1, Barslipton, Celantes, and Debitis : whose conclusions are merely the converse of thoee which follow directly in Barbara, Celarent, and Darii. But in Fig. 2 the converse of Cesere is given in Camestres, and vice versa, and according to the conclasion drawn, you would be said to be arguing in one mood or the other. There is no affirmative conclusion in Fig. 2 and no aniversal conclusion in Fig. 3; bat the converse of the conclusion I in the latter figure can be got, if both premisses are universal, by merely transposing the premisses in the recognized mood Darapti; while if one is particular, the converse of Disamis is given in Datisi, and vice verse. This tranoposition of premisees enables us to refer all these conclusions to recognized rooods, while we can still say both that the premise containing the predicate of the conclusion is the major, and that the middle term occupies ita regular position in the premisees. Bat with these three indirect moods in Fig. 1 (as with the other two) we must either give up the robric, that the premias containing the predicate of the conclusion is the major premiss, or else allow that we have an new arrangement of terms, in which the middle is predicate in the major premiss and subject in the minor.

It whs very early seen that what Aristotle in these passages notices generally about the three figures works out rather differently in the first figure and in the other two; and an explicit recognition of the five indirect moods as supplementary moods of Fig. 1 is attributed to his nephew and saccessor in the Lyceum Theophrastus. ${ }^{1}$ If the fourth figure is really the erection of Galen, logicians for some five centuries enjoyed immunity from the burden of it. For it can hardly be doubted that Galen's implies a defective insight into the character of the thought which these forms express, and treata the eyllogiam more as a matter of verbal manipulation. In the fourteenth chapter an endeavour is made to explain the grounds on which this verdict rests. It is hardly more than the logical issue of the external and mechanical way of regarding syllogiem, which underlies the reference of these moods to s fourth and separate figure, when we find some of the later scholastic writere erecting separate moods on no better
${ }^{1}$ o. Prantl, i. 365, Abechn. v. Anm. 46, where the pasmages from Alexander, who ascribes the addition of these moods to Theophrastus, are quoted.
[ground than the order in which the premisses are enunciated, without there being any actual difference in the premisses or conclusion. ${ }^{1}$

Granted, however, that we are to acknowledge a fourth figare, the following will be the special rales of it : it must be remembered that as referred to this figure we call that premiss the major which $a \operatorname{referred}$ to the first figure we should call the minor, and vice versa.

1. If either premiss is negative, the major mut be universal: for if either premiss is negative, the conclusion must be negative, and will distribute the major term; which in this figure is subject of the major premiss; and if it is to be distributed there, the premiss must be universal (cf. Fig. 2).
2. If the major premiss is affirmative, the minor must be unitersal: for the middle term, as predicate of an affirmative proposition, will not be distributed in the major premiss ; it must therefore be distributed in the minor premiss, where it is subject; and therefore the minor premise must be universal.
3. If the mizor premise is affirmative, the conclasion will be parlicular: for the minor term, as predicate of an affirmative proposition, will not be distributed in the premiss, and must not be distributed in the conclusion, which will therefore be particular. ${ }^{2}$

Hence the premisses $O A$ are invalid by the first rule: $A 1$ and $A O$ by the second ${ }^{2}$; $A A, A E, E A, E 1, I A$ are valid; but $A A$ will afford only a particular, instead of an universal, conclusion. The moods are thus AAI, AEE, IAI, EAO, EIO; and their mood-names, as moods of the fourth figure, are-Bramantip, Camenes, Dimaris, Fesspo, Fresison.

The complete memoria techniea, with the fourth figure replacing the indirect moods of the first, is commonly given in English textbooks nowadays as follows ${ }^{3}$: -
' e. g. Petrun Mantuanas, quoted Prantl, iv. 178. Petrun in the edition of 1492 , gives as an examplo of a syllogiom in Cosare. 'Nullus homo eat lepic, omne marmor eat lapis, igitur nullum marmor eat homo.' If the conclution drawn is 'Nullut homo est marmor', be calle the mood Cetaren; but he comes later to Camestres, as a different mood. By sach and other even more questionsble methode, Petrus compiles fifteen moods in Fig. 1, sirteen in Pif. 2, eighteen in Fig. 3, and eleven in Fig. 4. Cf. almo Crackenthorpe, p. 197 (ed. 1670), who appean to treat the moods of Fig. 4 and the indirect moode of Fig. 1 as two different things.
${ }^{3}$ e.g. from the premiseses Some change is nol motion, All motion is change. it cannot be inferred that Some change io not change (OA): nor from 111 great critice are seholars, Some echolars are pedanes, that Some pedanes are groat eritice (AI): nor from 14 mombert of the Government belong to the party in power, Some of the party in poner are not in the Cabinct, that Some of the Cabinet are not members of the Government.

- I haro not been able to trace this form of the mnemonic rerses any further beck than to Aldrich's Artis Logicae Rudimenta. A good many writors have tried their ingenuity in devising variations upon the original lines Walts has e veraion recognizing only fourteen moods, the indirect
[Barbara Celarent Darii Ferioque prioris; Cesare Cameatrea Festino Baroco secundee;
Tertia Darapti Dieamis Datiai Felapton
Bocardo Ferison habet; quarta insuper addit
Bramantip Camenes Dimaris Fesspo Fresison
Quinque subalterni, totidem generalibus orti,
Nomen habent nullum, nec, si bene colligis, usum.
The mesning of the lest two lines is explained in the next paragraph.]

It will be noticed that in five out of these nineteen moods the conclusion is universal, viz. in Barbars and Celarent in Fig. 1, Cessre and Camestres in Fig. 2, and Celantes in Fig. 1 (= Camenes in Fig. 4). It is, of course, possible a fortiori to draw a particular conclusion in any of these cases; and the syllogism is then said to have a weakened conclusion, or to be in a subaltern mood (because it concludes to the subaltern of the universal proposition that might be inferred from it). Subaltern moods wonld be used by no one who was asking what could be inferred from given premisses; for it is as easy to see that the universal conclusion, es that the particular, can be drawn from them. Bat in aeeking for the proof of some particular proposition, we might very likely find premises that would really prove the universal ; yet, since we are only using them to prove the particular, our ressoning would fall into one of the subaltern moods. Still, we should see that our premisees proved more than we had set ont to establish, and substitute at once the wider thesis; the subaltern moods are therefore of little importance, and are not included in the enumeration of valid moods of syllogism.
[It would have been possible to determine what moods are possible in each figure, without enunciating the opecial rules (as thoy are called) of the different figures. It might merely have been pointed out, e.g., that in the first figure $A A$ would yield an A conclusion, $A E$ involve an illicit. process of the major term, $A I$ yield an I conclusion, 40 again involve an illicit procese of the major, $E A$
moodo of Pig. 1 appearing neither in that capacity nor as moode of Fig. 4. Sir William Hamilton (Discustione, p. 686) also offers an improvement of the many rarious carta of the common mnemonic vernes'. But the reader will probably with for no more. In various modern tertbooka, Baroco and Bocardo are spelt with a k, in order that c medial may not occor with a different meaning from c initial.
[yield an E, and $E I$ an O conclusion, $I A$ and $O A$ involve an undistributed middle. And if it were aaked why the mood $I A I$ is invalid in this figure, the proper answer is not because in the first figure the major premiss must be universal (though that is the second rule of this figure), bat because such a combination of premisses in it involves an undistribated middle; the rule being made necessary to avoid this fallacy, and not the fallecy condemned because it breaks the rule. The rales, however, if the grounds on whioh they rest are understood, give in a general form the principlea which must be observed in each particular figure. A science should recognize principles; and therefore the knowledpe of these rules helps us to master the theory of ayllogiem; but only if their grounds are understood. It is better to know what moods are invalid in each figure, and what fallacy they severally commit, than to know the special rules and apply them in a mechanical manner, without being able to justify them.]

CHAPTER XIII

OF THE REDUCTION OF THE IMPERFECT SYLLOGISTIC FIGURES

Aristotle distinguished between syllogiams which were only valid (buvazol) and syllogisms which were perfect (r(ieco). In the latter, the necessity of the inference appeared sufficiently from the premisses as they stand; in the former, they required to be supplemented, in order that it may be seen. The recond and third figures, in his view, were in this plight. Their validity, though real, needed proving, by means of the first figare. By converting one of the premisses in the two imperfect figures, he showed that we might obtain a syllogism in the first or perfect figure, either with the same conclusion or with one from which that could be recovered by conversion; where this direct method of validating an imperfect mood fails, we can still validate it indirectly, by proving, in a syllogism of the first and perfect figure, that the falsity of its conclusion is inconsistent with the trath of its premisses. ${ }^{1}$

The process of cxhibiting by the help of the first figure the validity of syllogisms in the other two (or three) is called Reduotion. A knowledge of the method of reducing the imperfect moods to moods of the first figure belongs to the traditional part of the theory of syllogism. The present chapter will explain this; in the next we must ask whether the process of Reduction, though sanctified by the tradition of many centuries, is really necessary, in order to validate the imperfect figures.

Directions for Reduction are concesied in the mood-names of 'Barbars Celarent'. Those who have thoroughly mastered the theory of ayllogism will see at a glance how a given imperfect mood may be reduced; but the mood-name ensbles one to do it, as it were, with a mechanical correctness.
${ }^{1}$ This method of eatablishing the velidity of a syllogiem per imposeibile is applicable to all the imperfect moods; but the direct method in preferred where it is svailable.

Reduction, as already stated, is either direet or indirect. Direct Reduotion of an imperfect mood to the first figure consists in showing, from premisses that are either the same as in the original sylogism, or inferred immedistely by conversion from these, that the original conclusion, or one from which it can be immedistely inferred, follows in a syllogism of the first figure.

As the figores are distinguished from one another by the position of the middle term in the premisses, it is plain that, to reduce a figure from one of the imperfect figures to the first, we must alter the position of the middle term. In the second and third figures, it occupies the same position in both premisses, being predicste in the second, and subject in the third, whereas in the first figure it is anbject of the major premiss and predicate of the minor. We must, therefore, convert one premiss of a syllogism in the second or third, in order to reduce it to the form of the first. In the second we should convert the major, for there it is in the major premiss that the middle term is out of place; in the third, the minor. But it may happen that this would give us a combination of premieses which, in respect of quality and quantity, cannot stand; e.g. in a syllogism in Disamis (Fig. 3), by converting the minor premiss 4, we should get the combination $I I$, which yields no conclusion. We therefore have eometimes to tranopose the premises, making onr original minor premiss the major, and vice versa, and converting in the second figure that which becomes the major, in the third that which becomes the minor. Where the premisses are transposed to make a gyllogism in the first figure, they will give a conclusion in which the terms of the original conclusion have been transposed likewise; and it will be necessary to convert this conclusion in order to recover that of the original 'imperfect' syllogism.

By way of illustration, we may take the following example in Camestres, the form of which, as indicated by the vowels of the mood-name, is

$$
\begin{aligned}
& \text { All } P \text { is } M \\
& \text { No } S \text { is } M \\
& \therefore \text { No } S \text { is } P
\end{aligned}
$$

If we were to argue that a spider is not an insect because it has not six legs, our argument would fall quite naturally into the above form :

Insects have six dega
The spider has not six legs
\therefore The spider is not an inseot
Now if we want to get the ame conclusion in the first figare, we cannot convert the major premise; for that would give us a particular major

Some animals with six legs are insects
and no conclusion as to whether a spider is an insect or not would follow. ${ }^{1}$ We must therefore convert the minor premiss, which being E can be converted without change of quality: and transposing at the same time, form the syllogism in Celarent:

No animal with six legs is a spider

Insects have six legs
\therefore No insect is a apider
From this conclusion we can recover by conversion the original conclusion

The spider is not an insect
Had our argument run alightly differently, to the effect that the spider is not an insect because it has eight legs, it would have fallen into a syllogism in Cesare:

$$
\begin{array}{lr}
\text { No insect has eight legs } & \text { No } P \text { is } M \\
\text { The spider has eight legg } & \text { All } S \text { is } M \\
\therefore \text { The spider is not an insect } & \therefore \text { No } S \text { is } P
\end{array}
$$

Here the major premiss can be converted simply, being E : and transposition is not required. The premisses

No animal with eight legs is an insect
The spider has eight legs
are of the form of Celarent, and yield at once the original conclusion.

If we coneider the indirect moods of the first figure (the moods, as others regard them, of the fourth figure) in order to show that their conclusions (or others yielding them by conversion) can be obtained directly in the first figure from the same premisses (or from premisee which these yield by conversion), we shall that they fall into two groups. Three, Baralipton, Celantes, and
'Though it mould follow by an 'indirect conclusion' in Frisesomoram that some insects are not apider.

xiii] REDUCTION OF THE IMPERFECT FIGURES 267

Dabitia, simply draw the converse of the conclusion which the same premisees yield directly; all we have to do therefore is to draw the direct conclasion and convert it. But Fapesmo and Frisesomorum yield no direct conclusion. If every copy of the Times contains an sdvertisement of the Encyclopaedia Brilamnica, and the newspaper I buy is not the Times, I cannot infer thast it contains no advertisement of the Encyclopaedia Britannica. The only conclusion is that some papers containing an advertisement of the Encyclopaedia Britannica are not the newspapers I buy. Now to get this conclusion direetly in the first figure I must transpose the premisses, so that 'newspaper I buy' may be in the major premiss, and 'copy of the Fimes' in the minor. But this will bring the middle term into the wrong position, unless at the same time I convert both premisses; then indeed I shall get the syllogism

No copies of the Times are the newspapers I buy
Some papers containing an advertisement of the Encyclopaedia Britannica are copies of the Times
\therefore Some papers containing an advertisement of the Encyelopaedia Britamsica are not the newspapers I buy
which does prove my original conclusion in a direct mood of the first figure, Ferio; though whether it is the most natural way of removing any doubts I may have had about the validity of the indirect inference in Fapermo must be considered in the next chapter.
[If theme moods, instead of being regarded as belonging to the first figure, are pleced in a fourth, their reduction will be formally a little different. To reduce the first three, we shall simply have to draw the conclusion which asturally follows from the game premises in the first figure, and then convert it; but this will now be said to involve transposition of the premisses; for what is major regarded as in the fourth is minor regarded as in the first, and vice verse : thus

Fig. 4. Bramantip.
Men of atout heart are free The free are happy ${ }^{1}$

Fig. 1. Baralipton.
The free are happy Men of stout heart are free
\therefore Some who are happy are of stont heart
The premissee in Baralipton are premissee in Barbara; those in Bramantip are not so, till they exchange position.

[^117][On the other hand, in the last two moods transposition will now be unnecessary; for the fourth figure already regards the universal negative premisa in Ferapo and Fresien ($=$ Fapesmo and Frisesomorum) as the major, because it contains the term which is predicate in the conclusion, though it is subject in the premiss; conversion will bring it to the position required of the major term in ita premise by the first figure; and so with the minor; and our original conclusion then follows in Ferio.]

Whether, in reducing a syllogism of any imperfect mood, the premisees need transposing; which, if any of them, must be converted; whether we have to convert the conclusion obtained in the first figure by the syllogism of reduction, in order to recover the original conclusion; and in which mood of the first figure the validating syllogism will be-all these matters are indicated by the consonants of the mood-names. The significant consonants ${ }^{1}$ are:

1. The inilial, always the same as that of the mood in Fig. 1 to which the imperfect mood must be reduced.
2. m (= muta), which indicates that the pramisses must be transpoeed.
3. (= simpliciter), which indicates that the premise, or conclusion ${ }^{2}$, signified by the preceding vowel must be converted simply.
4. p ($=$ per accidens), which indicates that the same must be converted by limitation.
5. e (= per contradictionem), which, occurring medially, indicates that we must employ the process of Indirect Reduction, to be expleined immedistely.

In order to illustrate the mechanical use of these inatructions, it will be enough to work out in symbols the reduction of a single mood, Disamis. That, as the mnemonic tells us, is in Fig. 3; the middle term is therefore sabject in both premisses. The major, being indicated by I, is a particular affirmative, and the minor, being indicated by A, an univeral affirmative; the conclusion
${ }^{1}$ Except the initials, these are explained in the old lines-
Simpliciter verti vult S, P verti per acci,
\boldsymbol{H} vult tranaponi, \boldsymbol{C} per imponabile daci.
If any one is horriged at the doggerel, he may be asaured that much worse thingo coald have been quoted in carlier chaptera.

1. 2. e. not the conclumion of the original ayllogism (which bas got to be obtained a_{9} it is), but the conclumion of the calidating ayllogism.
similarly a particular affrmative. Our ayllogism is therefore to be of the type:-

Some M is P	I
All M is S	A
\therefore Some S is P	I

In reducing it, the m of the mood-name indicates that we must transpose the premisses, and the * that we must convert simply the premiss indicated by the vowel after which it stands; the D that we shall so obtain a syllogism in Darii, thus :-

$$
\begin{aligned}
& \text { All } M \text { is } S \\
& \text { Some } P \text { is } M \\
& \therefore \text { Some } P \text { is } S
\end{aligned}
$$

The simple conversion of this conclasion, enjoined by the after the third vowel in Disamis, gives us

$$
\text { Some } S \text { is } P
$$

This process of Direct Reduction cannot be applied to the two moods, Baroco and Bocardo. The reeson is obvious, In order that the middle term may occupy a different position in the two premisees, as the first figure requires, one of the premisees in the second and third figares must be converted. In these moods, the premisses are reapectively an univaral affirmative and a particular negative proposition. The latter, O, cannot be converted either simply or per accidens; the converse of A is I; and so by converting that we should obtain two particular premisses. These ayllogisme can, however, be validated by the process of Indirect Reduction.

Indireot Reduotion, or Reduotion per imposelbile, consiste in showing, by a syllogism in the first figure, againat which no objection can be taken, that the faleity of the conclusion in the original syllogism is inconsistent with the truth of its premisses. This is done as follows :-

Baroco is of the form

All P is M
Some S is not \boldsymbol{H}
\therefore Some S is not $P \quad \therefore$ Some natives of Africs are not negroes

Now if this conclasion is false, ite contradictory will be true, i.e. that All natives of Africa are negroes. We can then combine this
with our original major premise to form a syllogism in Barbara, thus:-

> All P is M
> All S is P
> \therefore All S is M
> All negroes have curly hair
> All natives of Africa are negroes
> $\quad \therefore$ All natives of Africa have curly hair

But the conclusion thus obtained contradicta the original minor premiss; hence if the original premiesee are true, the conclasion we drew from them cannot be false, and our original sylloginm is therefore valid.

The method of reducing a syllogism in Bocardo is the asme: except that here by combining the contradictory of the conclusion with the original minor we reach a result inconsistent with the original major premiss; while in the former case, by combining it with the major, we deduced s conclusion contradictory of the minor. The letter c in the mood-name means that the mood is to be reduced indirectly by subetitating for the premise indicated by the oovel afler whick the c is placed the contradictory of the conclusion. ${ }^{1}$
[All the imperfect moods could be velidated in this indirect maner, ${ }^{2}$: take, e. g., Darapti-All M is P, All M is $S . \therefore$ Some S is P; if this is false, then No S is P; and All M is S; \therefore No M is P; which is inconsistent with the truth of the original major premise. The first figure, on the other hand, cannot be appealed to in order to confirm iteelf; if we suppose its conclusion to be false, and combine the

[^118]Im] REDUCTION OF THE IMPERFECT FIGURES 271
[contradictory thereof with one of the premisses, it is only by a syllogism in the second or third figure that we can deduce a conclusion inconsistent with the other premiss; e.g. in Barbara (All M is P, all S is $M \therefore$ All S is P); if the conclusion is false, then Some S is not P; and All M is P; Some S is not M-which contradicte the original minor; and again, Some S is not P, and All S is $M \therefore$ Some M is not P-which contradicts the original major; but the argaments are in the second and third figures.]

CHAPTER XIV

ON THE PRINCIPLES OF SYLLOGISTIC INFERENCE

When I argue that because $A=B$ and $B=C$, therefore $A=C$, my ressoning proceeds upon the same principle as when I argue that because $X=Y$ and $Y=Z$, therefore $X=Z$. This principle is expreased in the familiar axiom that thinga which are equal to the same thing are equal to one another. In the particular inference, $A=B, B=C \therefore A=C$, I do not deduce any conclasion from that axiom, as from a major premiss. It has indeed sometimes been contended that the argument is really ayllogiatic; that it should be written

Thinge equal to the mame thing are equal to one another Δ and C are things equal to the same thing
$\therefore \boldsymbol{A}$ and C are equal to one another ${ }^{1}$
But the following considerations will show that this is not the case. Firstly, we may appeal to an analogous argument, in which a quantitative relation is established between \boldsymbol{A} and C on the ground of the quantitative relations of both to \mathbb{C}, although the quantitiea are none of them equal. If A is greater than B, and B is greater than C, A is greater than C. Are we to maintain that this inference should properly be written

Things of which one is greater and the other leas than the same thing are greater the one than the other
A and C are things of which one is greater and the other less than the same thing
$\therefore \Delta$ and C are greater the one than the other
The cumbrousness of this would be no reason for refusing to recognize it, if it were correct; and if the other is correct, this must be. Yet where, as in this case, it requires some violence and ingenuity
' Todhanter', Euclid, for example, is written ander the impremion that this is the right way of atating such an argument.
to bring a quantitative inference into the form of a syllogiem, it is not habitually done; and since men have been content not to force into the form of syllogism the inference ' $A>B, B>C \therefore A>C$ ', it may be surmised that they would not have so dealt with the inference ' $A=B, B=C \therefore A=C$ ', if it hed not been for the apparent ease of the transformation. But appearances may be deceptive; it must therefore be noticed secondly, that in the ayllogism which is supposed to represent the latter inference, vir.

Things equal to the same thing are equal to one another 4 and C are thinge equal to the same thing
$\therefore \Delta$ and C are equal to one another,
our minor premisa and our minor term are both fanlty. The minor premise is not a correct atatement of the grounds of our inference; these are, that X and C are both equal to B, and therefore the major required is 'Thinge equal to B are equal to one another'. And the minor term ' A and C ' is not really a subject of which we demonatrate an attribute; it is two subjecte, which are ahown to stand in a certain relation to ench other. Thirdly and chiefly, the ro-called major premiss is itself entablished through the so-called minor and its conclusion. It is becarse I ree that if A and C are both equal to B, they are equal to one another, that I recognizo the truth of the general principle or axiom. If I were incapeble of recognizing the validity of the inference in the case of the three quantities A, B, and C, or X, Y, and Z, I should not be able to recognize the trath of the axiom. The axiom, therefore, is not one of the premisses from which we reacon, when we argue that ' $A=B$ and $B=C \therefore A=C^{\prime}$: it is the principle in accordanco with which we resson. If it were denied, the validity of any particular inference that conforms to it would be denied alno; its trath is therefore involved in that of the particular inferences. But a man may see the validity of the particular inference, without formolating the axiom. This would not be so, if it were really a suppreseed major premise, and ' A and C ' a true minor term. In the argumeat that 'Silver is a good conductor becanse it is a metal', every one recognizes that it is implied that 'All metals are good conductors'; and without this premiss, the grounds of the inference are not apparent. But no one requires any further grounds for inferring ' $A=C$ ', than are contained in the premimes ' $A=B$ and $B=C$ '.

We may therefore dismiss the attempt to reduce this argument to syllogistic form, and recognize in the axiom not a premise bat the principle or canon of the argument. Bat the question then arises, whether there is similarly a principle or canon of syllogistic inference. Let us recall what was shown in Chaptor XI, of which what has just been said is only a corollary. We there distingaished between an argument in which a rolation of quantity was eatablished between two terms, throagh their relation in quantity to a common third term : and an argument in which a relation was eatablished between two terms in the way of subject and attribute, through their relation in that respect to a common third term; the latter being syllogism. Now the axiom 'Things that are equal to the mane thing are equal to one another' is a principle of inference in the domain of quantity. It apecifies no particular quantities, but states that two quantities will stand in a certain relation (of equality) to one another, if they stand in certain relations (of equality) to a third. May there not be a corresponding principle in syllogistic inference-one which speciies no particular terms, but states that two terms will be related to each other as subject and predicate in a certain way, if they are so related in certain ways to Δ third term?

Such a principle has been supposed to be furnished in the Dicture de oman ot nullo ; and a consideration of this, and of other canons which have been proposed in its place, will throw a good deal of light on the natare of syllogistic inference, and the difference between its different types or figures.

The phrase 'Dictum de omni et nullo' in really a short title by which to refer to a principle too long to enumerate always in full; just as we refer to statates or papal balls by their first word or two. The principle may be expreseed thus-Quod de aliquo omni praedicatur [dicitur, s. negator], praedicator [dicitor, s. negatur] etiam de qualibet eius parte: What is predicated [stated, or denied] about any whole is predicated [stated, or denied] about any part of that whole. ${ }^{1}$

[^119]If we take ayllogisms in the first figure-and it is enough to consider Barbars and Celarent-the meaning of the principle will
remarks of Aldrich's) to be more nearly a tranalation of the pacsage in Aristotle's Categories than of that in hin Analytics. The formule 'quod valet do omnibas ralet etiam de singulin' (the reference for which I cannot now find) treata the major premis nalredly as an enamerative jodgement; the eame viow is implied in opeatring of the middle torm an a clase, as a.g. Whately and Bain do.
The pearage in Aristotle from which the Dictum de Omni was primarily

 in another as in a whole is the ame an for one to be predicated of all another. And it is aaid to be predicated of all anything, when no part [=logical part] of the anbjoct can be found, of which the other term the predicate] will not be trae; and to be prodicated of nona, cimilarly ${ }^{\prime}$). Aristotle is here explaining the meaning of expremions which he is about to use in the Analytice; if mortal is predicated of animal or man merim nawde, it means that there is no animal (e.g. man) or man (e. g. Socrates) who is not mortal. And no doubt that is involved in the trath of the univernal proposition; bat it does not follow that Aristotle thought of the aniveral proporition an no more than an enumerative judgement about overy apecies (or individual) of which the anbject-term ean be predicated. The fact that be nees the formula rd pigov doris do 80 rei wpóre an well as rd npêrov cery opoirat kord marris roin μ ioou to indicatie the relation of the major to the middle term in Fig. 1 (and mimilarly with the relation of the middle to the minor) ahows that he looked apon the univeral an a whole or unity, and not a mere collection. Agrin he sage of that figare, al yip to A rard warrds

 B, and B of all C, A mast be predioated of all C : for we have already atated what we mean by predicating of all') (Anal. Pri. n. iv. 25° 39-4, 87-40). Doubtlem if it is involved in eging ' All B is A ', that every B is A, and in ening 'All C is B ', that every C is B, then every C mast be A; but the univaral proponition need still not be viewed an as statement about particulars. Indeed if it were, each particular C muat be already known to be A in making the judgement ' $\Delta l l l$ C is A ', and therefore the inference that all C is A would be onnecesary. Aristotle himself points this out in Anol. Poct. a. i, and mates it plain that in his view the univernal proposition whe not an enumerative judgement sbont known particulars; and he hardly ever neesa aingular term to illustrate the minor of a gyllogiam. And although we mant admit that in regarding Fig. 1 as the only perfect fare, and in arhibiting the neceacity of the inference in Fig. 1 es be does in the worde lant quoted, Arintotle laye too mach etrese on the appect of extension, and not enough on that of necesary connexion of content within the object, yet he largely corrects this himelf in bis acconnt of demonstration, and he did not thing that the emential meaning of the univeral proposition, and What conatituted the nerve of the reasoning, lay in the fact that it made an amertion about every particular falling ander it.

There is another pamage in Aristotle cometimes quoted as the source of the Dictam, viz. Cat. iii. io 10 (e. g. Mansel', Aldrich, p. 85 note a: Baldwin's Dictionary of Philooophy and Prychology, a voc. Aristolle's Didum). The

be plain. All (or No) B is A, All C is $B \therefore$ All (or No) C is A. Here it matters not for what real terms A, B, and C stand, any more than

 acl hofpentr dort anl <ior ('When one thing is predicated of another as of a eubject de quo, all that in merted of the predicate will be emertod of the subject an well: e.g. man in predicated of a particular man [as mbject de quo), and animal of man, and therefore animal will be predionted also of the particular man "). Taken epart from its context, this sentence might toem to be an enuncistion of the Dictam. But its contert dispels this presumption. There is nothing sbout ryllogism in the Cateporice at all. Aristotife has been dietinguishing in the provions chaptar between different kinds of being (o-ra). What be caye involvee the distinotions-to put it into other languapo-between the individual and the univeralal, the concrete and the abotract. In his own language some thinge aff imoaruipon λ inver, is

 are predicated of a subject-it is their aubject de quo-but do not inhere in any aubject: othert inhere in a eubject, but are not prodicated of any; others are both predicated of a subject and inhore in a subject; othera neither inhers in a subject, nor are prediosted of any). Hert it is obvions that the leading dirtinction' is between ro aef" ivroneruivov λ 'ryodau and nd ir irroscuive shas: botween being prodicated of a sobject, and inhering in it. The distinction is atin to that between easential and accidental predication. Man is predicated of a particular man, and animal of man in coof imonaunerov, as the subject de quo, becaneeman is what he is, and animal what man is; remove the predicate, and the anbject would not be left; the predicate na it were overspread the whole sabject. In the same way grommar is predicated of Priscian's dirtingoiahing acience, and acience of grammar is anf imonnuivov, because grammar is what his science wea, and soience is What grammar ia. Hare man is a concrete and grammar an abotract term; hat either is predicated ior nof: inraccumirow of its own particulars-they are the subject de guo; and prodicatee which are of their emence, or tell as What they in themselves are, sre predicated of caff immaumipou of thom. On the other hand, grammar is foand in the coal, and colour in a body, as inhering, is J_{0} inroarumixp; and if they are prodicated of theee subjecta, we are not esying what the coul is, or what a body is, ementially; thees attribatea indeed can only exist in a aubjoct (and therofore Aristotle explains ed is imosaminp or the inherent as 8 is rat mi) ior mipos imapros inurarov xoplr ivar roì dy 户ैं Jorir - what being in a particular not an a part of it cannot exist separate from that in which it is '), but their removal doee not involve the dingppesrance of the anbject of which they are predicated. The grammatical acience of Priscian therefore, though there is no anbject of which it is predicable as de quo, ios anB innosupuou (for it is a particular instance of that attribate, or univernal), zet exista ir imosauivp, as an attribate in his 'soul'; but Priscian himeolf is neither predicable of any unbject ior nof iromaninov (being a concrote individual), nor (for the anme remon) doen he inhere or orist in anything farthor.
Having and this, Aristotle proceeds to add the sentence quoted at the head of the last paragraph; which mast clearly be intarpreted with reference to the dirtinctions which he had in his mind at the time; and the point seeme to be this. There are thinge which we might heritate about pleoing in aither of the four clesen which Aristotle hea discriminated. They are what we ahoald call generic conorote torme, like animal. These are
in the axiom it mattered what real quantities were intended. Whatever they are, suppoee that A can be affirmed or denied of all B, it can be affirmed or denied of each particular subject, C or any otber, included in B. Here, according to a tradition which has been strong, is the fundmmental principle of ayllogistic inference. In this Dietsm is nakedly displayed what is the nerve of our reamoning, whenever we syllogize in the concrete. It is'the asurance that \boldsymbol{A} is true of all B, which metiafies us that it is true of this B, viz. of
primarily predicated not of the individual-a.g. the individual man Socrate-bat of the apecies man; we my that a min is an animal, not that soarates is an animal. Now man is not the imostineroy, bat λ írrat sat θ^{\prime} ymommivov; and therefore it cannot be primarily aid of animal that it anf imacominow λ isova. Yet we cannot treet it like a generic abatract term sach an acience, and my that it attechee to man is seff imoacruirev and to Socrute ic iv imoenuive. Still lem can we treat it like tho concreto individnal, and asy that it neither iry imoscuivp dori nor raf imoxaminow λ ívral But we need not erect a new clans of thinge which ward carmpopovyirow λ invor ; for in caese like this, where that of which anything is prodicated is in torn predicated of something eleo in ent inoocuuinn, that thing is iteelf predicated ér kaf irromusuov of the mame subject. Animal therefore, no lews than man, nof imronctyinov díqrea, though predicatod uanally of man or horse, and not of Socrotes or Buctphalua. The case wonld be different, if that of which anything were predicated inhered in something else ír ir imocumine: we could not then prodicato it of the oubject an we predicate it of what inheres in the oubject. Science may be predicated of grammar. and grummar was nomething inherent in the coul of Privcian; bat we cannot asy that the moul of Priecian wan a acience, like the grammar in it. Science, howerer, ie provided for alroedy in Aristotie's list, an eomething which naf
 are no lees provided for, if we realise that, though predicated primarily of prodicates, they are ultimately and really predicated of the sabjocte of theoe.
The eection is therefore far from enanciating the Didum de omni at nullo. The imomiusess is the concrete individual, and not a minor term (though it is troe that it might be aloo a particular instanoe of an attribate). The tranaference of a prodicate Δ from B to C is considered only in the case where A is predicated of B, and B of C, of sa σ inoocouivou: bat the Dictum is innocent of any auch reatriction. If Priscian wan a grammarian, and a grammarian in acientific, Priscian mes scientific; but here in the minor premien it is not true that irspoy aug iripou normpopsirat is naf' imoscamiouv. If Priscian was a man, and All men aro jealous, Priscian wre jealous; but bere jealous, in relation to man, is not one of thoue thinge daa nari roi sarmpopovyipov λ ipurat; man is that, ir $\dot{\psi}$ ioris. Now the Dictum covery these ayllogiems no lem than the ayllogism ' All men aro animale, Socratea is a man \therefore Soorates is an animal - if indeed Aristotle would bave called any of them nyllogisme (ef. infro, p. 296). But the remark which we are considering cannot cover the firit two, nor could Ariatotle have thought of it for a moment as covering thom; the difference between accidental and emential prodication whe much too prominent in his mind. There in therefore no ground for mying that thio peenage enanciates the Dictum; whether he would here nocepted the Dictum an a correct expromion of the principle of ayllogislic inference is another question, to which the answer depende very mach on how we interpret the Dictam.
C; the business of reduction is to bring imperfect ayllogiams into a form, in which we can eee at once that the principle applies to them; and the title of the first to be the perfect figure liee in ite admitting of the application of the Dietum de omni et nullo.

There are several objections urged against the claims of this formala. In the first place, it auggests the 'nominalist' doctrine expressed by Hobbes, when he said that reasoning is but the right ordering of names in our affirmations. It suggesta that our ground for affirming or denying that C is A lies in the fact that A is said of all, or no, B, and B is said of C. Clearly it is because we believe that B is A, and C is B-not because B is called A, and C is called B-that we assert the conclusion. However, this nominalist interpretation of the Dictum is not necessary; it is not as thus interpreted that it will be here discussed ; and therefore this objection may be dismissed.

It may be said secondly, that if the reduction of the other figares to the first is not necessary, i.e. if the true character of our reasoning in them is not more clearly displayed in the first figare, the Dictum is not the principle of all syllogistic inference. In claiming to be that, it denies any eseentisl difference between the different figures; and those who think them essentially different are so far bound to question the analysis of ayllogistic inference which the Dictum implies. This is quite true; but we can hardly discuss the relation of the different figures, until we have settled whether the Dictum expresses correctly the nature of our ressoning in the first.

We come therefore to what is the main criticism which has been urged against the Dictum, and against all syllogistic inference, if it be supposed that the Dictum is a true analygis of its nature. It is esid that a syllogiem would, on this showing, be a petitio principii. By petitio principii, or begging the question, as it is called in English, is meant assuming in one of your premissea what you have to prove. Of course, the premisses must implicitly contain the conclusion; otherwise you would have no right to draw it from them, and could deny it, while admitting them: thin mach is true of every kind of cogent inference, whether syllogistic or not, though it has been sometimes treated as a peculiarity of ayllogism by persons who thought they could find other kinds of inference not obnozions to it. But you do not beg the conclusion in the premisess, except where the conclusion is necessary to establish one or other of

xiv] PRINCIPLES OF SYLLOGISTIC INFERENCE

the premissea. For ersmple, I may know that treanon is a capital offence; and the law might make it treasonable to publish libele against the sovereign; and in that case, from the premisses, $\mathbf{\Delta l}$ treason is a eapital offence, To libel the sovereign is treason, I could infer that T_{0} libel the covercigm is a capital offence. In this argument, there is no pefitio principii; I can leam the trath of both premisees by conaulting the atatute-book, and do not need to be aware that it is a capital offence to libel the sovereign, in order to know either of the premises from which that conclusion is deduced. But the case is different in such a syllogiom an that $A l l$ ruminants part tho hoof, and The deer is a ruminant \therefore The deer parts the hoof. I have no means here of ascertaining the truth of the major premise, except by an inspeotion of the various apecies of ruminant animals; and until I know that the deer parts the hoof, I do not know that all ruminante do so. My belief in the constancy of structural types in nature may lead me to expect that a rale of that kind, found to hold good in all the speciea which I have axamined, holds good oniversally; but this preamption, so long as it reate merely on the examination of instances, is not conclusive; I should not sceept the conclusion merely on the strength of the pramisess, but should seok to confirm it by an axamination of the hoof of the dear; the caee of the dear therefore is necessary to establish the role.

Now it has been alleged that all syllogism is a petitio priscipii ${ }^{1}$; and the allegation has gained colour from the Diotum do omeni et wallo. 'That which is affirmed or denied of any whole may be affirmed or denied of anything contained within that whole.' What do we mean by a whole here? If it is a class or collection, if the major premise is to be underatood in axtension, then it can hardly be denied that it preaupposee a knowledge of the conclusion. If in the proposition $\Delta l l B$ is A, I mean not that B ae enoh is A, but that all the $B^{\prime} s$ are A, I must certainly have axamined the case of C (if that is one of them) before making the aesertion; and therafore the major premise, $\Delta l l B$ is A, resta (intor alia) on the present conclasion, C is 4 . According to this view, the major premise of a syllogiam is (at least in most casen ${ }^{2}$) a atatement of fact about the

[^120]-whole of a number of particulars ; it is really an enamerative, and not a true universal, judgement. ${ }^{1}$ We make it, not because of any inaight that we have into the nature of the predicatee B and A, and into the necesaity of their connexion : but simply because we have examined everything in which B is found, and eatiefied ourselves that 4 is equally present in all of them.

There is indeed another sense in which the major premiss may be understood, and one in which it no longer makes an amertion about the whole of a number of particulars. If I any that all gold is yellow, I noed not mean to aseert that every piece of metal, which by other qualities I ahould identify as gold, is also yellow-s statement for which I certainly cannot claim the warrant of direct experience. I may mean that a yellow colour is one of the qualities on the ground of which I call a substance gold; or, in Locke's langrage, that it is included in the nominal eanesce of gold. By a nominal cesence, Locke meane what J. S. Mill called the connotation of a namethoee attributes which are implied to belong to any subject, when we call it by some general name. We may colleot together in our thought any set of attributes we like, and give a name to the acsemblage of them; and then it will, of course, be true to say that anything called by the name, if rightly called by it, poweses any of the attributes included in the signification of the name. The general proposition ceases, in that case, to be enumerative; but it does not become really universal. It becomes a verbal proposition. Gold is yellow, becanse we do not choose to call anything gold which is not yellow; but we are not asserting that there is any neceseary connexion between the other attributes for which a parcel of matter is judged to be gold, and this of yellowness. Given such and such attributes, we call it gold; and therefore gold has all these. Let any one of them be wanting, and we should not call it gold; therefore that is not gold which is not yellow; but thare may be a parcel of matter, for all that we mean to affirm, which has all the other qualities of gold, but is of the colour of silver. ${ }^{\text {s }}$
or events to which they refer. Such ayllogisms, therefore, we that sbout libelling the soveraign, given in the lant paragraph, can in no cave be alleged to beg the question. If any other sathority (cuch as revelation) scquaints us with general rules, they will serre as major premisees of equally unexceptionable aflogima. All other general propoitions have, by the extremer critics, been interpreted in the way mentioned in the tert.
${ }^{1}$ For this diatinction; ef. supra, p. 158.

Locke did not suppose that the ordinary man, who says that gold is yellow, means only to assert that yellowness is one of the attributes included by him and others in the nominal essence (or connotation) of the word gold. Bat he thought that the ordinary man would find it hard to ay what procisely he did mean; and anyhow, that this was all that the evidence, snd the means of knowledge open to us, jurtified him in meaning. It is not our present business to discuse this; we have not to ask bow many of the general propositions enunciated in the sciences have any right to be regarded as really universal propositions, nor what means there are (if any) of proving universal propositions about auch matters of fact. We are concerned with the theory of ayllogism, and the allegation that it bege the question. We found that if the major premisa be interpreted in extension as an enumerative jadgement, the charge is true; and that the Dictum de omni ef nullo at least lends colour to such an interpretation. We have now seen that there is another interpretation, according to which the major premise becomes a verbal proposition. On this view, its general trath does not depend on an eramination of all the instances incladed ander the sabject of it, and may therafore be known antecedently to such an examination. It depends, however, on an arbitrary convention about the meaning of names; the syllogism too will etill be a petitio principii, though not in the way which the Dictum de oman et aullo suggente. For though the major premiss will no longer presappose a knowledge of the conclusion, the minor will do so. If nothing is to be called gold unless it is yellow, I cannot tell that the subetance, in which I have found the other qualities which the name implies, is gold, unleas I have first seen that it is yellow. Of courne, colour being the most obvious of the properties of a substance, I am not likely ever to be in the position of inferring the colour of a substance from its name; but the argument is the same as if I took some unobvious quality, like solubility in aqua regia. If that is part of the nominal eesence of gold, then I cannot tell that a particular parcel of matter with the familiar weight and colour of gold is gold, antil I know that it is solable in aqua regis. I do not therefore infer its solubility from the knowledge that it is gold, but I call it gold because I know it to be thus soluble. ${ }^{1}$
' It will now be seen why a ayllogism wee explained to beg the question, if it presupposed the concluion not in the premimes together, but in

We need not dwell longer on the view that a general proposition asserts the meaning of a name, nor on the consequences, fatal enough, which this view would entail on the syllogism. Bessoning is not a mere process of interpreting names; and it is not the principle of ayllogistic inference, that whatever a name means may be affirmed of the subjecta called by it. In considering the charge that the ayllogism is a petifio prineipii, it was necepary to notice the view which makes the patitio lie in the minor premiss, as well as that which makes it lie in the major. We must now return to the latter, and to the Dictum which is suppoeed to countenance it.

We saw that the crucial queation here concerned the nature of the major premiss; is it universa, or merely enumarative? is it baed on an enumerstion of particulars, or on the connexion of universala? If it is enumerative, and resta on a previous review of all the perticulars included in the middle term, the charge of petilio is sustained. We should then accept the Dicturn de omai et nullo an the general principle of syllogism, the 'whole' of which it speaks being understood as a whole of extansion, a collection or claes; but we should scarcely be sble to speak of ayllogistic inforence.

Now Aristotle, who thought syllogism to be the type of all demonatration, could not possibly have understood the major premise in this way. ${ }^{1}$ He thought that, although we might know as a fect that $\mathrm{IF}_{\mathrm{is}} d$, yet we did not understand it, without seeing that it maset be en; and to see that it must be so is to see that in it which makes it so-to see that it is A in virtue of B. B is a middle term, becaase it really mediates between C and A; it performs for C the office of making it A, and is the reason why C is A, not merely the reason why we know C to be A.

We have already, in discussing the modality of judgements, met with this distinction between the reason for a thing being so and so, and the reason for our knowing it to be so-between the ratio cosendi and the ratio cognoscendi. When I say that wheat is nouriahing, because it contains nitrogen and carbon in certain proportions, I give

[^121]the reason for its being nourisbing: it is this constitution which makea it so. When I say that Mellin's Food is nourishing becane Baby growe fat on it, I do not give the reeson for its being nouriahing, but only the reason for my esying it is so: it is not Baby's condition which makes it nourishing, but ite nourishing properties which produce Baby's condition. The physical aciences always look for rationes cosendi, so far as posaible; though it may be noted that in what is, in many ways, the most perfect of the sciencee, viz. Mathematics, we reseon very largely from rationce cognosendi. If $A=B$, and $B=C$, then $A=C$; but it is not becawes A and C are both equal to B, that they are equal to one another, though that is how I may come to know of their equality. The reason why they are equal is that they contain the same number of identical unita. ${ }^{1}$

It is not all eyllogisms, in which the middle term gives the reseon why the major belongs to the minor. It does 50 only in the first figure, and not always there. Because a syllogism falls into the first figare, whenever the middle term really is a ratio
 Why are modest men grateful? Because they think lightly of their own deserta. This implies a syllogism in Barbars. All who think lightly of their own deearts are gratefal, and modeat men think lightly of their own demerts. But if I try to eatablish the conclusion by an appeal to instancee, pointing out that Simon Lee and Tom Pinch, John Doe and Richard Roe, were modest, and were grateful, I am giving not a reason why the modest are grateful, but reasons which lead me to judge them to be so; and my syllogiam falls into the third figure, not the first: Theee men were gratefal, and these men were modest, therefore modest men are (or at least they may be) grateful.

The first figure is scientific, because a ayllogism which makes you know why C is Λ falls into that figure; but the middle term in the firat figure noed not be a ratio essendi. Parallel rays of light proceed from objects at a vast distance ; the sun's rays are parallel ; therefore they proceed from an objeot at a vast distance. Here my syllogiom is again in Barbara; bat the distance of the sun is not due to ito rays (at the earth) being (so far as we can detect)

[^122]parallel : their being parallel is due to the distance of the sun from the earth. Nevertheless, the syllogisms in which the middle term does acconnt for the conclusion are enough to ahow that syllogism is not essentially a process of inferring about a particular member of a claes what we have found to be true of the whole clase. The importance of the scientific, or demonstrative, syllogism in this connexion, is that it most effectually disposes of this analysis of syllogistic inference. It shows that there are syllogiams which cannot possibly be brought under the Dictum do omani et aullo, thas interpreted. We shall, however, find that even where the middle term is not the cause of the conclasion, in the sanse of being a ratio essendi, the Diotum thus interpreted does not give a true account of the nerve of our remening.

For the central ides of eyllogiam is that it works through concepts, or universals. The major premise aeserts, not the presence of d in every B (and therefore in C, among them), bat the connexion of A as such with B as such ${ }^{1}$: hence wherever we find B, we must find A^{\prime}; if we kow, or can show, that C is B, then co ipeo it is A. B is one thing, present in many; an attribute that is the same in the various subjects in which it occurs, and therefore involves in every case what it involves in any. How we are to discover what B involves is a problem of Induction, in the modern sense of that term. Bat if we know it, and if we know or discover in a subject C that the condition B is present, we know and conclude that C is \mathcal{A}. Where B is only something from which we can infer A, as we infer the distance of the sun from its rays being parallel, B is still an aniversal, zy izi mo入入ôy : an attribute which for one reason or another we take as a sare indication of another attribute, and which we look on as the same in the various instances of its existence. There conld be no syllogism if the major premiss really made an enumerstive statement about a number of particulars; the most that we could asy of the major premiss then would be what Mill says of it, that it is a note or memorandum to which we subsequently refer in order to refresh our memory and save the tronble of repeating our observations: as if a man intending to dispose of part of his library were to put the volumes, which be did

[^123]not consider worth keeping, all in one bookcase; he might then infer that any particular volume in that bookcase was not worth keeping, merely because he had made a mental note to that effeot about them all, and without looking at the volume again.

The perception that the middle term in not a clace but a charncter, universal and not asum of particalars, has led to the formulation of a principle intended to expreas this more atinfactorily than the Dictwm de onni et sullo does; of which it has already been asid that it at least leads itself to an erroneous view of the major pramise, as an enumerative proposition, though it was by no means always $e 0$ intonded. The principle is thio-Nota nolas aet mola rei ipnime (and for the negative, Repugnase nolae repugnat rei ipn): i.e. what qualifies an attribate qualifies the thing poesessing it. Certain objections may be made to this formule also. It suggeste that the minor term is always concrete, and that the syllogism refers to a concrete subject (res ipva) what in the major premise is stated to characterize its predicstes. It speaks also as if one attribate were conceived to qualify another in the ame way as an attribute qualifies a concrete arbject. And the conoeption of a mark or mota is no improvement on that of attribute. ${ }^{1}$ We need not interpret it as a purely extarnal sign, related to what it signifiee as a word to its meaning or a letter to a sound. The 'notes' of a thing are ita claracteristics, as Cardinal Newman apoke of the notes of the Church; they are not the mere indications by which we judge what object is present, bat themselves contribute to make it the object that it is. Yet the nature of a thing is no less ill conceived as an aseemblage of marks than as a bundle of attributes. The notes of the Charch would not exhaust the notion of the Church; the marks of a disesse, though elemants and features of it, would not give a complete conception of what the diseses is. There are predicates of a thing which include too much of its nature to be called marks of it. Nevertheless this formula has the great advantage that it does prevent our regarding the middle term as a cless which includes the minor in its extension. ${ }^{3}$

[^124]Kant said of the syllogism that it subsumed a cognition (i.e. a subject of knowledge) under the condition of a rule, and thus determined it by the predicate of the rale. ${ }^{1}$ The rule is given in the major premiss, which connects a predicate (the major) with a condition (the middle term) : the minor premise aseerts the falifment of this condition in its sabject; and in the conclusion we determine the aubject by the predicate which the rule, in the major premise, connected with this condition. This analysis bringe out the eseential nature of the major premias, as a rule connecting a predicate with a condition universally, not an aseertion that the predicate is found in the whole of a cless. It aleo applies equally where the middle term is, and where it is not, the ratio casendi of the major. And it is free from the objections just arged against Nota notac.s If we were to frame from it a 'canon' parallel to this and to the Dictum de ameni et nallo, it would run somewhat thas: Whaterer satisfies the condition of a rule falls under the rule. If B is the condition of the rule of being A, whatever is B-for example, C-will fall under the rule of being A. We may perhaps secept this as a statement of the nature of the reasoning employed in syllogisms of the first figure. We need not deny that the Dielum de omni et mullo, if rightly interpreted, is free from the offences charged againat it. If the owne be understood
qualifies an attribute qualiftes the aubject of it, comes to mean that what indicates the prosence of an attribute indicates what the latter indicates. He nistarslly gets into grest difficulties where the minor term is singular. We may treat the attributes of mun as a mark or indication of mortality (though this is rather like anying that a bottle of Liebig's Ertract is a mark of the presence of a certain familiar signatare); but we cannot treat Socratee as a mark or indication of the attributes of man. Therefore in the ayllogisme $\Delta l l$ men are mortal, All kings are men (or Socrutes is a man) $\therefore \Delta \| l$ kingz are (or Socrates is) mortal, while the minor premise of the former is paraphrased The attributes of a king are a mank of the attributes of man, that of the latter runs Socrates has the attributes of man. This is a rather deaperate abift. Bat res ipna never meant the major term, the most general or abotract term in the sylloginm ; and the whole interpretation, which necemitates a meamere so violent, is impomible. The formula is really an abridged equivalent of the passage in Ar. Cat. ${ }^{\text {b }}$ 10-12, quoted p. 275, n. 1, supro.
${ }^{1}$ Knit. d. r.Vern., Tramacendental Dialecb, Introd. II. B.(p. 215, Meiklejohn'e Translation).

- Kant bimself applied this snalysis to hypothotical and diajnnctive arguments alao. In a later chapter, these are more atrongly diatinguiahed from 'categorical ' kyllogisms than he allows. But this need not prevent the acceptance of bis analyaic A atatement may correctly express the nature of ayllogistic inference, even when some argumente, which are not atrictly ayllogiatic, are aleo alleged to fall under it.

Iiv] PRINCIPLES OF SYLLOGISTIC INFERENCE

as an unity present in many instances-a whole of intension, not a whole of extension-then the principle will serve. Bat the other puta more clearly the nerve of the inference. And it applies to all ayllogiems in the first figure, whatever the nature of the middle tarm : whether it be a mere sign of the major term, as if we said that 'All men with large hands and small eyes are choleric'where the connerion of the predicate with its condition, though sccepted do faelo, is one for which we can see no necessity: or whether it give, wholly or in part, the reason and the explanation of the major, e.g. in such premisses as that 'All trees fertilized by the wind blossom before their lesves are out', or that ' Men successful in a work that gives full play to all their faculties are happy'. Whatever our particular ayllogism is, we shall find it true to say of it, that it bringe a subject onder a rule, on the ground that it satisfies the condition of that role: that it affirms (or denies) a predicate of a subject, on the ground that this subject fulfils the condition with which the predicate (or its absence) is univeraslly connected.

That this, like the axiom of equals, is a principle and not a premise of reasoning, is easy to see. Any one denying it would as readily deny the validity of any particular ayllogistic argument; but a man may admit the validity of the inference, in a particalar case, withoot needing to consider this general principle. And, as no one could nee that Thoo things equal to the same thing are eqwal to one another, who was incapable of seeing the trath of that principle in a given case, so no one could see the trath of the principle that What satixfies the condition of a rulo falls wnder the ruld, who failed to recognize that if all organisms are mortal, and man is an organism, man must be mortal. What then is the use of the principle, if it is not a premise of inference? It might be used to stop the mouth of a disputant who denied the conclasion which followed from the premisses he had admitted. We might ask such a disputant, whether he donied the trath of this prisciple, and unless he was prepared to do that, require bim to admit the validity of the syllogism he was dioputing. It is true that in consistency he might decline. A man who denies the validity of a given ayllogism in Barbara may with equal reason deny the argument which attempts to prove its validity. For that argument will itself take the form of another syllogiom in Barbara :

All inferences apon this principle (that what satiafies the condition of a rule falls under the rule) are valid
The syllogism in question is an inference upon this principle
\therefore It is valid
Why shonld a man admit this reeooning, if he will not admit that since

All organima are mortal, and
Man is an organism
\therefore Man is mortal?
The two are of the same type, and ahow that you cannot make the principle of ayllogistic inference into the premiss of a particular syllogism, without begging the question. ${ }^{1}$ Yet a man who disputes in a particular case the conclusion that follows from hia pramisees (may hesitate to maintain his attitude, if the principle of reesoning involved is put nakedly before him, and shown to be one which he daily proceeds apon, and cannot disallow without invalidating his commonest inferences. For this reason it may cut wrangling short, if we can confront a man with the principle of the inference he questions. Show him, for example, that the inference ascribes to a sabject, in which certain conditions are fulfilled, a predicate connected universally with those conditions, and be cennot longer refuee his aesent. For to do what it does is to do a ayllogiom ' : and therefore valid.

And there have been writers ${ }^{3}$ who thought that the only object of knowing the theory of eyllogism was to cat short wrangling. Bat there is another object, connected with a side of logic which the

[^125]
riv] PRINCIPLES OF SYLLOGISTIC INFBRENCE

rame writere for the moant part ignore. Logio is not an art. Its business in to know and understand the procemen of thought, and not lesat the true nature of our procesese of inference. To this businese belong: the question, what is the principle of a certain inference which we make, and recognize to be valid? To find and formulete that principle-to extricste it from its conarete eetting in the matter of a particular argument, and set it out in abstract, -this is the logician's task. Now men may misinterpret the charnoter of eyllogism, and formulate wrongly the principle involved; yot if their misinterpretation is generally received for true, the wrong principle will eerve in practice to stop dispute as well as the right principle would have done. Those who are agreed that syllogism is conclusive, however they define a ayllogiam, will accept an argument if it can be shown to secord with their definition; and the same misinterpretation which appears in their account of the general nature of ayllogiam will appear in their view of particular syllogims, from which that account is of courso derived. Therefore, though it be said that a syllogism is an argament which applies to any member of a claes what is true of them all, yet even this analysia of it, however faulty, will serve to 'stop wrangling' among persons who secept it. For let a particular argument be exhibited as doing this, and it will be socepted as ralid. But the theoretical objections to this analysie of ayllogistio inference are in no way leseened by its being prootically an useful an any other that men could be brought to accept. The paramount question is, whether it is true: not whether for any purposes it is usefol And the present chapter has been quite dievinterested; it has aimed at throwing light on the queation, What is asyllogiom ? i. e. What in the principle of inference which a ayllogiam exemplifies?

We have ignored of late the imperfect figures, in aceling an answer to this question. They furnished a possible objection to the claims of the Dictum de omxi el wnllo ${ }^{1}$; for if their reduction to the first figure is unnecemary, then the Dictum, which only contemplates the firat figure, cannot be the principle of all ayllogistic inference. But this objection was deferred, until the Diotum had been examined on its own ground. We must now retarn to the subject of the imperfect figures.

[^126]It may make things clearer, if the view to be taken in the following pages is given cummarily at the outsek There are dificulties in any view of the matter; because the meme verbal form may be used where the thought in the opeaker's mind in different. The true charactar of an argument depende not on the verbal form. bat on the thought behind it. And therefore sometimes the movement of a man's thought, though he expreses himself, a.g., in the second figure, would be more sdequately exhibited in the firot. ${ }^{1}$ In such a case direct reduction may be defensible, though still unnecenary; and yet it may be true that, speaking generally, the direct reduction of the imperfect figures distorta them, and parchasen a abow of conformity with the first figure at the expense of concealing the genaine movement of thought in them.

It would eeem then that syllogirms in the second and third figares do not as a rale merely present under a diaguiee the reasoning of the first; they ere independent typee. Their validity is con-' firmed, in the second figure, by the reductio ad ahourdsm ', and in the third, by the method which Aristotle called deveats, or exposition. The fourth figare (or indirect conclusion in the first) is not an independent type; its first three moods are merely moode of the first figure, with the conclacion converted, as the proceee of redacing them anumee; its leat two moode draw conoluaione which are shown to be valid most naturally by reduotion to the third.

Iot as begin with the second figure. Take the syllogism : All true roses bloom in summer: The Christmat rase does not bloom in onmmer \therefore It is not a true rose. Surely, if a man heritated for a moment about the necesity of this coneequence, he would reasare himself, not by transposing the premieses, and converting the present minor into the statement that No row which bloome in rumater is a Chridmas rose: but by considering, that the Christmas rose, if it were a true rose, would bloom in summer, whereas it does not. The same remarke will obviously apply to a syllogiam in Baroco. Nor is it otherwise with the remaining moods. If No

[^127]fiek has lunge, and Whales (or Some aquatic animals) have langs, then Whales (or Some aquatic animalo) aro not fisk. A man seen at once that if they were, they would not have langs: whereas they have.

It might be caid that the last conolasion could be as natarally reached in the first figure; that if a man, confronted with the conolusion that Whales are not fish, and not feeling that he was clear about ita cogency, were to ask bimself 'Why not?', he would anower ' Becanse they have lungs'; and that this implies a syllogism in Bachars, with the major premiss What has lunge ie not a fuh. Whether this gives the reason why a whale is not a fish (in which case Barbars would be a better way of proving it) we need not dispute; but there certainly are cases where, in what a subject is, we can find a reason for its not being something else. Notes that prodsce beale are no harmonious: The fourth and ffth produce beats; Therefore they are not harmonions. This argument might be set forth in the second figure: Hammonioue notes do not produce beats: The fourth and fifth produce beats; Therefore they are not harmonious: but here undoubtedly the eyllogism in Berbars is better than the gyllogiom in Cesare; and any one who knew that concord was dependent on regular coincidence in vibrations and discord on the absence thereof, would extricate from the major premiss of the latter syllogism the major of the former, and think in Barbara. Neverthelcss it is only this knowledge which makes him do $s 0$; and without it he might perfectly well validate to himself his conclusion by considering that if those notes were barmonions, they would not produce the beats they do. If the middle term gives a ratio casendi, we naturally put our reasoning into the first figure. ${ }^{1}$ The Chinese are not admitted into the United Ststes, for fear lest they should lower the white labourer's standard of living. The likelihood of their doing this is the cause of their exclusion. It would be annatural to express this in Cesare-

None admitted into the United States are likely to lower the white labourer's standerd of living
The Chinese are likely to lower it
\therefore The Chinese are not admitted into the United Statea.
But we are not concerned to prove that no argumente expresed

[^128]in the second figure are better expresed in the firut; only that there are arguments which are more naturally expremed in the second, and which we should not, if challenged, attempt to validate by reduction to the first. Thus I may argue that Notes which produce beats are not harmomions, and 1 note and its oclave are harmonious, \therefore They do not produce beats; and it is as much a distortion to pat this into the first flgure by conversion of the major premies as to pat the previous example which used that major premise into the second figure by the came meana. Agnin, if I give, at a reason why whalee are not finh, that they have not the chamoteristice of fish, such as breathing through gills, laying egge, kc., my syllogimm may very well be in Camestres-All fend breathe thromgh gills, and Whales do not $\therefore \boldsymbol{A}$ whale is not a fed ; if I still eak myself why not, I should probably answer, 'Becanse if it were a fish, it would breathe through gills, which it does not do.' The conclusion states a fact of difference between two thinge, which the premisees prove but do not account for; and the proof in the second figure may be said to be here the primary form. ${ }^{1}$ Moreover, if I were to reour to the first figure in order to establinh this inference, it would naturally be by contraposing the major premise

What doee not breathe through gills is not a fish
Whales do not breathe through gills
\therefore Whales are not fish
for the absence of a feature essential to any fish may be trested as explaining why a thing is not a fish. But the syllogism to which Camestres is supposed to be reduced is not the above; it is the following-

What breathes through gills is not a whele
A fish breathes through gills
\therefore A fish is not a whale
from which the original conclusion that a whale is not a fish is recovered by converrion. Now thie argument, instead of relying on something in whalee (viz. the abeence of gills) to show that they are not fish, relies on eomething in fish (viz. the presence of gills) to ahow that they are not whales; whereas whales are really the

[^129]subject of my thought. The ame line of reflection may be applied to the argument, Matler conlaining active bacilli putrefics: Prozen meat does not putrefy \therefore It contains mo active bacilli; where no one could maintain that non-patrefiction was really the cance of matter containing no active bacilli.

Thus the eecond figure is really diferent in type from the first; although reaconinge which would natarally fall into the first may be thrown into the recond. And the difference is this, that the second is esentially indirect, the first direct. In the second, we see the validity of the conclasion through the contradiction that would be involved in denying it; in the first (thougb, of course, it would be equally self-contradictory to admit the premimes and deny the conclacion) the perception of this is not a ' moment' in our thought. It may fairly be asid that the first figure is prior to the second, in the sense that it is involved in the perception of the contradiction which would reeult from denying the concluaion in the second. But that does not justify us in reducing the eecond to the first. For it is an essential part of our thought in the second figure, to see that the conalusion must follow on pain of contradiction; and not merely to see the validity of the first-figare syllogism, by help of which the contradiction, that would follow on denying the conclasion, is developed. There is therefore a movement of thought in the second figure which is aboent from the first. This is what prevente our redacing it to the first, and makes a new type of it ; and this is why its direct reduction, representing second-figure syllogiems as only first-figure syllogisms in disgrise, is wrong, and therefore superfluons.

It may be seked, is even indirect reduction necessary? Is not the validity of the argument plain, without our being at pains to show that, if it were dispated, we should be involved in a contradiction? Cannot a man appreciate that if No A is B, and C is B, then C is not A, without the necemity of pointing out that C would not otherwise, as it is, be B ? The answer is that a man may oertainly not require this to be pointed out, inasmuch as he sees it at once to be involved in the premisses. The so-called indirect reduction is really a part of the thought grasped in the eyllogiom; not something further, by which, when a man has already made his inference, and realized the act of thought involved in making it, be then proceeds to jurtify his act. It rather brings out what is in the inference, than reduces or resolves it into another. Hence a man may feel it
to be annecemary, but only because it is a repetition, not becanae, if he did not eee it, the syllogism would etill be reen to hold withont it.

Yet it mast not be auppoeed that a form of argument is valid only because to quection it would involve a contradiction. With equal reseon it might be said that unlese the argument were valid, there would be no contradiction in rejecting it. Hence the perception, in the eccond figure, of the contradiction that would ensue if we denied the conclusion, is not the reason for sdmitting the concluaion, bat ouly involved in realizing its validity. An analogy may halp us

If a straight line, falling on two other straight lines, makes the exterior and the interior and opposite angles on the same side of it equal, the two lines must be parallel. Strictly speaking, this oannot be proved by reasoning; we just eee, when we try to draw the figure otherwise, that it must be ∞. Bat this necessity may be brought out indirectly by the consideration, that if $B E F$ were to be greater than $B C D, E F$ and $C D$ would cat $A B$ at a different slant, and therefore incline towards one another; and the perception of this is really part of seeing the necessity of the original proposition. Nevertheleas it cannot be given as a reason for the truth of that proposition; for unless the lines were parallel when the anglea $B E P, B C D$ are equal, they would not necessarily tend to meet when each cute $\boldsymbol{A} B$ at a different slant. The confirmation, such as it is, is obtained by looking at the same matter from another side; and $\infty 0$ it is in the second figure of syllogism. The truth of one side cannot really be separated from the trath of the other, and therefore the one is not dependent on the other; but it is not fully appreciated without it. The development of the contradiotion involved in denying the conclasion in the second figare is a development of the system of relations between the terms alleged in the premises, or of the consequences involved in thene. It is not, like a suppressed premiss, something without the consideration of which the argument is altogether broken-becked; but it is something involved in the full apprecintion of the argament. It follown, if the second figure is not a mere varistion of the first, that the principle or anon on which the first proceede is not that of the second. If the sbove account of the nature of our reaconing in
the second figure is eorrect, ita principle is this, that no subject can poesess an attribute which eithar excludes what it pomenes or carries what it excludes.

Of the third figure we must give a different scounnt. Ite two moot noticesble features are that the middle term is aubject in both premisese, and the conclunion alwaye particular. For thin reacon it has been well called the indwetive figure ; for induotion (whatever eleo besides their citation may be involved in it) is the attompt to eatablish a conclusion by citation of inatanoea. The termet of the conolurion are alwaye general ; they are what we have called univermals. The conolurion declares two general oharncters to be connected, or (if negative) that one excludes the other: Sailory are handy, The larger carnivora do not breed in captivity. In the premiseen wo bring instances of which both aharactens can be affirmed; or of whioh one can be affirmed and the other denied ; and these instances are our evidence for the concluaion. But the conelusion is not general; we are never justified, by a mere citation of instanoes, in drawing a really univeral conolusion. If All B is A, and All B is C, we cannot any that All C is A; in traditional phraeoology, C is undistributed in the minor premina, and therefore mant not be distributed in the conolusion; and the thing is obvious, withoat any such technicalities, in an examplo; if all men have two arms, and all men have two legs, it does not follow that all animale with two lege have two arms; for birds have two lega, besides men, and have not arms at all, but wings. Yet, though our instances will never jualify a really universal conclusion, they may arggeat one; and they will at any rate overthrow one. The instances of Queen Elisabeth or Queen Victoris, of Catherine of Russia or Christina of Swedan, will dieprove the proposition that No moman can be a statesmas ; and truth is often adranced by eatablishing the contradictory of some univernal proposition, no leat than by ertabliahing universal propositions themselves. -

Now what is the true nerve of our reseoning in anoh arguments? It in the instance, or instances. We prove that some C is A, or come C is not d, because we can point to a subject which ia at once C and d, or C and not A. Unlees we are sure that the amme subjeot is referred to in both premimes, there can be no inference: 8ome animale are quadrupeds, and Some amimals are vortobratas; bat they might be different animals, and then there would be no instance of
a vertebrate that had four lege. But if either premise is nnivernalif $0 . \mathrm{g}$, with manmal an our middle tarm, we take the promisees dome mammale are quedrupeds, and 14 mammale are vertobrateo-then it follows that Some vertolrates are quadrupeld; for the 'some' mammels of the major premin are included among the 'all' of the minor, and therefore we could pick out, from among the latter, instances of animals that were both vertebrate and quadruped. The instances, however, instead of baing vaguely indicated an 'some' of a whole clase or kind, may be apecified by name; and then the natare of our reaconing is umambiguous; we are manifertly argoing through instances. In order to abow that A moman may be a statemasa, we can appeal to the four queens mentioned above; these were statesmen, and theee were women; and therefore some women have been (or women may be) atateamen. But whether the instances in which C and A are united, or C is present without A, be cited by name, or only indicated an 'mome' of a whole class, in both casee alike it is on them that the reaconing hingea, and it is by producing them that a coeptic could be confuted, who refused to admit the conaluaion.

Aristotle called this production of the instance by the name Ineeots, or Exposition. He conceived that the proper mode of valideting a ayllogien in the third figare was by direot reduction ${ }^{1}$, but added that it was possible to validato it per imposeribile or by 'exposition': 'if all S is both P and R, we may take come particular 8 , way N; this will bo both P and R, so that thore will be some R which is P^{2} '; and what is pomible where both preminges are universal and affirmative is equally poserible in any other mood. This seems to exhibit the real movement of thought in the third figure bettor than the artificial procese of direct reduction. For, in the first pleos, if the middle is a singoler term, as in this figure it often is (though Aristotle took little note of such cases), the conversion of a premiss is forced and onnatural. In words I may say that since Queen Elizabeth and Queen Victoris were statesmen, and nome women were Queen Elizabeth and Queen Victoria, therefore women may be stateamen; but in thought, Queen Elizabeth and Queen Viotoris will still be subject in the minor premiss. And secondly, even where the middle is a general term, direct
${ }^{1}$ Except, of course, where the major premisa is a partioular negative and the minor a universal all rmative proponition (Bocardo), in which case we can only proceed per inposmbite or by exposition. Anal. Pri. a. vi. 28b 15-21.

- Anal. Pri. a. vi. 28 24-26.

IIv] PRINCIPLBS OF SYLLOGISTIC INFERENCE 297

reduction often conoeale, rether than expremes, our thought. No ostrieh can fly, All ortriches have wings \therefore Some minged animalo cannot fly : here, though it is posible to subetitute for the minor premiss Some winged awimalo are astricies, the other is the form in which we natarally think; the more concrete torm stands naturally es the sabject of our thought.

It may be admitted that there are cases where direct redaction is unobjectionable. No clorgyman may sit in Parliament, and Some elergymen are electors to Parliament \therefore Some oloctort to Parliament may not oit in it. Here it would be as natoral to may that Some electors to Parliament are dergymen; for the franchise, and the clerical office, are each an 'socident' of a man, and either can equally be the subject of the other. But the character of the argument seems changed by this alteration. Clorgymes are no longar the instance which shows that a man may be entitled to vote without being entitled to sit; the middle term is now a status in virtae of which certain voters cannot sit. The point contended for is not that there may not be ayllogisms in the third figure, whose conclusion could be equally well, or even better, obtained with the eame middle term in the first: but that the movement of thought charecteriatic of the third figure is not, and cannot be reduced to, that of the fingt; and that reduction, as a general prinoiple, is therafore superfluous and mialeading: the true confirmation of the validity of the syllogiam lying in the perception that thare actually are inetanose of ite truth.

One objection to this riew of the third figure needs consideration. It may be said that the produotion of a partioular instance in sapport of the conclasion does not do full justice to the grounds on which wo aocept it, in caeen where the middle term is general and both premisees universal. All horned snimale ruminate, and they all part the hoof; this, it may be urged, is better ground for concluding that cloven-footed animale may be ruminants, than if I merely appealed to the case of the cow in my peddock. To settle this, let us look for a moment at the two meanings, which (an we saw before) may bo intended by a particular proposition. ${ }^{1}$ If I any that some C is A, I may either mean to refer to certain unspecified bat definite members of the alas C, and predicate A of them; or without any apecial thought of ang particalar case, I may mean to declare the
${ }^{1}$ C. anpra, pp. 158-160, 179.
compatibility of the two characters, C and A, in one subject. In the latter case, I can also exprees my meaning by the problematic judgement C may be A; which contains no doubt the thought of unknown conditions under which it soill be so. Now supposing I underaland the proposition in the latter sease, the cow in my peddock is as good a middle term as borned animals generally; supposing I understand it in the former sense, then my conclusion, that Some clocon-footed amimalo rwminate, undoubtedly has more to rest on, when the premiseses apeak of all hormed aminals, than when for middle term I refer only to a cow or two in a neighbouring peddock. But it is also really a different conclusion; the 'some' intended are a larger number of anspecified animals in the one case than in the other; and it is only by the production, or 'exposition', of all the instances to which our 'some' refers, that the reference to them all, in the conclasion, may be juntified.

It may fairly be asid that the argument, in this view of it, does not really amount to a syllogism: it comes to this, that if all horned animals ruminate, and all part the hoof, then all clocenfooted animalo that are horned ruminate. If the axect sphare of the conclusion is thas borne in mind when we my that some cloven-footed animals ruminate, and we mean by 'some' all that are horned, there in not really and in thought that elimination of the middle term in the concluaion which is characteristio of aylogism. It would not be reckoned a syllogiam if we argaed that since Woleey was a cardinal and Wolsey wae chancellor, be was both ohancellor and a cardinal ${ }^{1}$; neither is it a syllogism (though it is inferance) to argue, from the premisees above, that all horned animales are both ruminant and cloven-footed : from which it follows that all clovenfooted animals that are horned are ruminant.

We may admit the view of the leat paragraph to be the right one. Sapposing that when we conclude, in the third figure, that Some \bar{f} is (or is not) d, we refer in thought, though not in words, just to those particular instances, and no others, which in the premiseen were stated to be both B and \boldsymbol{A} (or not \boldsymbol{d}), then we have not got a proper syllogism. Still our conclusion resta entirely on the production of those instances, few or many, beyond which our thought refuses to travel. The true and characteristic syllogism in the third figure, however, intends its conclusion in the other sense:

[^130]as a problematic judgement, a statement of the compatibility of two attribates, or the possibility that one may exist without the other. And to eatablish this too it relies on the production of an instance; nor are many instances really more sufficient than one, to establish mere compatibility, except as minimizing the risk of malobservation. The instanoe need not indeed be an individaal; it may be a kind. If we want to prove that an evergreen may have conspicuous flowers, we can cite the rhododendron; and we may mean by that the apecies, and not any particular specimen ${ }^{1}$. But very often, and mostly where one premiss is particular ${ }^{2}$, and of course always where the premisese are singular, it is on an individual instance that we rely; and one instance, whether individual or species, is enough. Therefore it is by exposition-by a production, not of course in bodily form, bat in thought, of one instance-that we justify the inference to oarselvea; we actually rake this appeal in our minds, if we realize the gronnd of our conolasion. Persons familiar with a type of reseoning may draw conclusions from premisees an it were by preoedent, and withont realizing the evidence on which they ect; but whenever we are fully conscious of what we are abont, there is, in the third figure, the recognition that the conclusion is proved by its exemplification in a case cited, or included in what we cite.

Of courne there is a way in which the number of instancee makrea a real difference to the conclusion which we are inclined to draw. The case of Prince Bledud is alone enough to show that a man who washes in the waters of Bath may recover of a disease. The two eventa, however, may be accidental and unconnected. But if cases were multiplied, we should begin to suppose there was a connexion between the use of these waters and the care of certain ailments; or if the ailments which dissppeared after taking the waters were of

[^131]all sorts, we might begin to look on Bath waters as panacea. For eatablishing a consexion between two attribates the nomberand variety of instances are matters of great importance; but for establishing compatioility one instance is enough. Now the third figure does not prove more than a competibility; and never can prove a connerion, however many the instances are; and though the number of instances may make a connexion highly probable, yet we are influenced in reaching such a conclusion by other considerations besides the instances themselves. For example, a man who obeerved in several cows the combination of the cloven foot with the ruminating stomach would be mach less inclined to suppose that there whs any general connexion between these characters in nature, than if he had obeerred the same thing in an equal number of beasta belonging to as many different apecies. For we are mocustomed to find peculiarities constant throughoat one species, and failing when we go beyond it; so that the sccumulation of inatances would be discounted by the fact that they all belonged to the same kind. Again, we might meet a Privy Conncillor in a light suit, and yet not be led to regard the next man we met in a light suit as a Privy Councillor; but if we met a Guardaman in a breastplate, we should very likely suppose the next man in a breastplate to be a Guardaman. The readiness with which we infer connexion is controlled by our general knowledge of the kind of attributes that are connected; such conaderations do not appear in our premisses, but greatly influence our thought. Hence it is, that thoee who are thoroughly familiar with the facts of a science, or of some historical period, can make inferences from isolated facts which to persons ignorant of the field of investigation, and the controlling principles applicable to it, appear foolhardy. But all this belonga to nther a different department of logical theory, the Logic of Induction. It remains true that so far as we bring no extraneous considerations to bear, and are gaided only by the facte contained in our premisses, we can infer no more than the compatibility of two characters (or the possibility that one may sppear without the other) from any number of instances; and we can infer thus much from a single instance.

It should be noticed, before leaving the consideration of the third figare, that it always argues from a ratio cognoscendi. It is not because the rhododendron has brilliant flowers, that this attribute

xiv] PRINCIPLES OF SYLLOGISTIC INFERENCE

can be combined with evergreen folinge; if it were not that there is no incompatibility between them, the rhododendron could not exhibit both. Our instance merely teaches us that the two are compatible; it is the ground of our aseertion, not the ground of the fact asserted. And this in itself is enough to show that there is a real difference between the nature of our reasoning in the third figure, and in the first-at least when our syllogisms in the firut figure are scientific; and that the attempt to reduce all syllogisms to one typical form imposea an onreal appearance of conformity upon argomenta which are easentially disparate,
[The fourth figure of syllogism remains for consideration. ${ }^{1}$ It has this peculiarity, that ite premisses as they stand, if we transpose them, present the arrangement of terms required by the first figure. And three of its moods (Bramantip, Camenes, snd Dimaris), when thus regarded as being in the first figure (=Baralipton, Celantes, Dabitis), afford conclusions of which those drawn in the foarth figare are merely the converse; but the other two moods (Fesapo and Fresison) yield no conclusion in the first figure, from which the conclusion in the fourth might be obtained. Are we therefore to regard this figure as presenting a seperate type of inference from the first, or was Aristotle right in disregarding it ?

Let us look first at the moods which are reduced to the first figure by a mere transposition, and without any alteration, of the premisees. In the premissen All nitrogenowe foods are flesh-forming, All graine are silrogenous, if we treat flest-forming as the major term, we have a syllogism in Barbara; but if we treat graine as major torm, our ayllogiam is in Bramantip, and the conclusion is that Some flesk-forming foods are graine. It is surely true that the cogeney of this inference, as compared with the other, is peculiarly unobvious. The conclusion is not what we should naturally draw from the premisses; and we need to look a little closer, in order to convince ourselves that it necessarily follows. And this conviction comes to us when we realize either that from the given premisaes it follows that $d l l$ grains are flesh-forming, and our other conclusion follows by conversion from that : or else that if no fieahforming foode were grains, no nitrogenous foods would be grains; and that in that case grains could not all, or any, of them be nitrogenous. The eame remarke would apply mutalis mutandis to syllogisms in Camenes or Dimaris; and we may therefore conclude that

[^132][these moods are not evidently cogent without a further act of thought than their formulation in the fourth figure displaya. Are we therefore to treat them as belonging to the first figure? The reason for doing this is, that the simplest and directeat way of justifying the inference which they contain is by drawing a conclusion in the first figure from their premisees, and converting it.

The two remaining moode, Feespo and Fresison, are lees easily disposed of. As the aame considerations apply to both, it will suffice to take an example of the former. No awimals indigenows to Australia are mammals, All mammals are rertebrate \therefore Some vertelraten are sot indigenons to Australia; if we transpose these premisses, no direct conclusion follows; we cannot tell from them whether any of the animals indigenous to Anstralia are vertebrate, or not; so that if our argument requires validating, we must validate it either by direct or indirect reduction, or by expoaition. That it doee need validating seems to follow from the fact, that in its present form it is no more obvious than the three preceding moods of the fourth figure; no one ever argues in the fourth figure, and that shows that it does not adequately exhibit the movement of thought in inference. Aristotle exhibited the validity of this mood ${ }^{1}$ by converting both premisses (i. e. by direct reduction): No mammal is indigenous to Anstralia, and Some vertebrates are manmale; and this is a more natural way of putting the argament. But there are casea in which conversion would aubstitute a less natural mode of expression in the premisses; e.g. from the premirees No mineral sators are alcoholic and All alcohol is tased ${ }^{2}$, we can infer that Some thinge tased are not mineral soaters; it would be lese natural, although it would yield the same conclna sion, and that in the first figure, to say that Nothing alcoholic is a mineral water, and Some things tased are alcoholic. Again we may proceed by indirect reduction; we may argue that if all vertebrates were indigenous to Australia, then since no animals indigenous there are mammals, no vertebrste would be a mammal; we thus reach a conclusion inconsistent with the premiss All mammale are vertelrate, and that shows that our original argument cannot be disputed ; but we ahould more naturally any that No mammals are vertebrate than that No vertebrates are mammala; and the former contradicte more directly the premiss that $A l l$ mammals are vertebrale; and still more do we feel this, if we apply indirect reduction to our other example; there, if Everything that is taxed were a mineral water, then since No mineral waters are alcoholic, Nothing taxed is alcoholic ; it is clearly more natural to say that No alcohol is taxed,

[^133]
tiv] PRINCIPLES OF SYLLOGISTIC INFERENCE

[and that exhibita better the contradiation with our premie. If we employ the method of ixधecos or exposition, we must convert the premise No animalo indigenowe to Australia are mammala; then we have it given that mammale, in any instance that we like to take, are not indigenous to Australia, and are vertebrate; from which it follows that an animal is sometimes vertebrate, and not indigenons to Australia. Similarly we may convert No misoral watore are aleoholic.

Thus we have in this mood an argament andoubtedly valid, yet lacking something to be obvious; it is possible to validate it in eeveral waya, either bringing it into the first figure by conversion of both premisses, or into the third by conversion of one, or leaving the premisses and showing, as in the second figure, that the falaity of the conclasion is inconsistent with their trath. Which of these methods is preferable? and to what figure should the mood be referred? or is it really of a fourth sort? That it is not of a fourth sort is shown by the fact that without one of these methods of validation its conclusiveness is not apparent, and they bring it under one of the other figures. Perbaps the first of these questions will be best answered, if we akk in what why, by the use of the same middle term, the conolusion of the given syllogiam could moat naturally be reached. How are we to prove that Some rertebrates are not indigonous to Awotralia, using mammals to our middle term? or that Some things lased are not mineral watert, using aleohol as middle term? In both cases we should appeal to an instance in point; the mammals may be cited to show the former, and alcohol to show the latter. It would seem therefore that exposition is the natural way of validating the argument; or in other words, that we realize ita cogenoy most readily if we realize that in the major premiss there is involved a converse, from which the conclusion followe at once in the third figure.

Are we then to reokon the mood to the third figure, and not (with Ariatotle) to the first? Arictotle would, of course, have said that since the third figure itself needed validsting through the first, we had otopped half-way in reducing it to the third; but if, as has been held above, the third figure is really a different type of inference, our quention cannot be settled thus. Let us recall the meaning of the distinction between major and minor terms. The distinction is not parely formal and external. A term is not really the major term becanse it is made the predicate, and minor becanse it is made the anbject, in our conclusion. It is the meaning or content of the terms themselves which deternines which ought to be anbject, and which predicate, and therefore which is major and which minor. Otherwise, Aristotle would have recognized the fourth an a separate figure. We may take a ayllogism in Darii, and by transposition of the premisees produce one in Dimaris; e.g.
[the premisses White is conspicuous at aighl, Sone flowers are white, whose nataral concluaion is that Some flowers are comopicmone at sighl, furniah instead, if we transpoes the preminses, the conclusion that Some thinge conspicwous at night are flowers. But this is an obvious inversion, for it is the flower which is conspicuons, and not the conspicuons, as such, whioh is a flower. It is true that there are casee where either conclusion is equally natural, as there are propositions which may be converted without contortion. Thave who are friendlese are whilappy, Some rich mon are friondlewt :Some rioh men are wnhappy; or, in Dimaria, Some wnhappy mem are rich. Here the concluaion in Darii is the natural conclasion to draw, becanse the premisee give the reacon why a rich man is sometimes anhappy, but not why an unbappy man is sometimes rich; yet, considered apart from the premisaes, either conclasion is an equally natural form of judgement. But the reason is, that the concrete subject men is retained throughout; in the conversion, the attributes rich and wulappy change places, but the subject of which they are attributes is retained in its plece. Now theee are marely coincident attribates, and neither is properly the subject of the other; we feel this in making the judgement; and instinctivaly convert Some rich men are wnhappy not into Some mehappy are rieh men (where the concrete term 'rich men' could not be predicated of 'unhappy' as such) but into Some wahappy mew are rich. When, however, this is not the case-when the subject-concept contains the ground of the predicate-concept, or is the concrete whole in which the latter inheres as one featare-then the former is essentially the minor and the latter the major term, and no verbal artifice which inverts them can alter what the fact is for our thought.

Hence in the first three moods of the fourth figure, reduction in the first does no more than recognize in outward form as major and as minor terms what we muat acknowledge to be $e 0$ in our thought. But in Feaspo and Freaison, the conclusion is the aame as what we should draw in Ferio after their reduction, and not its converse; we have therefore no ground so far for giving a preference to the expreasion of the argament in the first figure. Bat the same considerations which make it not an arbitrary matter, which term is major and which is minor in the conclusion, will help us to determine the right position of the middle term in the premisses. If then the premises of a syllogisen in Fesapo or Fresison were both of them inversions of what would naturally be expreseed in the converse form, we should instinctively think them back into the form required by the first figure, in drawing the conclasion. This esn hardly be the cese with Fesapo; for bed lopic, as well as verbal contortion, is required in order to express a particular affirmative by an universal converse; and therefore the minor premise 1 cannot be an inverted way of atating I: the origioal of Fempo cannot be

IIv] PRINCIPLES OF SYLLOGISTIC INFERENCE

[Ferio. With Fresison it is more powible; that is to my, a syllogism in Fresion may be reached by converting both premises of one in Ferio (or Celarent); and then it is pomible that our thought may validate the conolasion by converting them beck again. Gold does not tarminh, Some anciont ornamenfer are of gold: we may, however, my, if we like, that What tarmiciee is not gold, and Somo thinge of gold are ancient ormaments, and from these premimes draw the mae conolusion as from the others, that Sowe anciont ornamente do nol tarnish; yet our thought, jurtifying to itcelf an inference made by outward rule, may ly to the other forma of premiss. If so, it is hard to eay that we are not really argaing in the first figure, and in such a case the syllogimm which wears externally the garb of the fourth belonge really, and is rightly foreed by direct reduction to show that it belonge, to the first. It is, however, possible even here to convert only the minor promise in thought, and reach the conclusion in the second figure : by realizing that ancient ornamenta, if they tarnished, would not be of gold. But the important cases are not such an these, where the premises are palpably in an unnatoral form, and would be restored to natural form by conversion. They are thooe in which the position of the middle term, an the predicate of the major premiss and subject of the minor, is the nafaral position. For hero conversion to the first figure producee a reealt as unnatural as there convervion to the fourth figure produced in the premisses of an argument naturally belonging to the first; No mineral wators are alcoholic and All alcohol is taxed are propositions put in their natanal form; Notting alcoholic is a mimeral mator and Some taxed thinge are alcoholio are not.

And if thast is so, there is only one ground on which we can justify Aristotle in reckoning theee moode to the first figara. It is, that what is ensentially the major term-that is, the moet general and comprehensive-doee stand as predicate in its premise, and what is essentially the minor term-that is, the moat concrete and specific-as subject. Hence looking to the character of the premisses, we may fairly say that our syllogism is of the first figure. And it follows that Aristotle is right when he mays that we prove the minor, not universally but partially, of the major; for major and minor, as we have seem, are much intrinsically, and not barely in virtue of their position in the conclusion; so that where the two criteris lead to opposite resulta, it is right to base our nomenclatare on the former. It was through overlooking this, and taling a parely formal and external view of the notion of major and minor terms, that come of his succeseors were led to add a fourth figare to the three of Aristotle. Bat if we recognize these mooda an of the first figure, we muat no lese recognize that they need validating; and the moot natural way of realizing their validity is by the
[procese of exposition which we found to be the characteristic method for the third. We need not on this account any that the syllogism belongs to the third figare. The cccurrence of a syllogiem of the first figure in the reduction ad impoosibite by which we validete the eecond did not leed us to resolve the second figure into the first. Exposition too, though the most natural, is not the only way in which we can realize to ournelves the validity of these argamente; wo that the third figure could not receive them anchallenged. We mast be guided, therefore, by the charsoter of the premiees, and asign them to the first: but admit that the conclusion is not really drawn without a further act of inference than appears upon the fece of them.]

We may nowsum up the results of our enquiry. There are three figares, each with a distinctive character, and the 'imperfect' figures are miarepresented by reduction to the first. The first is the ahief, because the demonstrative, bat not because the only figare. Argumenta in it need not be demonstrative, but when they are, our thought is moving on a higher level of intelligence, though not of cogency, than in the other figares. In realizing the validity of the second figure, the inconaistency involved in denying the conclusion is a more prominent ' moment' in our thought than the neceseity of admitting it. The third figure sppeals not to relations of concepte, bat to experience of the conjunction of attribates (or their diejunction) in the eame subject, and from that arguee the general possibility, under conditione unopecified, of what is exhibited in a given case. There is no fourth figure; but in the first three moode of the first figure we may also argue to the converse of their conclusions; and two moods may be added, with an universal negative minor premise, in which, while the major term cannot be denied of the minor without fallacy, the minor can be denied of the major; though such a conclasion in only particular, and realized by the belp of exposition ar of conversion or reduction ad impossibile. It must always be remembered that the charactar of an argument is determined not By the form into which it is thrown in words, but by that which it assumes in our thought. This is our justification for recognizing the figures as distinct types. In particular cases, a syllogism may not belong to the figure into which it has been verbally compelled; in others, it masy be poseible with the same terms to constract nyllogisms in more than one figure; but then there must be in real movement of thought in the procese of conversion by which the
chage is effected. The theory of ayllogiem ought not to be regarded as a lesson in the manipulation of symbols and the application of the formulae. What we have to look to is the character of the thinking involved in it, and to that end wo need to realise our aymbols and see how the varying character of our tarms, and of the relations between them in judgement, affecte the inference. If our enquiry has done anytbing to bring this lesson home, its length and intricacy will not have been altogether vain.

One more remark may be made about the first figare. We have seen that the charge of petitio fails, unless the major premisa be enamerative; but suppose that it atatee a connexion seen to be necoesary between A and B as such; may it not be urged that in this case no one can judge that C in B without co ipeo recognizing it to be A ae well? and that if eo, there will be no such act of 'subsumption', bringing C under the condition of a rule, as we found the first figare to involve? To thin we mast anawer yes; with complete iasight we should go atraight from B to A in the anbject C, and the major premiss as an independent ralo would not be wanted, and would be represented only by the reoognition that a connexion of A with B, which we see to be necessary, in therefore univeral. Thus it will be found that in geometry we never syllogize except when we rely on the resulte of a previona demonstration whose stepe we do not realize in the case before us. The triangle in a aemicircle has the square on the hypotenuse equal to the squares on the other two sides, because it is right-angled; but if we realized at once the conatractions of Euclid i. 47 and iii. 81, the proposition that in a right-angled triangle the equare on the hypotenuee is equal to the squares on the other two aidee would appear rather as generalized from what we saw to be true in the triangle in a semicircle, than as a rale applied to that case. The subsumption in syllogiem belongs therefore to thinking which has not complete insight into the grounds of all ite premiseen at once.

CHAPTER XV

OF HYPOTHETICAL AND DISJUNCTIVE REASONING

Thz form of argument which we have been examining under the name of Syllogism has for its premises only categorical propositions; but there are forms of argament to which the name has been extended, in which this is not the case. In what have been called Hypothetical and Disjunctive Syllogisms, hypotbetical and diejunctive propositions figure in the premisees. For ressons to be considered later, it appeart, however, better not to call them syllogiams, but to apeak rather of hypothetical and disjanctive argwments. They are processes of argument that recur with great frequency both in ordinary thought and in the reasonings of science.

In a hypothotioal argument, one premise is a hypothetical proposition, connecting a consequent with a condition or antocedont: the other is a categorical proposition ${ }^{1}$, either affirming the antecedent or denying the consequent. From these follows as conclusion a categorical proposition, either affirming the consequent or denying the antecedent. In the former case, an argument is said to be in the modue ponens or oonstruotive: in tho latter case, in the modus tollens or deatruotive. Examples will make this clear.

1. The modus porens is of the form

If A is B, it in $C \quad$ or \quad If A is B, C is D A is $B . \quad A$ is B $\therefore A$ is $C \quad \therefore C$ is D
e.g. If the sool is uncreated, it is indestratible The soul is uncrested
\therefore It is indestructible
or If all men are born equal, ulavery is unjust All men are born equal
\therefore Slavery is unjust.
${ }^{1}$ Bot ef. inftos, iii p. 810.

The following pointe aboald be noted further :-
i. The subjeot of the minor premies may either, as in the foregoing examples, be the same as the subjeot of the antecedent in the major premise (if we may retain the name of major for the hypothetical and of minor for the categorical premisses in this form of argament), or it may be a term that we recognize as inaluded therein, falling under it. Thus we may argue that

If a besutiful thing is rare, it is contly
Diamonds are rare
\therefore They are cootly.
Here it is implied and recognized that diamonde are beautiful things. The argament might of course be expreseed

If anything is at once beantiful and rare, it is coatly
Diamonds are at once beantiful and rare
\therefore They are costly.
But diamonde are still 'subeumed' an a apecinal caee under a rule that applie beyand them; the condition in the major premies does not concern them in particular.
ii. We eaw in a previous chapter that the distinction of affirmative and negative has no application to bypothetioal judgemento-for every hypothetical judgement eoneceto a consequent with e condition, whether that consequent iteelf be expresed in the form of an affirmative or of a negative stalement : it would be no hypothetical jodgement to say that 'If the weather changed at full moon, it does not follow that the change will last'.' Hence the character of the modme ponens is analtered, whether the antecedent or the consequent (and therefore the concluaion) be affirmative or negative. I may argue

If the North American colonies were unrepresented in Parlia-
ment, they ought not to have been taxed by Parliament
They were onrepresented in Parlisment
\therefore They ought not to have been taxed by Parliament.
Here my conclasion is negative; bat the argament is atill in the modes ponewe : for by that is meant not the mood which is affirmetive in its concluaion, bat the mood which establiskes the consequent eot down in the major premiss. The reader will easily see that if

[^134]the antecedent were of the form 'If A is not B ', it would still make no difilerence to the character of the argument.
iii. It is possible to argre with both premisess and the conolusion bypothetical, in the form :-
\[

$$
\begin{array}{rr}
\text { If } A \text { is } C \text {, it is } D & \text { or } \\
\text { If } A \text { is } B \text { it } D, B \text { is } C & \text { If } A \text { is } B, C \text { is } D \\
\therefore \text { If } A \text { is } B \text {, it is } D & \therefore \text { If } A \text { is } B, B \text { is } F
\end{array}
$$
\]

e.g. If the price of an imported article risen, thoee who manufacture the anme article at home will eharge more for it
If a tax in imposed upon the importation of an article, the price of the imported article rises
\therefore If a tax is imposed apon the importation of an article, those who manufacture the same article at home will charge more for it.

The remarks made in the hat paragraph apply mutatis mulandis to this form of the modus ponese also; and the subject of the antecedent may be in one premis the ame with that of the consequent, and in the other different. It is unnecessary to illastrate all these variations.
2. The modse tollene is of the form :-

$$
\begin{array}{lrl}
& \text { If } A \text { is } B \text {, it is } C & \text { or } \\
\boldsymbol{A} \text { is not } C & & \text { If } A \text { is } B, C \text { is } D \\
\therefore & & C \text { is not } D
\end{array}
$$

e.g. If matter is indestructible, it is ancreated

Matter is not uncrested
\therefore It is not indestructible
or If the earth did not rotate, the winds that blow from the poles to the equator would not be deflected weatward
But they are deflected weatward
\therefore The earth does rotate.
It is plain that the observations made above with regard to the modus ponews are equally applicable, mutatis matandis, to the modue tollens.

Thus, given a hypothetical proposition, we can proceed to draw an inference whenever we have a further premiss given us, either affirming the antecelout or denying the consequont. But from the affirmation of the consequent, or the denial of the antecedent, no concluaion follows. Arguments of the form

If A is B, it is C
A is C
\therefore It is B
or $\quad d$ is not B
\therefore It is not C

are invalid. It is true that if a member of the Commons House of Parliament is declared a bankrapt, he loses his seat; bat it is not true that if he losee his eeat, it must be because he has been declared a bankrupt, or that if be is not declared a benkrapt, be may not still loee his eeat. For the connexion of \& consequent with a condition does not preclude the possibility, that there are other conditions upon which the ame consequent may follow; so that the fact of the consequent having occurred is no proof that it occurred in consequence of this particular condition; nor is the fact that this particular condition is not fulfilled any proof that the consequent has not occurred in virtue of the fulfilment of some other condition with which it is connected. Obvions as these considerations are, yet these are among the commonest errors to occur in men's reasonings. We are all of us apt to conclode, that by disproving the allegations advanced in support of a proposition, we have disproved the proposition itself; or that by showing that facte agree with the consequencee of some hypotheenis which we have formed, we have established the truth of that bypothemis. We do not realize that it would be necesary to ahow, not only that the fects agree with the coneequencee of our hypothesis, but that they do not agree with the consequencee of any other. The Teatonic moes have during the last three centuries incressed and axpanded facter than those which apeak languages of Latin stock; and some may bo inclined to attribute this to the fact that the former in the main embraced, while the latter rejected, the principles of the Reformation. Grant that the facts are conaistent with the hypothesis that this difference of growth is due to a difference of religion ; yet if there are other ways of explaining it, what ground has yet bean ahown for accepting that way? When fecta are equally consistent with the truth and with the falsity of our hypothesis, we have so far no reason for believing it true.

It is then fallacious to draw any inference from the affirmation of the consequent, or the denial of the antecedent, in a bypothetical
argument. It is sometimes mid that to do the former is to commit the fallecy of undistributed middle; and to do the latter, to commit the fallecy of illicit procese of the major term : for that the argament

$$
\begin{aligned}
& \text { If } A \text { is } B \text {, it is } C \\
A & \text { is } C \\
\therefore A & \text { is } B
\end{aligned}
$$

may be exhibited in the form

$$
\begin{aligned}
& \Delta B \text { is } C \\
& \Delta \text { is } C \\
\therefore & \Delta \text { is } A B
\end{aligned}
$$

and the argument

> If A is B, it is C
> A is not B
> $\therefore A$ is not C
may be exhibited in the form

$$
\Delta B \text { is } C
$$

\triangle is not $A B$
$\therefore A$ is not C
And valid hypothetical arguments, it is anid, may be similarly 'reduced' to categorical syllogisms; when it will be found, that the modes poneus is really a syllogism in Berbara, and the modns tollewr one in Camentres. ${ }^{1}$

It seems to be an error thus to identify hypothetical reseoning with syllogism. In allogim, as we have seen, a relation is established between two terms in the way of subject and predicate, by means of their common relation in the way of subject and predicate to a third or middle term. Hypothetioal remeoning reats upon another relation than that of subject and predicato-the relation of logical dependence; and there is not necessarily any middle term. Where antecedent and consequent, in the hypothetical premier, heve the eame aubject-where that proposition in of the form ' If A is B, it is C '-a middle term may at times be found, and the reduction effected; but where that is not so-where it is of

[^135]the form 'If A is B, C is D '-there a middle term is wanting, and the violent natare of this process of reduction becomes manifeat.
' If the value of gold is affected by the amount of leboar needed to obtain it, improvemente in mining machinery mast reise prices. The value of gold is affected by the amount of labour needed to obtain it. Therefore improvemente in mining mechinery raise pricen.' We are not concerned here with the trath of this hypothetical proposition. So many circumatanoes, many of them varying indopendently of one another, combine at any time to affect the coorne of prices, that it would be hard to reat on obeervation the effeet which it is here asorted that improvements in mining machinery ought to have. Our concern, however, is with the character of the argument; it is clearly difficult to reduce it to a ayllogiem. There is nothing aeserted of improvemente in mining machinery, which in tom is amerted univernally to nise prices; the connerion between the value of gold and the amount of hboar needed to obtain it is not a predicate of improvemente in mining machinery, nor is rising prives a predicate of that connerion. It is a consequence of it; bat that is another matter. Attempts have indeed been made to get round this difficalty. It is asid that the major premises may be expresed in the form 'The case of the value of gold being affected by the amount of labour needed to obtain it is the case of improvements in mining maohinery rasing prices. The existing case is the cese of the value of gold being affected by the amount of labour needed to obtain it. Therefore the existing cese is the cese of improvementa in mining meohinery raising prices.' 1 But suoh linguistic towrs de foree do not alter the netare of the argament whioh they conceal. What does that major premiss mean? Interpreted literally, it is undoubtedly false. Modification in the value of gold, becanee gold has become easier or harder to obtain, is not a rise in prices doe to improvements in mining meohinery. The one fact may be dependent on the other, but the one is not the other. It is not therefore until we mentally substitute for this premise the hypothetical proposition it attempte to supersede, that we assent to it at all; the 'redaction' is purely verbal; our seanning remaina unchanged, and cannot be put into

[^136]the categorical form. Nor does the minor premiss stand criticism any better. What case is 'the case of the value of gold being affected by the amount of lebour needed to obtain it'? To may the exirting case is uselens, unless we are told what the existing case is a case of. If it is a case of the value of gold being affected by the amount of labour needed to obtain it, the proposition becomes tautological, and the concluaion will only repent the major premiss ${ }^{1}$: if it in a case of something else, we ought in the first place to have that something stated, in order that we may know what the proposition means; and in the second pleoe, when it was stated, we should find the proposition had become false, in the same way as the major premisa, literally interpreted, was false. It is clear then that this syllogism is far from axhibiting more eorrectly the true oharacter of the hypothetical argament in question; on the contrary, the bypothetical form exhibita the true mature of the argument thus violently forced into a syllogiem.
. Hed we indeed taken an example in which the subject of the sintecedent was the same with the subject of the consequent in the major premiss-in which, to pat it otherwise, the major premise was of the form ' If A is B, it is C ': then the process of reduction to ayllogiam would not have appeared to be so difficult or violent. For then the condition on which it depends that \mathcal{A} is C is a condition fulfilled in Δ. 'If the moon rotates in the same period as it revolves, it must present always the same face to the earth. It does rotate in the same period as it revolves. Therefore it does present always the same face to the earth.' 'If Christian nationa had the apirit of Christ they would avoid war. They do not avoid war. Therefore they heve not the spirit of Christ.' There is little change made, if we substitate for these argumente the following syllogisms:

A body rotating in the aame period as it revolves in round another body presenta always the same face to the other
The moon rotates in the same period as it revolves in round the earth:
\therefore The moon presenta always the eame face to the earth

[^137]Those who have the spirit of Christ svoid war
Chriatian nations do not avoid war
\therefore Christian nations have not the spirit of Christ.
Indeed, if it be granted that the hypothetical premiss is nnaltered, otherwise than in verbal form, by reduction to the form of a categorical proposition, we must grant that the argument is unaltered by reduction. And there are logicians who have contended that all universal judgements are really hypothetical ${ }^{1}$; from which it would follow that there is no real difference between a syllogism in Barbars or Cameatres, when it has a genuinely universal (i. e. not a merely enomerative) major premies, and a hypothetical argament in the modus ponens or the modus tollent-though the former rather than the latter would demand reduction. Yet there do seem to be some judgements which, in their context, intend to affirm the existence of the subject about which assertion is made, and not merely to assert that something would be true about it if it existed. To asy that, if Christian nations bad the spirit of Christ, they would avoid war, leaves it an open queation whother any have that opirit; to esy that those who have the epirit of Christ avoid it, nstanally impliee that there are auch. The reduction of a hypothetical argument to syllogism is no merely verbal change, if it subetitutes one of these forms of statement for the other.

Attention ought to be called to one other change incidental to this reduction in the last two examples. Onr hypothetical major concerned the moon and the earth, or Christian nations ; in the syllogism, the major concerned any two bodies in which certain conditions are fulfilled, or any in whom the spirit of Christ is found. Thus in the syllogism, a principle is stated in more general form than in the hypothetical proposition. Here again, more than a merely formal change is involved. It is true that no one could sessent to the
the earth is also sabsumed under the more general notion of the ocher body. Hence it is difficult to exprese the argument completaly in aymbola Suppose that we write 'Any X is Y, the moon is $X \therefore$ the moon in Y ': now here, in the major premise, $X=$ 'body rotating in the asme period as it revolves in roond another body'; in the minor premin, $X=$ 'body rotating in the same period es it revolves in round the earth ${ }^{\prime}$; and similarly with \boldsymbol{Y}. The argument is none the less a syllogiam; the diffieulty is linguistic; but we are really bringing the cese of the moon in ite rolation to the carth under the condition of a rale. Aristotle recogrizee this: cf. Poet. Am. 今. xi. 94" 86-77.
${ }^{1}$ Cf. p. 166, n. 1, supra.
proposition, that if the moon rotates in the mane period as it revolves in, it must present alwiys the mane face to the carth, without seeing that its truth has nothing to do with the fact that the bodies in queation are the moon and the earth, but holds equally for any two bodies; eo that the more general form of the universal categorical proposition given sbove is obvionaly juatified. Yet it is not the mere form of the hypothetical judgement which cnables us to see this; and it might be contended in the other case that the more general form of the categorical judgement is not justified, and that we ought not to have anid more than that ' Nations who have the opirit of Chriat avoid war'. It might be aaid that if a Chriatian nation had the apirit of Christ, it would avoid war; but that an iadividual may be monally bound to take part in wafiare, though he has that apirit, when the nation to which he belongs has it not. Now there in, doubtleen, in every true hypothetioal jodgement of the form ' If A is B, it is C ', some general principle involved : we may expreas this as ' $a \beta$ is γ '. But if Δ is some determinate individual, or case of a particular kind, and if the condition B is similarly determinate, we may know that if A is B, it is C, withoat knowing generally what conditions β, occurring in what kind of subject a, will involve the predicate γ. Where this is the case the hypothetical form is more natural to the expresion of our argument than the sylogistic.

We find, then, that even when antecedent and consequent have the same subject in a bypothetical major, reduction of the hypothetical argument to syllogiam may mean a real change in the nature of the argament used; and that where they have different subjects, such reduction can only be effected to outward appearance, and by violent means; for bere the condition on which it depends that C is D is not a condition asserted to be realized in the nature of C iteelf; in other worda, there is no middle term ${ }^{1}$. No

[^138]doubt there in an unity embrecing both condition and consequent; they belong to a a aystem, of which it might be anid that, when affected by the condition, it exhibits the consequence. Sometimes this admits of ready expresion. 'If the rainfall is deficient, the hay-crop is light': wo may exprese this by saying that 'Graes which is insuffloiently aupplied with moistare makes only a amall growth that can be usod for hay'. In other cases, the interconnerion of frota within a whole doee not admit of being atated except in hypothetical form. And anyhow, it muat be contended that hypothetical reseoning is not identical in character with syllogism, and that we ought not to pretend to validate it by reducing it to syllogism, nor to identify the fallecies involved in argament from the denial of the antecedent or the affirmation of the consequent with the ayllogintic fallecies of illicit process of the major term or undistribated middle.

In a didanotive argament, one premise is a disjunctive proposition; the other is a categorical proposition, affirming or denying one of the alternatives in the former. From these follows as conclasion a categorical proposition, denying or affirming the other alternative. In the former case, the argument is mid to be in the
raquired as a means of reaching the oonclurion. Hypothetical argamenta aro not immediate in this nenso. Given that 'If A is B, it is C ', I cannot conclude that A is C, unlem I also trow that A is B : nor conld I conclude that A is C, from the fact that A is B, without tho hypothetical premin. I can, however, conclude from 'If A is B, it is C ' to 'If A is not C, it is not B ', without any forther knowledge: and to this we asw that some forme of w-called immediato inference amountod.

The conditions of valid hypothetical reasoning are of course recognined by Arintotle (cf. a g. Top. 日. iv. 111^{b} 17-28 at al.); but he does not speak of
 meaning-vis. ayllogiam proving the antecedent of a bypothetical proposition, and therofore, by virtwe of the aceoplance of that heppothesio, proving the conclasion. Let it be granted that if A is B, C is D : then any syllogism which proven that \mathbb{A} is B will by virtue of this agroement oatabliah aleo that C is D : but without euch egreement, it would not have been shown at all that C is D : that is therefore asid to be proved only ex hypothesi. In a recent case between Univernity College, Oxford, and the City of Oxford (v. Timee of July 5, 1904) ariaing out of a claim by the College to pat a bridge between two blooks of buildings on either side of a nacrow atreet called Logic Lane without payment of any acknowledgement to the City. it was egreed that if the moil of Logic Lane were rested in the College, the College whe entitled to do this (eubject to any building regulations which the City had power to male); the argumente admanced on behalf of the College (which oetabliahed ita cave) were directed to show that it whe owner of the soil; but, if irrodiaces, the College showed by the meme argaments that it was entitled to oreot the bridge without moknowledgement.
modue ponendo tollens: in the letter case, in the modus tollendo pozens. Examples and obeervations follow.

1. The modus ponendo tollens is of the form
A is either B or $C \quad$ or \quad Either A is B or C is D

A is B

\therefore It is not C
A is B $\therefore C$ is not D or Either A or B is C A is C $\therefore B$ is not C
e.g. 'Posecssion by devila' is either a form of mental derangement, or sapernataral
It is a form of mental derangement
\therefore It is not supernatural
or Either the interests of religion require the maintenance of the Temporal Power, or the Popes are actuated by woridly motives in continuing to cloim it
The intareats of religion do require ite maintenance
\therefore The Popes are not actuated by worldly motives in continuing to claim it
or Either Newton or Leibniz invented the calcalus
Newton invented it
\therefore Leibniz did not
2. The modus tollendo ponens is of the form
A is either B or $C \quad$ Either A is B or C is $D \quad$ Either A or B in C
d is not $B \quad$ or $\quad d$ is not $B \quad$ or $\quad A$ is not C
\therefore It is $C \quad \therefore C$ is $D \quad \therefore B$ is C
eg. The belief in a golden age resta cither on history or on hope It does not rest on history
\therefore It reate on hope
or Either God ie nujust, or no man is eternally paniahed
God is not unjunt
\therefore No man is eternally punished
or Bither Aristotle or Eudemas wrote Bks. v, vi, vii of the Nicomachean Bulkics
Endemus did not write them
\therefore Aristotlo did write them.

The following pointe shoald be noted :-
i. It is sometimes contended that the modus ponondo collons is invalid : that the affirmation of one alternative doee not juatify the denial of the other. This will depend on the interpretation given to the dibjunctive proposition. If the alternatives therein stated are matually excluaive, the argument is valid : if otherwise, it is not. Whether they are so intended can only be determined in a given case by reference to the context and the matter of the judgement; bat mutually exclusive alternatives may exist, and therefore a valid argument in this mood is possible. Of the examples given above, the third is clearly the most open to objection; for Nowton and Leibniz may well have invented the calculus independently, as is now believed to have been the case. In the first, it is implied that if we can otherwise eccount for the phenomen of demoniacal poesession, we shall not attribute them to supernataral agency; and the argument may be considered valid, provided that we are justified in that view. ${ }^{1}$ The second is more doubtful; men may do from bed motives what ought anyhow to be done, and the motives of the Popes in maintaining their claim to temporal power might be worldly, even though their possession of it were required in the intereste of religion. The premisses do not really prove the unworldiness of their motivee; but they ahow that we need not saume the contrary, in default of farther evidence. The validity of the present mood of diajunctive argoment will, in fect, depend on what hypotheticals are implied in ita digjunotive premies ; for we have seen (p .167 , supra) that the digjunctive judgement ' A is either B or C^{\prime} may imply, though it is not reducible to, the hypothetical judgements ' If A is B, it is not C ', ' If A is C, it is not B, ' If A is not B, it is C ' and ' If A is not C, it is B '. If the alternatives are mutually exclusive, all four will be implied, and the modus ponendo tollews will be valid. If not, we cannot get, out of the proposition ' \boldsymbol{A} is either \boldsymbol{B} or C ', the propositions ' If \boldsymbol{A} is B, it is not C^{\prime} - If A is C, it is not B^{\prime}. To say that ' Either the interests of religion require the maintenance of the Temporal Power, or the Popes are actasted by worldly motives in continaing to claim it' will mean that if the interests of religion do not require it, they

[^139]must be so actuated; but not that if the intereats of religion do require it, they cannot be so actunted; and therefore to argue from the premine that the intereata of religion do require it is to argue from the denial of the antecedent in a hypothetical argument.

Here we might leave this matter, with this as our result-that the validity of the modue powendo collons depende on the alternatives in the diajunotive premins being mutually axclucive, and that there is no way of determining on merely formal considerations whether thoy are 80^{1}; that the form of argument is not univermally invalid, becuase they may be no; bat not univensally valid, because thoy may not. It is, however, worth while noticing that quite independently of this doabt about the validity of the morke poneudo tollent in any given case, the moder tollendo ponene is of more importance on other grounds. We are more often interested in proving one alternative by disproof of others, than vice verna. A prisoner indicted on a charge of murder may indeed be content to ahow that, whoever committed the crime, he did not ; and his ende may be satiefied by proving an alibi. But the ende of jurtice are not antinfied axcept by discovering the murderer. And so it is with dinjunctive argument generally; its use lies more in what it can eastablish than in what it can overthrow.
ii. As in hypothetical, so also in diajunctive argument, the major premise may make a more general amertion, which in the conclusion is applied to some apecial case. Thus a man might argue

Every man at forty is cither a fool or a physician
My eon at forty is not a physician
\therefore He is a fool
or from the premiss 'Either God is unjust, or no man is eternally punished', I might beve concluded that I shall not be eternally punished. ${ }^{2}$

[^140]iii. The mood of a diajunctive argument is not affected, any more than the mood of a hypothetical argument, by the qualityaffirmative or negative-of the minor premise or the conclusion. Argumente of the type
d is either B or C
A is not B
\therefore It is C
are in the same mood as thoee of the type
$$
A \text { is either not } B \text { or not } C
$$
A is B
\therefore It is not C
I establish one alternative by why of rejecting the other, equally whether from the premisses

A diplomatist muat either be insincere or be a failure
Bismarck was not a failure
I conclude that he was insincere, or whether I conclude that he was not honest from the premises

A diplomatist is either not honest, or not succesaful
Bismarck was succesesful
Attempta have been made to reduce diajunctive argumenta aloo to ayllogistic form. We have seen that a disjunctive proposition implies two or perbaps four bypotheticals; and every dirjunctive argument can be exhibited as a hypothetical argument using for major premiss one of these. But as hypothetical argument is not syllogism, we do not thereby make diajunctive argument into syllogiam; nor do we really identify it with hypothetical argument; for the hypothetical major premiss expresses only a part of the meaning of the disjunctive propoeition, from a perception of the relations involved in which a disjunctive argument proceeds to drew its conclusion. ${ }^{1}$
and syllogintic argament: thus
Every man at forty is either a fool or a phyaician
I am forty
\therefore I am either a fool or a phytician : but I am not a physician, sc.
and haring reached the conclusion 'No man is eternally punishod', I can with the minor premise 'I sma man' draw the conclusion that I aball not be eternally panithed. This act of submoption is a different act of inference from the dipjanctive argument.
' The term hypothetical was long used (following Boethius) ewns latiore, to cover both what bave in this ohapter been called hypothetical and what
have been called diajunctive argumenta; and for hypothetical, in the nerrower sense omployed above, the term conjwnetice. Conditional-originally equivalent to hypothatical in the widor aence-hen by some who retained the cider sene for the latter been need as equivalent to comjumatioe (cf. Sir W. Hamilton's Diecustione, p. 150). A few points may be noted here which did not seem worth a place in the text.

1. The order in which the alternetive in the digjunction are mentioned being irrolevant, it makee no difforence to the nature of the argoment whether we proceed from the affirmation of the flat to the denial of the second, or from the affirmation of the eecond to the denial of the firt.
2. A diajunction may cantain more than two mombers: 0.g. it may be of the form A is either B or C or D. In this caea, if the minor is categorical, the conclurion will be diajunctive; and in the modus ponendo tollenc, a dis. junctive minor will give a categorical conclotion-A is either B or $C \therefore$ it is not D. Bat the minor ' A is neither B nor C ', which is needed in order to get a categorical concluaion in the modus tollondo ponens, is not a disjunctive proposition. But such details involve no freah principle of reasoning. and need not be puraned, any more than it is neoemary to work out all the varistion that are poasible according as the diajunction is between two predicates of the same aubject, or two anbjects of the same predicate, or two aceertions differing both in mubject and predicato, when either or both assertions in each of these cases ere affirmative or negative.
3. An argament of the form ' A is either B or C : C is either D or $E \therefore A$ is either B or D or E^{\prime} ' is not a diajunctive argoment, but the application of ayllogim to one limb of a diajanctive propontion.

CHAPTER XVI

ENTHYMEME, SORITES, AND DILEMMA

Teis chspter deals with certain forms or modes of stating an argament which introduce no new principle of ressoning beyond those now elready discussed, but for one reason or another deserve a special name and mention.

An enthymeme indeed is not a particular form of argument, but a particular way of ststing an argument. The name is given to a 日yllogism with one premise-or, it may be, the conclusionsuppressed. ${ }^{2}$ Nearly all byllogisms are, as a matter of fact, stated
${ }^{2}$ By Aristotle the torm ${ }^{2}$ Sipupa is used in quite a different mense: he
 nature is discused in that chapter and in rarious pasages of the Rhetoric. Ronghly opeaking, tiadr is a general proporition true only for the moot part, soch sen that Rowo foode are unurholeotome; in applying this to prove the unwholesomeneen of come particular article of diet, we are open to the objection that the article in queetion forms an exception to the rule; bat in practice we are often compelled to argue from such probable promisses. A onmion is either a perticular fact, to which one can appeel in support of a general propocition, because if the proposition were true, the fect would follow an a consequence of it : thua we may mrgue that 'The wine are jurt, for Bocrates was wise and just': where Soorstos is the onmion (Rhet. as i. 1857° 11); or it is a particular fact appealed to as evidance of another partionlar fact, becance the existence of one soch fact implies the previous or sabsequent or concurrent existence of the other: thas 'Pittacus is liberal, because ambitione mea are liberal, and Pittacus is ambitious': hero his ambition is the onurioy of his liberality (Anol. Pri. B. xxvii. $70^{2} 28$). In this cree, the appeal to a onpeioy implies a general prisciple which, if it is irrefrageble, gives to the onpmiop the nature of an ovidence, or rexuiptoy (Rhe. a. ii. $1857^{6} 8$); to argue from a rucuipoo is not, however, to argre from the true cause of the effeet; for this woald be acientific eyllogiom, and not detirnja. It may be added that, where the goneral principle implied is not irrefragable, but true for the moot part, it is
 ikgros. It ahould be noted that Aristotle inclades under onpuioo that which, an a ooneequence of something elre, is asumed, where it existe or occars, to presuppose it, whether it could exiat or occor without the exirtence or occarrence of that other thing or not; where it could not, wo have a rexuipooy; and of this character are what doctors call the aymptoms of a direace (and sach remoning from effect to cance is not
as enthymemes, except in the examples of a logical treatise, or the conduct of a formal dispatation. It mast not be supposed, however, that we are the less arguing in ayllogism, because we use one member of the argament without ita being explicitly stated. Syllogism is an act of thought, and if, in order to perform this sot, we need to recognize in thought all three propositions that when formally expreseed it contains, we are arguing syllogistically, whether we enunciate the whole syllogism or not. That we do recognize a suppresed premise may be shown by the fact that, if any one were to deny it, we ahould feel that be whs attacking our argument, though we had not exprealy asserted it.

The suppressed member may be the major premina, or the minor, or-lem frequently-the conclusion. Medes, in Ovid's play of that name, aske Jason-Servare potwi, perdere am posim rogas: hare the major premiss, Qni servare, pendere pospunt, is understood: Meden sapplies only the minor, and-in the form of a rhetorical question-the conclusion. ${ }^{1}$ If I argue that 'those cultivate the land beat who heve a personal interent in ite improvement, and therefore peasant proprietors are the beat cultivators', I omit-yet I clearly uee, for to deny it would deatroy the arga-ment-the minor premiss, that ' peasant proprietors have a personal intereat in the improvement of the land '.' The conclusion may be

[^141]omitted from motives of delicacy, or sometimes for purposes of effect, as in the Greek conplet

It is, of course, poseible that an enthymeme may be contained in what grammatically is only a single santance; as in Goneril's sddress to King Lear:

You, as you are old and reverend, should be wise, or in Regan's, leter in the play:

I pray you, father, being weak, seem so. ${ }^{2}$
A syllogism, whether expreesed in full or as an onthymeme, is a singlo act of inference; it may be analyeed into preminees and conalusion, bat not into parte which are themselves sete of inference. The premisese may, however, be themselves in turn conclusions reached by other acts of inference; and the conclusion may itself serve as premise to a further act of inference. \mathbf{A} oyllogism proving one of the premisses of another syllogism is called, in relation to that, a pronyllogiam : and a syllogism using as a premiss the conclusion of another is called, in relation to it, an oplegllogiam; where the prosyllogism is expresed in the form of an enthymeme, the whole argument is sometimee called an oplahedrema ${ }^{3}$ The following argament contains both a proayllogism and an episyllogism, and as the former is expreseed in abbreviated form, it is also an epicheireme. 'Those who have no occupation lesve nothing to intareat themselves in, and therefore are unhappy; for men with nothing in which to interest themselves are always unhappy, since happinese depends on the success with which we

[^142]advance the objects in which we are interested; and so wealth is no guarantee of happiness.' Here the central syllogim is

All who have nothing in which to interest themselvee are unheppy
Those who have no occapation have nothing in which to intereet themselves
\therefore Those who have no occupation are unhappy.
The major premise is proved by a prosyllogism to this effect:
Happy men are those who succeed in advancing objects in which they are interested
Men who have nothing in which to interest themselvea do not succeed in advancing any object in which they are interested
\therefore Men who have nothing in which to interest themselves are not happy.
And an episyllogism is added thus :
Those who have no occupation are unhappy
Rich men may have no occupation
\therefore Bich men may be unhappy. ${ }^{1}$
We have in such a case a train of argument, of which the several steps are not each set out in full, though the premisese neceseary to complete the sequence of thought are readily supplied, as in an enthymeme. Trains of argament may, of course, be of any length, and vary indefinitely in composition, according to the nature of the separate stepe into which they can be broken up; and it would be useless as well as impracticable to invent names for every variety. But there is one well-marked variety to which the name of Sorita has been given by logicians.

A Borites ${ }^{2}$ may perhape be defined as a syllogism in the first figure with many middle terms; or if it be thought that nothing should be called asyllogism that contains more than one act of inference, as
${ }^{1}$ The achoolmen gave the name of ayllogiowne erypticus to a ayllogism Which lay so concealed in the wording of an argument, that some procen lize convervion, or other subatitution of equivalent propositions, was neceseary in order to ahow clearly the terms of the ayllogiam, and their relation: as, here, 'rich men may be unhappy' is taken as equiralent to 'wealth is no guarantee of happinem'.

The name is derived from oupos =heap.
a polysyllogisme ${ }^{1}$ ine frat figure with the intornediate conolmions mppressed. Schematically, it is of the form

$$
\begin{array}{r}
A \text { is } B \\
B \text { is } C \\
C \text { is } D \\
D \text { is } B \\
B \text { is } F \\
\therefore A \text { is } F
\end{array}
$$

where it will be observed that we start with the minor premise, and eech sabsequent premiss is, in relation to that enanciated before it, a major. ${ }^{2}$

There muat be, at least, two ateps, and therefore three premisees, in a sorites, else we should have no series or chain of syllogisms; and there may be any number of atepe more than two ; the premisees will always be more numerous by ons than the stepe into which the argament can be resolved. Short soritee are of common occurrence. A well-known axample occurs in Romans viii. 29, 80, 'For whom he did foreknow, he also did predertinate to be conformed to the image of his Son. . . . Moreover whom he did predeatinate, them he also called : and whom be called, them he also justified: and whom he justified, them he also glorified.'

But long specimens are lees common, not becsuse long trains of
${ }^{2}$ A saries of ayllogisma, one proving a preming of another, is called a polyanllogism: while each ingle atop of agllogistic reanoning is called a mononglogivm.
' Where the order in which the premismes are enuncisted is reversed, otarting with the major and proceeding always to one which in relation to the proceding is a minor premies, the sorites is called a ooolonian Sorites, after Rodolphas Gooleniak, Profemor at Marbarg at the end of the airteenth century, who fint called attention to this form of the argament. But though it is important to notice that the order in which the premimes are commonly pleced in a soritas is the opposite of that whioh is cuotomary in a simple syllogism, it mart not be muppoeed that the character of the argament is affected by reveruing the order, or that the Goclenian woriten is a thing, as ruch, of any importance. The Goclenian is known also as a regravice, and the other, or 'Aristotolian', as a progresive soritea Aristotle, bowever, doeen not diecum the morites (though clearly believing it to occur in science, of. An. Post. a. xiv. 79* 20, xx-xxiii), wo that the progreseave is not ontitled to be called Aristotelian. Sir W. Hamilton otates that he could not trace the term back beyond the Dialectica of Laurentiua Vallu, published in the middle of the fifteenth century. From the sixteenth century onward it found a regular plece in logical treatises. CE. his Lactures on Logic, xix. p. 877.
'Soriten ent ayllogiamus multiplox . . . Eat enim writos progremio enthymematica, ayllogiemon continens propositionibus [$=$ pramimis] uno tantum pancioren.' Downam'a Commentarii in Patri Rami Dialecticam, 1510, p. 658.
reasoning are rare, but because the successive ateps do not generally continue for long together to be of the same form. Leibniz, in the second part of his Confescio Natwrae contra Atheistas, written in 1668 (and containing doctrines as to the nature of matter which he subsequently sbendoned), offers a proof of the immortality of the human soul in the form of a continuous sorites; but even eo, many of the propositions are sapported by reasons that do not enter into the series of premisses constituting his soritea. ${ }^{1}$ In the following transcription the premisees that do not belong to the sorites are pleced out of line to the right; and nome of them are omitted.

The human soul is a thing whose activity is thinking.
A thing whose activity is thinking is one whoes activity is immediately apprehended, and without any representation of parts therain.
A thing whose activity is apprebended immediately without any representation of parts therein is a thing whose activity does not contain parts.
A thing whoee activity does not for all motion is divisible contain parts is one whose acti- into parts. vity is not motion :
A thing whose activity is not for the activity of a body is motion is not a body : alwaye a motion.
What is not a body is not in opece: for the definition of body is to be extended.
What is not in spece is insusceptible of motion.
What is insusceptible of motion for dissolation is a movement is indissoluble: of parts.
What is indissoluble is incorrap- for corruption is dissolation tible: of the inmost parts.
What is incorroptible is immortal.
\therefore The human soal in immortal.

We may pees from examples to a consideration of the form of the argoment, and the rales of its validity. It will be observed that the predicate of each premins is the subject of the next, while the subject and predicate of the first and lest premiss are the subject and predicate of the conclusion. For each premiss is minor to that which follows, and major to that which precedes it; and as we start from the minor premiss of the whole argoment, each middle term is predicate of one promise and subject of the next. It follows, that (i) no premiss except the first may be particular, and (ii) none except the last negative; for in the first figure, the major premiss must be universal, and the minor affirmative; now each premiss except the lest is a minor, in relation to a premise following it, and must therefore be affirmative; and each pramies except the first is major, in relation to one preceding it, and therefore must be univeras. This will be easily seen if we resolve the sorite into its constituent syllogiams:

1. beginning from the minor

A is B	A is B (i)
B is C	B is C (ii)
C is D	$\therefore A$ is
D is E	C is D (iii)
E is F	$\therefore A$ is D
$\therefore A$ is F	D is E (iv)
	$\therefore A$ is E
	A is P (v)
	$\therefore A$ is P

It is clear that if the first premiss were particular, the conolnsion of the first syllogism would be particular ; this stands as minor to the third premiss in the second syllogism, whose conclusion could therefore again be particular, and so would ultimately be the conclusion of the whole sorites; but if any other premisa were particular, there would be an undistributed middle in the syllogism into which it entered.
2. beginning from the mejor

$$
\begin{aligned}
& E \text { is } F \\
& D \text { is } E \text { (v) } \\
& \therefore \quad D \text { iv } F
\end{aligned}
$$

$$
\begin{align*}
& C \text { is } D \\
\therefore & \text { is } F \\
B \text { is } C & \text { (iii) } \\
\therefore & B \text { is } F \\
& A \text { is } B \tag{i}\\
\therefore & \text { (i) }
\end{align*}
$$

Here, if the last premiss (E is F) were negative, the conclusion of the syllogism in which it stands as major would be negative : this as major to the premiss C is D would make the next conclusion negative, and so altimately the conclusion of the whole sorites; but if any other premim were negative, there would be an illicit process of the major term in the syllogism into which it entered. The rules of a sorites are thus nothing but the special rules of the first figure. ${ }^{1}$

A morites is distingaished from other chains of reasoning by the fact that not only is one of the promisees suppreased, at every step of the argument except one, but the intermediate conclurions, by which the final conclusion is resched, are all suppressed; for the conclusion of one argument is the suppreseed premins of the next. This is, perhape, what has led logicians to give special attention to it.

The Dilomms combines into one argoment bypothetical and diejunctive resooning. Generally it is an argament in which one premise is a disjunctive proposition, and the other consists of hypothetical propositions connecting with either alternative in the disjunction an unpalatable conclusion. In one case, however-that of a simple deatructive dilemma -the diajunction may be in the consequent of the hypothetical premisa, and the other be a categorical premiss denying both alternatives in the dirjunction ${ }^{\text {a }}$ We may
${ }^{1}$ Either an E or an I proposition may be converted simply. With an I premiss for the first, if it be converted, the sorites may be brozen up into a series of syllogiams in the third figore; with an E premim for the late. if it be converted, the morites may be broken op into a series of ayllogiama in the second figure. Yet, except for the premisa thus converted, the middle termestand throughout in the premises as in the fint figare. A caries of premisess in the eecond or in the third figare will not form a soritee: because there would be no series of middle terms, but only one middle term throughout; hence ae coon 29 we come to combine the oonclution of two premines with the next premise, we should be involved in quaternio ferminorum The sorites is therefore ementially confined to the firat figure, though its resolution may involve the second or third.

See below, pp. 882-884.
${ }^{3}$ The hypothetioal premiss is sometimes called the major, in accordance
therefore define a dilemma, to cover this caee, as a dypothetical argwent offering allerwatives and proving something against an oppoment in cither case. The conclasion may be either the same, whichever alternative is accepted, or different; in the former case the dilemme is called efmple, in the latter oomples. It is called oonatruotive, if it proceeds from affirmation of antecedent in the hypothetical premiss to affirmation of consequent; destraotive, if it proceeds from denial of consequent to denial of antecedent.

1. Simple Conolruetive.

If A is B, E is F; and if C is D, E is F
But either A is B or C is D
$\therefore E$ is F^{2}
Troope with a river behind them hsve sometimee been placed in a dilemma none the less painful because it is simple. If they stand their ground they die-by the sword of the enemy: if they retrest they die-by the flood; but they must either stand or retreat; therefore they must die.
2. Comples Constructive.

If A is B, E is P; and if C is D, G is H
But either A is B or C is D
\therefore Either E is P or G is H
Thus we might argue-and this too is unfortunately a dilemma from which it is not easy to see an escape:

If there is censorship of the Press, abuses which should be exposed will be hashed up; and if there is no censorship, trath will be sacrificed to sensation
But there mart either be censorship or not
\therefore Either sbusee which should be expoeed must be hushed up, or trath be sacrificed to seneation.
3. Simple Dettructive.

If A is B, either C is D or E is F
But neither is $C D$, nor is $E F$
$\therefore \Delta$ is not B
with the nomenclature used also of hypothetical reasoning: and the other premise the minor.
${ }^{1}$ Antecedent and comequent may, of courne, all have the same subject (if A is B, it is D; and if it is C, it is D): or the mame sobject in one case and different subjecta in the other; and the minor premim will vary accordingly. It would be tedions to give each time all these varieties, which involve no difference of principle.

Of this character was one of the arguments used by Zeno to disprove the possibility (or perhape we might say, the intelligibility) of motion :

If a body moves, it mast either move in the place where it is, or in the place where it is not
But it can neither move in the plece where it is, nor in the place where it is not
\therefore It cannot move.
Again, If A is B, C is D and E is F But either C is not D or E is not P $\therefore A$ is not B
A Liberal, convinced in 1885 that Gledstone's Hame Rale Bill was dangerous to the best intereate of the country, and too much devoted to his leader to enter into opposition to him, might well have argued :

If I am to continue in politics, I must feel able to support both my convictions and my party
Bat now I must aither act against my convictions, or oppose my party
\therefore I cannot continue in politics.
4. Comples Destructive.

If d is B, E is P; and if C is D, G is H
But aither E is not P, or G is not H
\therefore Either A is not B, or C is not D
A nation heving colonies like thoee of Great Britain might fairly urge:

If we give our colonies self-government, we shall make them powerful; and if we attempt to control their use of it, we shall make them hostile
But either we ought not to make them powerful, or we ought not to make them hoatile
\therefore Either we ought not to give them eelf-goverament, or we ought not to attempt to control their use of it.
[It is sometimes said that a destructive dilemma is always complex, and such arguments as those given ander (8) above would not be sllowed to be dilemmas. Mansel's definition (which follows Whately, and has been adopted by others since) definitely exaludes
[the simple deetructive; according to him (v. his Aldrich, p. 108, n. i) a dilemma is 'a syllogism having a conditional major pramiss with more than one antecedent, and a diajunctive minor'; as the destructive dilemms proceeds from denial of consequent to denial of antecedent, if there is more than one antecedent its conclusion must be neceserily complex. A number of writers, however, have admitted the simple destructive dilemma; and it seems very difficult to exclude examples of the second form above given, at any rate. The simple constructive (If A is B, E is F; and if C is D, E is F) may be written

> If A is B or C is D, E is F
> But either A is B or C is D
> $\therefore E$ is F

The simple destructive runs

> If A is B, C is D and E is F
> But either C is not D or E is not F
> $\therefore A$ is not B

It may be anid that there is a diejunction in the hypothetical premiss of the former, and not of the letter; but this does not seem to constitute an essential difference, such as would render one a dilemma and the other not. In the former, one or other of two alternatives must be affirmed, and whichever be affirmed, the same conclusion follows, because it is logically a consequent of affirming either alternative; in the latter, one or other of two alternativee must be denied, and whichever be denied, the same conclasion follows, because it is logically a consequent of denying either alternative. The essence of the dilemma seems to lie in the fact of confronting a man with alternatives at once inoluotable and unpleasant : cf. the definition quoted by Mansel from Cassiodorus, loc. cit.: 'Dilemma, quod fit es duabus propositionibus pluribueve, ex quilus quidquid eleclum fwit, contrarium ense non dubium ent. And therefore the other example given above-Zeno's argument about motion-seems also to be fairly called a dilemma ${ }^{1}$ It is true thast ita second premiss is not disjunctive at all, bat denies a dirjunctive proposition; it does not assert the trath of one of two alternatives, but the falaity of both. But the whole argument is a combination of the hypothetical and the diajunctive, and drives a man into a corner by way of alternatives between which his choice is alleged to be confined. If we are to maintain that a body movea, we have to assert one or other of two propositions which are both self-contradictory; and that seems a good example of being placed between the devil and the deep sea. The simple constructive dilemma is a hypothetical argament in the modse ponens; its bypothetical premiss has a disjonctive

[^143][antecedent and a simple consequent, and therafore the other premiss mast be disjunctive and the conclosion simple. The simple deatructive dilemms of the form given first above is a hypothetical argument in the modur tollens; ita hypothetical premisa han a simple antecedent and a disjunctive consequent; the other pramim must therefore be the denial of a disjunctive proposition, and the concluaion the denial of a simple one. But the denial of a disjanctive proposition is a categorical, whereas the affirmation of it is of counse a disjunctive propoeition. Hence the difference which has led to refuaing the name of dilemma to this fornit of argument; yet ita parallelism with the simple constructive seems correct and clear. It may be asked why there are two typea of simple destructive dilemms, against one type of simple constructive. The snswer seems to be this. In the destructive dilemma, I may overthrow the antecedent, either if its truth involves two consequenta, one or other of which I can deny, or if ite truth involves one or other of two consequents, both of which I can deny; and each case involves a disjunction. In the constructive dilemma, I can establish the consequent, either if two antecedents involve its trath, both of which I can affirm, or if either of two antecedents involve its trath, one or other of which I can affirm. But bere the former case does not constitute a dilemms, because no disjunction is involved anywhere: If A and B are true, C is true; but A and B are true $\therefore C$ is true. It would appear therefore that so far from there being no such thing as a simple destructive dilemma, there are two forms of it, against only one form of simple constractive dilemma.]

A dilemma is cometimes spoken of as if it were a peculisrly unsound form of argument. It shares with all inference the property that it is of no material value unless its premisses are true; but formally it is quite eound, and if there is about it any special weaknees, it must lie in come special difficulty in getting true premisees for it. Now it is generally difficult, except where one alternative is the bare negation of the other, to get an exhaustive disjunction; it is here that any one 'in a dilemms' would look for a way out; and it is this difficulty which inspires mistrust of the dilemmas a form of argament.

To show that there is some other alternative besides those, on one or other of which your opponent attempte to drive you, is called escaping between the horne of a dilemms: the alternatives being the horns on which you are to be 'impaled '. In reply to Zeno's dilemms to show the impossibility of motion, it is often said that a body
need not move either in the plece where it is or in the place where it is not; since it may move betwoen these places. It may be questioned whether this is a very satisfactory solution of the paradox; for those who offer it might find it hard to esy where the body is when it is between these places; if it is not in some other place, the continuity of spece seems to suffer disraption. But however that may be, we have here an sttempt to eacape between the horns of Zeno's dilemma.

The other two ways of meeting a dilemma also bear somewhat picturesque names; we may rebut it, or we may take it by the horne. To rebut it is to produce another dilemma with a contradictory conclusion. The old story of Protagoras and Euathlus, without which a discussion of Dilemms would hardly be complete, furnishes a good example of rebutting. Protagoras had agreed with Euathlus to teach him rhetoric for a fee, of which half was to be paid at the conclusion of the instruction, and the remainder when Euathlus won his first suit in court. Observing that the latter delayed to practise, Protagoras thought he was endeavouring to evede payment, and therefore himself brought a suit for the recovery of the second half of his fee. He then argued with the jury that Euathlus ought to pay him, in the following way:

If, he said, he loses this case, he ought to pay, by the judgement of the court; snd if he wins it, he ought to pay, by his own agreement
But he must either lose it or win it
\therefore He ought to pay.
Euathlus, bowever, rebutted this dilemma with the following :
If I win this case, I ought not to pay, by the judgement of the court; and if I lose it, I ought not to pay, by my own agreement
But I must either win it or lose it
\therefore I ought not to pay.
It will be seen that the rebutting dilemms is produced in this asee by tranoposing and negating the consequents in the major promiss. With a destructive dilemma the parallel procedure would be to negate the antecedents. But this is not the only way of rebutting; you rebut whenever you produce a dilemme with contradictory conclasion, and you may do that with quite different
premisses. Nor can every dilemma be rebatted in this way or in any other way: not in this, for the alternative conditions are not always such with which you can connect the contradictory of each other's consequents. And if a dilemma can be rebutted, one of two things must follow. Either there must (as in the last example) be some element of contradiction involved in the situation; and some of the ancients epent mach ingenvity in imagining situations of this kind, in which our reason was entangled by finding that two contradictory solations of a problem conld apparantly be maintained with equal force; of thie nature are the well-known sophiams of the 'Liar' and the 'Crocodile'; Epimenides the Cretan anid that all Cretans were liars; if they were, wes be lying, or wha he speating the truth ? ${ }^{1}$-a crocodile had stolen a child, and promised the mother be would restore it, if she could guess rightly whether he intended to do so or not; ${ }^{2}$ if abe said he would not restore it, she could not claim the child by his promise, because her taking it would make her grese wrong; if she said ho would restore it, ahe could not claim it, for she guesed wrongly; what wis she to say? Or if there is no such element of contradiction involved in the situstion, then a dilemmacan only be rebutted because its premisses are unsound, and premisses equally or more plauible can be found for another dilemma proving a contradictory conclusion. In this case, it would be possible to attack the original dilemma directly, either by showing that you can eacape between the horns of it, if the disjunction is not complete, or in the third of the ways mentioned above, by 'taking it by the hornn'.

To take a dilemma by the horns (or by one of them) is to eccept the alternative offered you, but to deny that the consequence, which the opponent attaches to its acceptance, follows. Perhaps the following will serve for an example. It is held by many naturalista, that species are modified in the course of descent only by the sccumulation of many slight varistions, snd not per salum: varistions not being directly adaptive, but being distribated, in respect of frequency and degree, in proportions that follow the well-known 'curve of error', on either side of the standard represented in the

[^144]parents. Against this it hes been argued, that though the cumulative effect of many slight varistions might be useful, it will often happen that in the incipient stages, while the distance traversed in the direction of some new peculiarity is still very slight, the variation would be valueless, and therefore not tend to be perpetuated; so that the besis for accumalation would not exist. This line of objection has been applied to the particular case of protective coloaring in insects in the following argument. ${ }^{1}$ If, it is said, the slight variations, with which the process of mimiery in ineects must, as alleged, begin, are of no use in leading birds to mistake the individuals exhibiting them for members of some proteoted apecies, then they will not be preserved by natural selection, and no acoumulation can take place; while if they are of use, any further and more exect resemblance to the protected species is unnecessary, and could not, if it occurred, be preserved by natural selection. Now against this dilemman we may answer that it does not follow that, becuase a slight degree of resemblance is useful, any further degree would be superfluous. On a particular occasion a particular insect no doubt needs no greater resemblance than what has actually enabled it to escape; but with a large number of insects over a long series of occasions, it may well be that the percentage of escapes would be higher with those in whom the resemblence was cloeer. Thus the dilemma is 'talien by the horns'; but that does not settle the important queation at isuces to whether variation ever does proceed per callum or not. We sam before that a thesis is not disproved by the refutation of any particular argument brought formard in anpport of it.
${ }^{1}$ See an article on The $\Delta g e$ of the Inhabited Earth, by Bir Edward Fry, in the Momelly Revien for January, 1903.

CHAPTER XVII

THE FORM AND MATTER OF INFERENCE

So far we have considered and examined some of the commonest typee of inference-ayllogirm, hypothetical and diajunctive reasoning, and oertain ocmplications of theee. We have not pretendedwhat hee nevertheless cometimes been maintained-sither that the letter can be reduced to ayllogism, or that syllogism, even if the term be artended to inolnde them, is the type to whioh all valid inference must conform ; though we have maintained, and it will appear more fully in the sequel, that they are forms of great frequency and importance in our thought. Were Logic a parely formal soience, the analysia of these forms would be, to those who thought that all reseoning really moved in one or other of them, the end of the task imposed upon that ecience; to those who did not think them the only form in which men's reaponing movee, no other tack would be left than to offer a similar analysis of the remainder. Bat if it is imposible to understand fally the form of thinking without reference to the nature of that abont which we think, then the task of Logic is obviously harder. It will not suffice to work with symbole. We cannot make abatraction of the special charscter of our terme. Alrendy we have found this to be the case. We asw that ayllogism in the first figure, and in the highest form which it can assume in that figure, rests apon a perception of the necesary reletion between certain notions, or aniversals; while in the third figare such a perception of necessary relation neither need be given in the premisses, nor can be reached in the conclusion. We asw too how hypothetical reasoning, where it differs most from syllogirtic, differs becanse it eatablisbes a connerion between subject and predicate in the conclusion by means of a condition which is apparently extraneous to the nature of the subject; and yet how our thought recognized that there muat be some wider system to which the subject and that condition both belong, and through which it comes about that the fulfilment of the latter should affect the predicates of the former.

None of theee thinge could be explained or undenstood merely through symbole : axamples were needed not only to ahow that the argaments symbolized were such as we do actaally often use, but becnuee only in suitable examples could thoee facts of our thought with which we were concerned be realized. The symbols are the same, bat do not aymbolice the same thing, when some terms in our syllogimm are partioalar concrete objects, whoes attribates are set down as we find them, and when they are all anivernal characters of things, between which we perceive connexion.

It will be said that if the form of thought be thus boand up with the matter, an understanding of the form mast wait apon a knowledge of the matter, and the tack of Logic will not be complete until we have finighed the investigation of what is to be known. In a aense this is true. It may be illustrated by the case of mathematics; no one can understand the conditions on which the cogency of mathematical reesoning depends except in the process of thinking about number or apace or quantity; they cannot be mean in applicetion to heterogeneons sabjects. And it consists with the position which we have taken up from the oateet, that Logic is the science which bringe to clear consciouaness the nature of the procemee which our thought performs when we are thinking aboat other things than Logic. Nevertbelew we must bear in mind one or tryo facta, which may make the task of Logic seem a little less hopeless than it would appear to be, if it hed to wait altogother apon the completion of knowledge.

In the first plece, the dependence of the form of thought upon the matter is consistent with some degree of independence. It may be imposcible to graep the nature of mathematical proof except in application to mathematical matter; but an analysis of one or two examples of geometrical reaconing may serve to show us the nature of geometrical reasoning in general, and after that the form of it will not be any better underatood for tracking it through all our reasonings about every figare and space-relation. So aleo it may be imposible except in examples of the relation of subject and predicate to graep the distinctive aharacter of syllogistic reasoning; bat we may grap it there universally, and realize that it will be the ame for all terms that stand in those relations. If this were not mo, science would be impoesible; for acience seaks to reduce a multiplicity of facts to unity of principles. Thus our apprehension of the forms
of thought has not to wait upon the completion of our knowledge no far as that completion means only its extension to fresh matter of the same kind. If some branch of our knowledge is defeotive in point of extent-as it would appear, for example, that the science of number must ever continue to be, becanse the namerical series is by its nature inexhaustible-yet its further extension may involve no change in its character; and so soon as all the main branches of possible knowledge have been discovered-that is, knowledge about all the main departments of fact-the forms which thought assumes in them can be studied even while our knowledge is incomplete in its extent. The main departments of fact must, of course, be taken to include not merely those which form the subject-matter of the phyeical sciences, but equally those of which philoeophy treats, and not least the relation of the world to the mind that knows it. It would be raah to assert that this atage has been reached in the progress of knowledge. The completion of our knowledge may yet require not ooly ite extencion, bat in large degree its tranaformetion. Yet we may ageert that a great deal of our ignorance forms no bar to the completion of the invertigations of Logic.

And in the aecond plece, though Logic is in the main a reflection upon the nature of knowledge already gained, there is this paradox aboat lanowledge, that we seem to some extent to know what knowledge ought to be, before we know anything as we ought. We have an ideal, of which we are sufficiently conscions to realize the imperfections of the actual, though not sufficiently conscious to be able to put it clearly and fully into words. This paradox is not mafined to knowledge ; it occors in art and in morality also. We may recognize defect in an aesthetic whole withoat being able to rectify it, and yet we may be able to say in what direction its perfection must lie; we may know that 'we have all sinned', withort having seen 'the glory of God', and atill be able to prescribe some of the conditions which that must realize. So also we may know that the form of our thought, even when we think beat and most patiently, often falls short of the full mencure of knowledge : that our way of thinking - our way of looking at things, if one may put it eo-is wrong because it fails to eacape contradictions and matirfy all doubte; and that there must be some way of thinking (if the world is as a whole intelligible at all) in which contradiction and uncertainty will vanish. We may know all this, and know that we have
not found that better way (for if we had, we ohould certainly not remain in the worme) : and still we may be able to eny something about it though we have not found it: to lay down conditions which our knowledge of any subject must aatinfy because it is knowledge-i.e. to prescribe to some artent the form of knowledge, not only as a result of reflection apon instances of aubjects perfectly known or by abstraction from the activity of knowing perfectly in the concrete, bat by way of anticipation, out of reflection upon inatanoes in which we know subjects lese than perfectly, and know the imperfection of our knowing. The extent to which we can thus anticipate is not unlimited; a man must get some way in science, before he will realize what science ahould be, and that it is not what it should be ; just as a man must get nome way in virtue, before be will realize how much more it requires of him than he has achieved. Yet it remain true that thought can in some degree anticipate a form of knowing a matter which it has not exercised therein; and it is the businees of Logic to set this form forth. So far again Logic has not to wait, in order to complete ite task, until our invertigation of what is to be known has been completed.

If this is true, we may ssy on the one hand, that no study of the nature of inference can be adequate which treats it as an operation performed with aymbols, or one intelligible at any rate when we work with symbols. On the other hand, we may recognize that there are recurrent forms of inference, whose nature is the same in their different occurrences ${ }^{1}$, and they occur commonly in application to matters in many reapecte very diverse; we may aleo recognize an ideal of what inference should be if it is to convey knowledge: if we are to feel in making it not merely that the conclusion follows from the premisees, but that we are getting at indubitable truth.

Our discussion of infarence up to this point must therefore be incomplete, in so far as (a) we have failed to deal with all those distinguishsble recurrent forms of inference whose universal nature can be realized'in an example; (b) we have failed to make plain the conditions of knowledge as well as the conditions of cogency.

As to the first count, there are certainly forms which have not

[^145]been examined. For example, there is the a fortiori argament. 'If a man love not his brother whom he hath meen,' akke St. John, 'how shall he love God whom he hath not neen?' And there is mathematical reasoning, of which we have only mid that it is not syllogistie; this from its importance may cham nether fuller coonsideration. But perhape more remains to be done in the way of showing how far inference of these different forms enters into the building up of our knowledge, and what other operations of thought enter into it.

As to the second count: it is a charge brought againat the analysis of ayllogiem, and the other inferential forms considered above, that such analysis only shows us the conditions of consistency in reasoning, and not the conditions of truth. To reason consistently is very different from discovering truth; for the consistent reasoner will reproduce in his conclusion the error there may be in his premisses. ${ }^{1}$ Those who have brought this charge have cometimes supposed that what is wanted is other and better forms of inference. It would be much truer to any that what we want is to realize how much besides formal validity of inference must be present in an argument which is to convey knowledge. To realize what is needed is not indeed the same thing as to supply it ; but Logic cannot help us to more. The critice of the Logic whioh was content to analyse the conditions of validity in some of the common inferential forms (and which often supposed-it must be admittedthat there were no other forms of inference) have not always believed this. Many of them, as has been eaid in an earlier chapter, still looked on Logic mainly as an instrament for the discovery of trath about any matter on which we might propose to reason, and hoped to find a new and better instrument than what the Logic which confined itself to such analysis afforded This was the object with which Becon wrote his 'New Inetrument' or Novam Orgawmm and J. S. Mill, though he defines Logic as a Science, wrote his famous treatise in the hope that familiarity with the methods of reasoning used succeanfully in the phyrical sciences would enable men to prosecute the stady of the moral and political sciences with more succeses. Logic is not a short cut to all

[^146]other branches of knowledge. But this we may asy, that men who know the difference between consistency and demonatration, who know what is required before it can be said that they have knowledge about thinge, in the full and proper eense of that term, are lees likely to remain content with the eubatitutes that commonly paee mustor in men's minds for knowledge. By a study of the conditions of demonstration we may be led to aee how far from being demonstrated are many of the beliefs we hold moat confidently. To know what we do boow, and what we do not-what, out of the things we suppose ourselves to know, we really know and are rationally justified in believing : this, as Plato long ago insisted ${ }^{1}$, is neither a amall thing, nor an easy; and until we have some idee of what knowing a thing meass and requires, we are not likely to sohieve it. This is why Logic should do more than present ue with a etudy of the forms of consistent reasoning, and ahould attempt to arhibit the nature of knowledge and demonstration : not becanse anch an exposition of the form of knowledge is itealf an instrument for bringing our thoughte upon any matter into that form, bat because it atimulates us to use such instrumentes as we have, and to apprive the reaults which we have so far attained.

Now the moat obvious criticiam that can be made apon a Logic which confines itself to setting forth the formal conditions of valid inference is that it ignores the material trath of the premiseses the validity of the reaconing afforde no grarantee that these are trae. It is no doubt poseible to direct men's attention so exclusively to the form of argamentation that they will bestow little upon the trath of the principles from which they argue. It has often been compleined that the study of Logic did this-or, as its critics would any, the stady of Deductive Iogic. The opithet, howerer, implies a misunderotanding; it is a disproportionate attention to validity of form in general which the critics ought

[^147]to deprecate. Validity of form in a thing worth stadying, not only for ite own sake, but in some degree leat we infringe it; yet it is peychologically poseible, by stadying it too much and too exclasively, to become distracted from due care about truth of matter. It is, however, probable that in the timea when men have been most. remiss in the examination of their premisses, the state of the stady of Logic has been as much a symptom as a canse of this; and however that may be, so far as it lies with Logic to provide a corrective, it is very important for the logician to be clear as to the nature of the corrective he is to provide. And for that purpose he must distingaish two questions; be may try to show what hind of premises knowledge requires, or by what process of thought we may hope to get them. In modern times, the former of thesc queations has been too much neglected.

These lest remarks may be a little expanded. And finct as to the capses which for many centaries made men remiss in the examination- of their premiseen; one sometimes finds the blame for this thrown upon the futility and misdirection of the scholastic Logic, which absorbed daring the Middle Ages, and even later, so large a part of the energy of men's minds. It would be hard to deny that much of it was fatile, and that much energy was misdirected; but it is as likely that energy went into this channel because others were temporarily closed to it, as that others were robbed of it because it ran in this; though no doubt there is action and reaction in such a case, and a habit which certain influences tend to form may in turn strengthen those influences.

It has been said that the mandate issued to the age of Plato and Aristotle was Bring your beliffs into harmony wild one amother; that the mandste of the Mediaeval Spirit was Bring gowr beliff intu harmony with dogma; and that the mandate of the new spirit which rebelled against the suthority of the Church was Bring yowr beligfs into harmony with fact. ${ }^{1}$. Such a mode of putting things may meggent some false idess. It in impossible to bring one's beliefs into harmony with facts, except so far as the facts are known to us, and therefore by the way of bringing them into harmony with one another; and it would be wrong to suppose that Plato and Aristotle forgot that among the beliefe they had to harmonize with one another were the beliefs they held about mattere of daily experience, or that they

[^148]were indififerent to the neceevity of correcting and enlarging those beliefe by more or lens syatematio obeervation; Aristotle in particolar added largely to men's knowledge of facts. Again, it is clear that to bring one's beliefs into harmony with dogme is to bring them into harmony with other beliefs; and that those who rated bighest the importance of that task would least have doubted that they were bringing them into harmony with facte. Fecte can only be expresed in judgements which are matter for belief; and such judgements need not cease to exprese facts becanse they are presented as dogmas. But it is true, as Minto wishes to bring out in the chapter quoted, that dogme and the epirit which ecoepts dogme did during the Dark and the Middle Ages play a part in the history of thought far greater aither than they played in olessical antiquity or than they have come to play since the revival of learning. And such dogma was not necenarily ecclesiastical dogma; it came from the scientific works of Aristotle, or other great men of old whose works were known, as well as from the Bible and the Church; joar as to-day there is orthodoxy in acience, againgt which new ecientific idens find it at timea a little diffioult to battle, ae well as in theology.

The schoolmen knew, as well as Baoon or any other of their critics, that the atudy of the syllogim was not all-anfficing : that no syllogism could grarantee the truth of its premisees; and that for a knowledge of the most general principles to which deductive resooning appeals we must rely on something else than deductive resconing iteelf. Bacon refers to the 'notorions answer' which was given to thoee who questioned the accepted principles of any science-Cwique in sua arte credendwm. ${ }^{1}$ And there are seasons in the procese of learning when that is a very proper answer; men must be content at many times and in many matters to sccept the expert opinion of their day. But this is only tolerable if in every science there ars experts who are for ever queationing and teating. When tradition stereotypes doctrine, it is as bad for knowledge as close guilds and monopolies are bad for the industrial arts; they shut the door upon improvement. Authority plays, and mant play, a great part in life-not only in prectice, bat also in thingr of the intellect. But the free spirit is as necesary, which insiste on satiofying itself that what is offered apon anthority has claims on its own account upon our acceptance.

[^149]Why was it that for 80 many centuries 90 much was sccepted upon authority which afterwarde fell to pieces in the light of independent enquiry? Mach knowledge of the haman mind, historical and philoeophical, would be needed in order to answer this queetion adequately. If a few obeervations may be made upon it here, it is with a full consciousnes of the insdequate equipment of knowledge upon whioh they reat. And it may be doubted whether we can hope fully to explain why some periods and places are richer than others in men of fruitful and original thought; at moot we can hope to show what conditions are favourable to such men's work when they arise. Now to us, looking beakward acrose the Middle Ages to the more brilliant days of Athens and of Rome, and looking aloo at the great increase of knowledge which the last three centuries have brought, the stagnation of the eciences in the period intervening is apt to seem a thing surprising. Bat how long was it before ancient science began to appear and to adrance? The power of tradition and authority over the haman mind is the rule rather than the exception. ${ }^{1}$ And in the break-np of ancient civilization there perished not only much knowledge, but mach material wealth; men were of necesity for long abeorbed in the task of reatoring this and restoring order; and it is not wonderful that they had little time to apend in queationing such scientific principles as had survived. Moreover, during the darkeat times, the most powerful and the most beneficent institation that atood erect was the Charch; the most comprehemaive and well-reasoned theory of the world wes that which the Church taught; the strongest minds, almost the only minds that thought at all, were enlisted in the ranks of the clergy (which was why independent thought took so largely the form of heresy), and the interest of men was directed rather to what concerned the soul than to nature around them. To this it must be added, that through a series of historical accidents, a great part of the literature of Graeco-Roman civilization had perished; bat that of the worke of Aristotle some few were known continuously, and the rest recovered, at least in tranalations, by the ond of the first quarter of the thirteenth century.: The works of Aristotle, by their enoyclopeedic range, by the effort after systematization displayed in them, and by their

[^150]
x vit] THE FORM AND MATTER OF INFERENCE

extreordinary intollectual power, were peculiarly suited to rivet themselves upon the mind at a time when ability was not wanting, but when detailed knowledge was alight, and there was little else to serve for an educational discipline. It is not sarprising, if Aristotle and the Charch (especially when the Charch pressed Aristotle's philoeophy into ite service) scquired a preponderant influance over men's minds. Indeed, it is hard for ue to imagine what self-confidence and corrage were neceseary, in order to question any part of that clowely concatenated fabric of belief, upon appearing to accept which depended a man's comfort in eocioty and perhaps his life in this world, and apon really socepting it-anlees he could find for himself something better-his confidence with regard to the next. It is no amall teatimony to the inexpagnable power of resson, that this ayatem broke down. And it began to break down largely through the recovery of other monuments of ancieat thought and learning benides the works of Aristotle. This doabtleas stimulated, though it could not produce, the powers of those men by whom the foundetions of modern ecience were laid-men like Copernicus, Galileo, Harrey, Gassendi, Deecartes. It wes not the reform of Logio which liberated the mind, any more than it was Logic which had bound it.

It is, then, rather to the habit of believing on authority, the otrength of which it has been attempted in some degree to sccount for, than to the prevalence of an erroneons Logic (whowe errors were not really what the 'inductive' logicians suppoeed), that the stagnation of science for so many generations must be attributed. Given that habit, it was natural that men should apend time and thought apon a barran elaboration of the more technical parts of Logic, and leave the traditional assumptions both of it and of the natoral aciences uneramined. When the overmastering influence of authority began to decay, the science of Logic ahared with other sciences in the revivification that comes from thinking ont a subject freahly and independently.

But, ae whe asid above, the particalar matter which firat attracted the attention of the reforming logician was the barrennees of an exclusive attention to the forme of valid inference; and the particalar improvement proposed was the eetablishment of a Logic that should do for the discovery and proof of scientifio principles what had already in part been done for the drawing of conolusions from
them. This at least is bow Bacon looked at the matter; and others have so looked at it after him, in this country more especially. Now it is a very interesting question, how sciences get their principles, and when they may be considered proved; but it is not quite the same as the question, what kind of principles knowledge requires.

The works of Aristotle dealing with inference are three-the Prior Analytics, the Postorior Analytice, and the Topics. Speaking generally, the first of these deals with ayllogism from a formal point of view-it paya no attention to the nature of the premisees, but only to the validity of inference; the second deals with lnowledge, or demonstration : it asks not when a man is bound by the ecceptance of certain forms of premies to admit a certain form of conclusion, bat when he can be said really to know a thing aboolately, and not merely on the assumption that certain premisees are true; the third asks how positions can be eatablished or overthrown, what sort of considerations are useful in weighing their claims to acceptance, and on what sort of grounde men may be content to sccept their principles in matters where certainty is not attainable. In the first and in the third of these treatises, Aristotle wha analysing and formulating the actual procedure of his contemporaries; he did not, upon the whole, go ahead of the science, the disputation, the rhetoric and the pleadings of his day. In the second, he was doubtless gaided aleo by a consideration of the highest types of scientific knowledge then existing; but he whe guided also by an ideal; he was trying to express what knowledge ought to be, not merely what the form of men's reasonings was.

It may be said that in scholastic Logic, the problems of the Prior dxalytice bulked too large; that those who revolted against this raised, without realizing it, problems of the ame kind as Aristotle had already discussed in the Topics; but that for a long time the questions of the Pasterior Analytice received insufficient attention. It is these last which are the higheat, and g_{0} deopest into the philosophy of the subject. The physical sciences amploy many principles of great generality which they try to prove; but there are some assumptions about the nature of the world, which they accept without aoking why they accept them. As instances of these may be mentioned what is called the Law of the Uniformity of Nature-the principle that every change has a cause
upon which it follows in accordance with a rule, so that it could not recur in the same form unless the same cause were present, nor fail to recur when precisely the same cause recurred: or again, the principle that matter is indestructible: or that the lawe of number and spece hold good for evergthing numerable or extended. There are other principles less general than these, such for arample as the Law of Gravitation, of which, as aforesaid, science offers proof; but whether the proof of these amounta to complete demonstration, and whether the assumption of the truth of those is justifiedthese are problems with which the special sciences trouble themselves little, and which will not be answered merely by analysing the nature of the inferential proceses that do as a matter of fact lead acientific men to accept the general propositions which they conceive themeelves to have proved.

This is only an elementary book, and makes no pretence to give a complete answer to that moet difficult of logical questions, What is knowledge, in its perfeet form? But from what has been said in the present chapter, it follows that there are two problems to which some attention ought to be given. One is the question how, as a matter of fact, we do get our premisses: the other, what are the requisites of demonstration. ${ }^{1}$ The first of these may be called the problem of Induction.
${ }^{1}$. p. 487.

GHAPTER XVIII

OF INDUCTION

Tas history of the word Induction remains to be written; bat it is certain that it has shifted its meaning in the course of time, and that much misunderstanding has arisen thereby. The Aristotelian term ${ }^{2}$ mayworn, of which it is the trasalation, signified generally the process of establishing a general proposition not by deduction ${ }^{1}$ from a wider principle, but by appeal to the particular instances in which its truth is shown. From what sense of the verb drajecu this use of the word aprang is not clear; there are two pessages', where the verb, in a logical context which makes it clear that the procem of drayorn is referred to, takee a personal subject; as if it were meant that in the proces a man is brought face to face with the particulars, or perhape brought, and ae we could say induced, to admit the general proposition by their help. In another place ${ }^{3}$, it is the universal proposition which is said to be 'indaced' or brought forward or brought up (whatever the beat translation may be); and perhape the not infrequent antithesis of drayorf and owdioyioubs might suggest that the usual object of the verb is the indactively obtained conclasion; the concluaion is certainly what is 'ayllogized', so that the conclasion may also be what is 'induced'. It has, however, aloo been thought that the process of bringing up or citing the instances, by means of which the conclusion is to be established, is what the word was primarily intended to signify ${ }^{4}$; and anyhow the procese deecribed is one in which a general conclusion is established in that way, by citing the instances of its truth.
${ }^{1}$ The history of the term Dedaction aloo remaine to be written. deoperif in Ariatotle meant something very different (v. Anal. Pri. B. xाT : thero ia aloo the use cited p. 290, n. 2, supra), and the neareat Aristotelian equiralent to Dodaction is ovuloparubr.

BAn. Poar. a i. $71^{\mathrm{a}} 21,24$: a. rviii $81^{\mathrm{b}} 5$.
'Top. a. mviii. $108^{\circ} 11$: cf. Soph EA. xv. $174^{\circ} 84$.

- So apparently Bonitz: v. Inder Ariefolel, a v. izaperi.

Induction then meant primarily to Aristotle, proving a proporition to be trae universally, by ahowing empirically that it was tris in each particular case: or, proving something about a logical whole, by appeal to the experience of ita presence in every part of that whole; ac you might show that all horned animale rominate, or that whenever the tail of a fiah is unsymmetrical (or heterocarcal) it is vertebraled, by a disseotion of the intestines of every kind of horned benat, or of the tail of every kind of beterocercal fioh. In suah a proof, it woold be asoumed that the natare of each apecies of fiah or benst might be judged from the single opecimen diasected; and it is to be noted that Aristotle thought that the process of induction began with the infimm species; the species in his view (as we saw in discunsing the Predicables) being essentially the same in every one of its particolars. ${ }^{1}$ This form of argument he described in his own technical langrage as proving the major term of the middle by means of the minor; and he showed bow it could be expreseed as a syllogism. From the premisees

The cow, the sheep, the deer, \&c., ruminate
The con, the sheep, the deer, fre., are horned
I cannot, as they stand, infer that all horned animale ruminate, because there may be other horned animals besides all that I have

[^151]enumerated; but if I know that this is not the case: if the members in my enumeration taken together are commensurate or equate with the term 'horned animala', then the pomibility which forbide the general conclusion is excluded, and I may infer that all horned animale ruminato: as is shown by the fact that the minor premiss may be converted aimply; I may say that all the horned animats are the cono and shecp and deer, gec.; and my ayllogism becomes formally correct. In such a syllogism we are mid to prove the major of the middie by means of the minor, becane (as we saw) the minor means to Aristotle not primarily the subject of the conclusion, but the term of least generality and nearest to the individual; it is by the particular instances that the predicate r mminant is proved of the subject horned animal. And if we might regard the possession of horns as the cause of rominating, then it would be the proper middle term by which to demonstrate raminant of cow or sheep or deer; in Aristotle's own example, where longevity is proved of gall-less animals by means of man, horse, mule (and any other particulars that ought to be mentioned -though for brevity they are not enumerated), it is suppoeed that the absence of gall is the cause of longevity.

In symbolic form then we may expreas Aristotle's Induction thus :-

$$
A B C D \text {, \&c. are } P
$$

$A B C D, 8 c$. are all the M
\therefore All \boldsymbol{H} are P
This, which be calls $\delta d \xi$ dజayojns $\sigma u \lambda \lambda o y t \sigma \mu \delta s$, is commonly called now the Induotive Syllogism. If it is to be valid, our minor term must, as Aristotle says, comprise all the particulars;

We have now seen what Induction, as a formal process, meant in the month of the first anthor who used the term; and when Aristotle insisted that it must proceed through all the particulars, or (as it was afterwards put) by complete enumeration-the requirement which, to Bacon and the 'inductive logicians' of modern times, has given so much offence-he was quite right; for if you are going to establish a general proposition that way, you will clearly not be justified in making it general unlesa you have made
${ }^{1}$ 'For induotion proceeds through all ': Anal. Pri. β. xxiv. 68' 16-29.
sure that your enumeration of the partioulars is complete; though, se hae been said, it is not really an universal proposition then, but onty 'enumerative': a thing which Aristotle fails to point out. The barden of the oharge against Aristotle is, however, not that he held that, if a general proposition is to be eatabliched by enameration of particulars, the enameration must be complete: but that he recognized no other mode of eatabliahing general pro- V positions. And if this be so, then his Logic falls to pieces. For syllogism needs a general proposition for its major premina; and us Arintotle himself incirte, we cannot be mid to know the trath of the conclusion, unlese wo know first the trath of the premiss ${ }^{1}$; doubt of that will involve doubt of what is stated in the conclusion, $\infty 0$ far as this is arrived at by inference, and not by direct experience independently of the inference. Now how can this condition be fulfilled, if our knowledge of any general principle resta on nothing better than an encunerative assurance that it holds good in every particular case? Let us take the principle that all matter gravitates, and aymbolize it in the form 'All M is G^{\prime}. If it is poseible to know this without experience of its truth in every parcel of matter, we may use it in order to prove that this book must gravitate; and therefore may refrain from adding the book to one's kit in going up a moontain, or laying it upon a flower that is for show, or on the other hand may use the book to reep one's papers steady in a wind or as a missile againet a neighbour. But if the principle can really only reat apon a complete enumeration, we must experiment with this book, before we can aseort it; and then we shall know that this book gravitates by direct experiment, and our dedaction thereof from the general prinoiple will be ouperfnous, even if the enumeration be completeas it would only be, if this book were the leat parcel of matter to be experimented with; but even 80 , the dedaction would be but a hollow show, and begging of the queation. For let ya symbolize any particular parcel of matter by μ. We propoee to prove that μ is G, because all M is G, and μ in M; how do we + know that all M is G ? Only because μ_{1}, μ_{n}, \&cc. op to μ_{0} are G, and $\mu_{\nu}, \mu_{2} \ldots \mu_{0}$ are all the M, and therefore all M is G. Hence we use the fact that μ is G to prove the principle by which we prove that' μ is G. And the upehot of this is that we can never prove
${ }^{1}$ An. Powt. a. ii. 78s $2 \sigma^{-14}$.
anything by reasoning, antil we already know it by direct experience; so that the use of remeoning, in order to infer that which we have not learnt by direct experience, must disappear. If we still try, by appeal to any general principle, to prove angthing which we do not already know, we shall be appealing to a general principle which we do not know to be true, in order to prove a particular conclasion which we do not know to be trae; for an kypothesi our lnowledge of the truth of the general principle depende upon the knowledge of what occurs in the particular cese in queation among others. Such a procedare hardly commeode itsolf to a mane man. And if again it wero aaid, that bowever little we may be logically justified, in adrance of experience, in drawing inferences about come particular from a general principle, yet our experience when it comee is conatantly confirming the inferences we thas draw, thin, far from being a solution of the logical difficulty in which we heve found oursolvea, ought only to be mattar of perpetnal astonishment, to a creature that reflecte at all about his experience.

Such is the difficulty that arises, if there in no other means of proving a general proposition than by enameration of all the particulars to which it refers ${ }^{1}$; and to this oriticism Aristotle is obnoxions, if be recognized no other means. But did he recognize no other?

Now Ariatotle undoubtedly mys that we arrive at our firat prin. ciplea by a procean of Isduction ${ }^{2}$. He drawe a famoue diatinotion between the logical order and the ander of experience ${ }^{3}$; in the logical order, the general principle is prior to the sensible fact; in the order of experienoe, it is the reverse. To us, the particalars of sense are known first : the intelligible principles by which these are explained are known afterwards; bat Nature may be conceived as starting with principles or lawe, and with these in her mind proceeding to the production of particular objecta or eventa. Indaction prooeede from what is first in the onder of experience to what is first in logical order: from the apprehension of the sensible facts to the apprehension of the general principles, out of which we subsequently construct the eciences. Without eense-experience, thase is no knowledge of intelligible principles; and the procese of obtaining that knowledge out of sense-axperience in Induction.
${ }^{1}$ Cf. What wis mid above, in diecuming the Dietum do omul at nulle.
: See e.g. An. Poat. th. xix. $100^{\circ} 4$.

And this, taken together with his analysis of the Induetive Syllogim, might seem to eettle the question; if only we could suppose Aristotle capeble of overlooking the difflealty in which his whole syitem would thereby have been involved. But so far from overlooking, he shows in one peseage that he had considered it, and uses his distinction between what is logically prior, and prior in the order of our experience, in meeting it ${ }^{1}$. Hie view seems to have been this.

The businese of any science in to demonatrate the propertiea of a kind-such kinde, for example, en geometrical figaren, apecies of animals or plants, or the heavenly bodies. As we saw in the chaptar on the Predicablee, he was influenced much by the fret that geometry and biology were the two most progresive sciences of his day. Science is concerned with kinds, as what are identical in their r many members, and eternal. In demonatrating their properties, it starts from a knowledge of their definitions; such definitions cannot themselves be demonatrated; and for them we are dependeat on experience, which familiarizee na with the nature of any kind, or of ite properties, by means of perticular cases. But though experience may thas acquaint us with the definition of anything, yet the easential nature of a thing (which is what a definition gives) cannot powibly be an empirical fact. It may be an empirical fact that all sailore are superstitions; but how can it be an empirical fact that a triangle is a three-sided rectilinear figure? For to asy that anything is an $/$ empirical fact implies that it might (so far as we can see) have been otherwise; and certainly we can conceive that a aailor may be either muperstitious or not superstitious; but we cannot conceive that a triangle ahould not be a three-sided rectilinear figure, since if that-which is its eseence-were removed, there would be no triangle left to be anything else. It will be anked, how do you know what constitutea the essence of anything? The anwer is, that the intellect sees it: seen it, as we might easy, intuitively, as something necessarily true; and this is the source of our asaurance, in virtue of which we know the principles from which our demonetration proceeds more securely even than the conclusiona we draw from them. But the intellect does not perceive it at once; experience of things of the kind is neceseary before we can define the kind.

The wee of these particulars is, not to aervese the proof of a principle, bat to reveal it: as the counters, for example, which a child usee in learning the maltiplication table, though one among innumerable inctances of the fict that three times three is nine, ire to be appealed to not becsuse the general proposition could not be emeorted unles it were tried and found true in the asce of these counters as well as of all other countable things: for had the child learned with nute, it would have been quite unnecesary to confirm the generalization by an examination of the counters; but becmuse they eerve as a matarial in which the child can be brought to realize the trath of a numerical relation, which it apprebends forthwith with a generality that goes far beyond these particular counters. They are a means uned beosase some countable material is neoessary in order to realize the general truth; bat the geoseral trath is not scoepted simply because it is confirmed empirically by every instance.

Now we need not aak at the moment whether the sort of intallectoal insight with which we do apprehend the neoessity of numerical or spatial relations ${ }^{2}$ can really serve us in determining the emence of gold or of an elephant or a tortoise; our present purpoee in only with the nature of Indaction, and the different senses in which the term hae been need. And the purpose of the preceding paragraph is to show that in spite of the anslysis which Aristotle gave of Induction as a logical procesa, yet when he said that we get onr first principles by induotion, he had something else in his mind. Where your anits are species, and you want to prove somothing about the genus to which they belong, there you may proceed by appealing to the fact, that it is found true of every species in the genus; there your resooning may be thrown into the form of the 'inductive syllogism', 一which is inconclusive unless every species is incloded in the premisees. But even there, from the fact that be regarded the conclusion an an universal and not merely an enumerative proposition, we must suppose Aristotle to have

[^152]thought that the mind graped a necesity in that relation between the terms of the conclusion, at which it arrived by a procese of enumeration; directly or indirectly, the connexion of longevity with gall-lessnese was to be seen to be necespary, and freed from the appeal to man or horse. And where your units are individuals, and you want to diecover the enential nature of the apecies to which they belong, there you do not work by an inductive ayllogimm that summons all the instances to bear witnees to the truth of your definition ; for how could yon summon the numberien members of a species? There is atill a use for experience; we may still say that we know these things by induction; bat the induotion now is a paychological rather than a logical procese; we know that our conclusion is trae, aot in virtue of the validity of any inductive ayllogiem, drawing an aniveral conclusion in the third figare because the subject of the conclumion is coextensive with the particulars, taken collectively, by means of which we prove it: bat in virtue of that apprehension of the necessary relation between the two terma, v which our familiarity with particulars makes pomible, but which is the work of intellect or poop.

Such aeeme to have been Aristotle's doctrine: and thus be avoided the bankraptey that would have enoued, had he taught that all ayllogism reated on univeral propositions, and that univeral propositions reated on nothing but showing by enumeration that they held true in every particular instance that could be broaght ander them. But it may be eaid that thas he only sroide the Charybdia of moving in a logical circle to be matched up by the Scylla of an arbitrary ascamption. We are to acoept the general propositions upon which every sabeequent step of our inference resta, because our intellect seares us of their trath. This may entiefy the man whose intellect gives him the assurance; but how is he to commanicate that assurance to others? If a principle is not arrived at from premissen which another admits, and between which and it he sees a valid process of inference to lie, why should he sccept that principle? No evidence is offered, whose sufficiency can be tested. The ipse diait of an incommunicable intaition takes the place of any process of reasoning, as the means whereby we are to eatablish the moat important of all judgements-the general propositions on which the sciences rest.

Of this charge Aristotle cannot altogetber be soquitted; yet we
may aay this much in his favour. Such an intellectual apprebensioir of the necessary truth of the principlea from which demonstration is to start forms part of our ideal of knowledge ${ }^{1}$; doabtless it seldom enough forme part of the actuality. But Aristotle idealized; he spoke of what, as he conceived, science in the folleat sense of the term involved, and forgot to atate, or failed to soe that the sciences did not realize it. And the prominence which he gave to the question 'What sort of premisees does knowledge require?' led him to relegate to an inferior position the question 'How can the sciences as they are validate their premisses ? ${ }^{\prime}$

He did not overlook this last question altogether; indeed be devotes to it a considerable portion of the longest of bis logical treatises, the Topics; for when be anks by what sort of considerations you can prove or disprove that a proposition gives in its predicate the definition, or a property, of its subject, he is asking how you can prove reientific first principles. And he knew this; and among the uses of Dialectic, or of the disputation whowe methods he elaborates in the Topics, he places an ite most peculinr use the examination of the trath of acientific principles. But he ought to have seen that, outride mathematics, we seldom have any other means of eatablishing general propositions upon the evidence of particular factes than those of the kind which he discusses in the Topics. For the reat, his account of the logic of the ressoning by which the sciences do as a matter of fact support the general principles which they accept contains hints which are in advance of much modern 'inductive logic'; though there is much in his conception of the character of the general principles which science seeks to establish, that is now antiquated. Science seeks to-day to eatablish for the most part what are called 'lawe of nature'; and theee are generally anowere rather to the question 'Under what conditions does such
${ }^{1}$ With this proviso, that for perfect knowledge all the parta of truth ought to aeem mutually to involve each other. In mathematich, where alone wo seem to schiove this insight into the necemity of the relations between the parts of a eystematic body of trath, we find oar theoreme reciprocally demonstrable; and if twice two could be three, the whole syatem of namerical relations would be revolationized. Y et we do not need to wit till we diccover bow all other numerical relations are bound up with the truth that twice two in forr, before we are as fully conrinced of this truth as wo are capeble of becoming. Whether in every science wo obould desire that each principle ahould thus be apprehended an necemarily true, eren when cat off from ita iniplications, may be doubted.

- Cf. Top. a. ii. 1010 S4-b4.
and such a change take place ?' than to the queetion ' What is the definition of auch and such a sabject?' or 'What are its essential attribntes ${ }^{\prime \prime}$ ' It is more in respect of the problems to be answered, than of the logical character of the rewconing by which we muat prove our answers to them, that Aristotie's views (as represented in the Topics) are antiquated.

We may briefly indicate the nature of 'dialectical' reseoning, as Ariatotle conceived it, and of the 'topios' which it employed. Dialectic is contrasted with ecience. Every science has ita own peculiar arbject-matter: geometry inveatigates the nature and properties of spece, geology the conditions which determine the character and distribation of the materials whioh form the crust of the earth, phyviology the functions of the organs and tiesues of living bodies, sce. Each soience, in explaining the facte of its own department, appeale to special prizeiples, or Dical dpxal; to the speoifio nature of ita own, and not another, subjeot-matter-to lawa in accordance with which that particular clase of facts is determined, and not another clase. The geometrician makee use of the axiom of parallels, of the notion of a straight line, of the definition of a cone or circle; bat the natare of chalk or granite is indifferent to him. The geologist will use such principles as thet stratified rocks are sedimentary, or that mountaine are reduced by denudation; but he draws no conclusions from the definition of a cone. The physiologist in turn has his own problems to explain, and his own principles to explain them ; that every tisene is composed of cells which multiply by division is a physiological principle of whioh we hear nothing in geology, while the lawe of denudation contribute nothing towards the explanation of the growth of living bodiea. Dialectio, on the

[^153]contrary, has no peculiar mubject-matter; all the scioncea anbmit their principlea to its investigation; the dialectician may ask whether a geometer would be right in aging that it is a property of a triangle to have its exterior angles equal to four right angles: whether the geologist has rightly affirmed all stratified rooks to be sedimentary: whether the physiologist would do well to secept Spencer's definition of life, as 'the continuous adjustment of inner to outer relations '. And in debating such queationa, the dialectieian will invoke not apecial, but common primeiplot, кowai dexal ${ }^{1}$ i.e. not principles whoes application is confined to the acience be happans to be invertigating, but principles of univeral application: as, for example, that what is common to the genus is not a proparty of the epeciee-whence it follows, that aince all rectilinear figures havo their exterior anglem equal to four right angles, this is not a property of a triangle, or in othar words, that it is becanse a figure is reotilinear, and not becanee it is three-sided, that this can be predicated of it; it in for the geometer to show that all rectilinear figures bave their exterior angles equal to four right angles ; the dialectician's bucines is to show that it cannot therefore be called a property of a triangle, as such. Or again, the dialectician may ask, with regand to Spencar's definition of life, whether the distinction between 'inner' and 'outer', on which it rests, is clear; for he knows that the terms of a definition should be olear, though he does not necessarily know physiology; and if Spencer, or his
him from illustrating it as it wonld bo illustrated now, and his remarks on the mubject are opon to a good deal of criticism. Cf. An. Poot. a. xiii. 78b 82-790 16.
 In the second of theoe pearages, Aristotle gives as eramples of common principlen' the Law of Contradiction, that the ame proporition cannot be at once true and faleo, and the mathematical axiom that the differences between equals are equal. The latter is not really 'common', but special to the aciences of quantity ; and if he wiahed to be consirtant with what he anse in β. x vii. $99{ }^{\circ} 6-16$, Arintotle ahould have allowed that it means comething a little different in geometry and in arithmetic. By no means all of the communes loci in the treatise called the Topics are 'conmmon principles' -a. g. the topice given in γ, mepl rou alpereripen, which sre principles to be appealed to in detormining which of $t w 0$ goods is to be preforred: as, that the more lasting good is preformble, or the more socure, or the greator, or the nearer. Moot of them however are such, thongh it munt be simitted that Aristotle does not describe his topica as common principles, or courai dpxai : and I think that the distinction which he intonds to convey in the Posterior Analytice by the antithecis of ithat and nomal dpxai is really what hat been stated in the text.
dieciples, could not ahow precisely what it means, he would say the definition must be fanlty; and if they replied that 'inner' meant within the organism, and 'outer' ontside it, he would ask whetber all material systems which changed inwardly in response to ohanges outride them are living bodies; for be knows that a definition should not apply to anything except the epeciee defined, and if this exprearion does, it cannot be a definition; or he might ask whether many of the peculiar procesee of living bodies are not apparently initiated from within the body; and if the answer was affirmative, he would again object to the definition; for though it is not his basinese to know' whether any of the pecaline procemes of living bodies are initiated from within or not (and therefore he has to astr the phymiologist how that matter stands) it is his burineen to know that e definition must inolude every thing enential to the thing defined; so that if there are such procesecs, a definition of life which excluden them mant be a wrong one. Or, leatly, the dialecticien might ank the geologist if there are not some igneous rooks that are stratified : not knowing, as a dialeotician, the answer to that quention, bat knowing that, since igneous rocks are not eedimentary, the existence of igneons rooks that are atratified would upeot the geologist's proposition; while if the geologias were able to answer the quection in the negative, he would so far have come out viotorioce ander eramination.

All these general principles, to which the dialeotician appeals, are called topies ${ }^{2}$: it is a topic, that what belongs to the genus is not a property of the species; or that what in some particular instance is absent from a epecies is not a property of it; or that the terms of a definition mast be precise, or that it mast be commensarate with what is defined. All these principles hold good in any acience; it matters nothing what the species may be, or what the property, or what the definition. A man therefore whowe mind in stocked with principles of this kind has pointe of vantage, as it were, from which he may proceed to attack or defend any definition, any predication of a property; they are topics in common,' commonplaces,' pointe of view whence you may approach to the conaideration of the statements of any soience. Just as a man who knowe nothing of the truth of ita premisees may be able to deteot a flow in a syllogiom, so the dialeotician, without a scientific knowledge of a subject,

[^154]may know what eort of quentions to ask, if he wishee to teat a scientific man's right to affirm the principles he enanciates.

Aristotle's Topice is written with reference to his doctrine of Predicablear He regards every proposition as asserting (or denying) some accident, property, differentia, genus or definition, of its sabject; and be asks, to what considerations are you to look, if you woold know whether auch and such a predicate does stand to suah and such a subject in any one or other of theee relations? Each of these considerations is a topic. He details an astonishing namber of them. They are of very different degrees of importance and value. Some are drawn from language. Look, he aayb, for example, to conjugate terms; if noble is a property of just, then jwotly is nobly; perbape a man who affirmed generally that jastice is noble might admit that it is possible in come cases to act justly and not nobly. ${ }^{1}$ Others are based on the principle that contrary thinge have contrary properties; so that you oannot say that the just is the equal, unleas you can any that the unjust is the unequal. Some aim only at enabling you to determine whether an expression is elegant, according to accepted rulea. But others are prinoiples of great importance. For instance, there is what we might call the topic of Concomitant Variation ${ }^{3}$; that is not a property of a subject which doss not increase or decresee with an increase or decrease in the anbject, and conversely, if you find two things increasing and deoreasing together you may aseert auch connesion between them. ${ }^{3}$ Considerations of this kind enable you to judge how different concepts are related to one another; and relations between concepts furnish the principles with which the special scienoes work.

It may be admitted that this treative contains much that is trivial; that it tbrows together considerations, or principles, of great and of little cogency; that the problems of science aseume other forms than determining the definition of a subject, its properties, or its accidents (although these problems occur too, and many problems which we sbould not express in thoee forms can be translated into terms of them). It may also be admitted that Aristotle had his mind fixed too exclusively upon debate. The answers to the questions asked were to come from the reopondentthe otber disputant; but in bailding up the sciences, they must

[^155]tome from the field and from the laboratory. Aristotle would have a man test any scientifio doctrine that is pat forward by interrogating its maintainer; the man of ecience must teat thoee which be bimself or a fellow worker pats formard by interrogating nature. It would be easy to do. Aristotle an injuatice on this head. It may be asaumed after all that the respondent teatifiea to what be hae seen; and Aristotle was alive to the importance of collecting and recording fecta. ${ }^{1}$ But the Fopics is a treatice on the art of dirputation; dirpatation aims after all more at silencing an opponent than at establishing truth; and though we are told that Dialectic has its use as much in the examination of the principles of the sciences as in the conduct of a dispatation, it is in the latter epirit that it is expoonded. Neverthelees, in the distinction drawn between acientific and dialectical reasoning, as illustrated above, and in its acoount of the general nature of the considerations to which one must appeal in any defence of the principles of a evience, the Topics is a work of great logical value.

What, then, has Aristotle to say about Induction?

1. He gives the name to a formal procen of inference, by which we conclade a proposition to hold aniversally of some clase, or logical whole, because an enumeration shows it to hold of every part of that whole. This is what has been since called Indsction by Complete Enemeration, or Perfoct Induction; and be shows how it might be thrown into the form of an Inductive Syllagiom.
2. He pointa out that our knowledge of acientific principles springe historically out of oar experience of particular feots; though its certainty reate altimately apon an act of intellectual insight." And be gives the name of Induction to the process in which the particulars of our experience suggest to us the prinoiplee which they exemplify. But this is not a formal logical procese from premiseen to conclasion; and it is not the induction (in this eense) which leade us at the end to scoept such principles, but our intellect, or vovis.
3. He ahows where (presumably in defenlt of the neceesary insight and amarance from our intellect) we may look for reasons for accepting or rejecting any principles which a acience puts forward. He does not give to this procedure, which it of a formal logical kind, the name of Induction, but calls it Dialectic; nevertheless what he saye on this head is of much the most importance from the
point of view of acientific method, and comen much closer to what modern writers underatand by Induction.

Thus he admitted that our knowledge of genernl principles comes from our experience of particular facte, and anid that we arrive at them by Indaction; bat the only formal logical proceen which he deecribed under the name of Induotion was that 'Perfect Induction'. which clearly neither in nor can be the proceen by which the sciences establish general propositions; while the kinde of procem whioh thay really do employ, oo far an they appeal morely to the evidence of our experience, he deseribed under a different name. It is not surprising that some confasion has revalted.

The critics of whom Becon is the corypheoos, recognizing with Aristotle that we discover universal truthe by indnotion, attacked him for saying that we only discover them by complete enumeration, which he had not anid; and finding the name of Induction given to no other formally valid procese than this ${ }^{1}$, suppoeed he had nothing elee to say of the processes by which such truthe are renched. Becon himself attempted to systematize the process of discovering and proving them in a way whioh undoubtedly poseenes valne, and no lese undoubtedly owes mach to Aristotle; baten the Aristotelian idens on which it is based do not occur in the Organom in connexion with drayoyf, he hardly realized how mach he was borrowing. His analysia is offered in connaxion with an unworkable theory of the nature of the problems which ecience should net itself to colve. To put it summarily, he thought that a list of the several sensible propertiee of bodies abould be drawn ap, and that men should then try to discover on what particalar principle of corpuecular atructare in the bodies that exbibited it each property depended. There was nothing in the conception of any particular principle of atracture, which would lead you to anticipate that ite presence would involve any one sensible property more than another; you could not tell, apart from exparience, that a particular motion of the component particles of a body would exhibit itself to the senses as heat, or that a particular diaposition of ita surfece particlee would show as whitej and another diuposition as black. Suppose we were to ayrit olizethe sensible properties of bodien by Haman lettern, and the pri Appes

[^156]of corpuscalar structare in them on which these depend by Grook letters: how are you to prove whether a property a is connected with a or b or ε ? Becon's anower is as follows. He called the principles of corpracoular structure Forms: whatever be the Form of a given proparty a, it must be $e 0$ related to a as to be present in every body in which a is present, to be absent from every body whence a is absent, and to increase or deorease in any body as a increases or decreasea. Our problem then is, as he says, ut inven niatur matura alia (the Form) quac oum matura data (the sensible property) perpetwo edrif, absil, crescat atqwe decrescat. ${ }^{1}$ How are we to solve it? No mere enomeration of instances in which a sorsible property a and a Form a are present togother will prove that they are thas related, and that a is the Form of a; for your enumeration must be finite, bat your conclasion in to be universal. You may find a humdred bodies exhibiting both a and a : yet the presence of one may be quite unoonnected with the presence of the other, and you may find a body to-morrow exhibiting orre withont the other. We must proceed then by eschusions. Where a hundred instances will not prove an univenal connexion, one will dioprove it. This is the comer-atone of hie method: maior ant cis inetiantice negativac.? If wo had drawn ap an exhanative list of the diflerent principles of corpusoular atractare present in bodies in different combinations, all we ahould have to do would be to find instances in which any of these wha present in a body that did not exhibit the property a, or abeent in one that did exhibit it, or in which it increased or deoresed without a corresponding variation in the degree of the property, or vice verm. We could then confidently rejeot that Form; and when we had thue rejeoted every other Form, then we could confidently affirm that principle of corpuscular atruoture which alone had not been rejected to be the Form (or cause of the preeence) of a given sensible property a. Our sesurance would reat not on the positive tentimony of its presence along with a in a number of instances, bat upon the fact that we had diaproved all posible rival theories.

It will be seen that this procedure presupposes that we know all the possible Forms, among which that of any particular sensible property is to be sought; and Bacon, though he promised to do so,
${ }^{1}$ Noe. Ong. II. 4.
' Ib. I. 46. Cf. Aristotle, Anal. Pri, a, xivi. 48o 14 4na ad aindon fru mal ro

never showed, and could not have ahowed, how we were to dircover that. The procedure in formulated too onder the ides, that the immediate tank of acience is to draw op a complete list of all the distinct rensible propertiea found in nature, and then look for what we ahould perhape now call their phynical basis. This idea was mistaken. But the fundemental principle of the method by which Becon proposed to 'interpret natare', the principle on encount of which he gave it the name by which he called it, Exeluerias, is correct; it is that where you cannot (as in Mathemetion) see that a propocition muat universally be trae, bat have to rely for the proof of it on the fecte of your experience, there there is no other way of entablishing it than by showing that facte disprove its rivile ${ }^{1}$

Becon called this method inductive; it may be as woll to point out at once that formally the reseoning involved is juas that of a disjunctive argument. The alternative hypotheess (with Bacon, the alternative hypotheses as to the Form or physical besis of a particular sensible property) are so and 30 : such and auch of them are faleo; therefore the one remaining is true. How we are to discover what the alternative hypotheses are, he doee not explain to us; we are to prove that the reat are false by appeal to the facte of our experience; these facts he would have men methodically collect and tabralate, and in making use of them be relies upon the general principle that nothing can be the Form sought for which is ever present in the absence of the property whose Forrn it is alleged to be, or aboent in ite presence, or variable when it is constant, or constant when it varies ; when he has got his premisees, his conclusion follown secording to the ordinary principles of disjanctive reasoning.

Becon wrote in the dawn of modern ecience, and proclaimed with splendid confidence its future triumphs. His predictions have been fulfilled, perhape to the extent, though not on the lines, that he anticipated. Spes eat wha, be wrote, in inductione vera ${ }^{2}$; and as men watched the continuoue progrese of the inductive sciences, they came to think that induction was really some new form of reasoning, ignorantly or perversely rejected by our forefathers in favour of

[^157]the deductive reasoning, which they aseociated with the name of Aristotle, and now held to be in comparison an idle thing. To praise induction became a aign of enlightenment ; but the praise of it ran ahead of the anderatanding.

Those who did the most to adrance the aciences had not the need or inclination to passe and analyse the argumants which they were so succesofully bailding up; nor would it imply any disrespect to add, that many of them probably had not the power of doing so. It is no more necemary that a great scientific genius ahould be able to give a correct account of the methods he nees than that a great artist should be able to expound the philosophy of art ; those can often do things beat who are quite unable to explain how they do them. The chief scientific name in the history of speculation upon the logic of the inductive aciences in this country is that of Sir John Hersehell; four writers in all, if we exclude those still living, have made the principal contributions to the subject. David Hame, in a brief section of his Treatise concerning Humas Nature (Of the Understanding, Part III, Sect. xv), given 'Roles whereby to judge of canses and effects ' which contain the pith of much rabeequent writing; but the work, as he said himsolf, 'fall atillborn from the prese'; this action wae not incorporated in the latar and more popular 'Enquiry'; and it had no influence on the exposition of Induction. Sir John Herschell's Diseourse concorning the Study of Natural Philomphy and the varions work: of Dr . Whewell did, on the other hand, much to atimulate intereat in the subject; eapecially since Whewell proponnded an explicit theory of it. The help which he had derived from both is acknowledged by J. S. Mill, whowe Syatem of Logic for many years held the field as an exposition of inductive reasoning. To that more than to any other work is to be traced the prevalence of the opinion, that inductive reasoning, or Indactive Logic as the theory of it, is a discovery of the moderne-an opinion which certainly contains leas truth than falsehood. The name induction may be aid with him to have atood for more than a particular form of inference; it was the battle-cry of a philoeophical school, the school, s it is called, of experience. Bnt as a reault of this, and of ita previous history, it has become. one of the most confusing terms in Logic. It stands firstly for that induction by complete enumeration which Mill deniee to be properly induction at all, bat from which his influence
was unable to withdraw the name after the preseription of eo many centuries. It stande eccondly for the logical procespen employed in the induotive sciences, wo far as these infer from particular fectes the principles that explain them; e to what the nature of these logical procemes is, Mill had a theory different from Whowell's, and others have since had theories different from Mill's. Thindty, Mill, who admita that there are certain general principles asoumed as true in the reasonings of the inductive seiences, gives the name to what he conceives to be the logioal proces by which these principles thamselves are reached : a process that aterta, in his view, barely from a great number of partioular facta, and without the help of any general principles at all bases upon thees faota the general principles whereon all other induotive inference reate. Many of Mill'a critica have thought, and have thought rightlyfor it is better to state one's position explicitly at the outrot-that if the process by which thene principles ars reeched were as be describee it, it could only be oalled an illogical procem. ${ }^{1}$

It would have been pomible to omit the foregoing historical sketch, and to offer a parely dogmatio account of what Induction is, and what it is not. But againat smoh a course there were two reasons. In the first plece, a new writer has no right to do such a thing. It is indeed neoemary for him to put forward that ecoount of the nature of the reasoning of the indoctive sciences, which he bolieves to be true; bat not as if he was only delivering an acoepted tradition. And in the second place, anlees the reeder knows something of the history, he can hardly fail to be confased by the diversity of senses in which he finds the word Induction reed. Men have rightly felt that an antithesis could be drawn between the indnotive and the deductive aciences; though thay can be claseed only according to their predominant character, sinoe no aciences, except the mathematical, are exclusively the one or the other. On the strength of this they have mout unfortanately arected an antithenis between Inductive and Dedactive Logic:

[^158]unforiunately, partly because Logic is one; the science which studies the nature of our thonght embraces equally the processes of thought that enter into the constraction of the deductive sciencee and of the inductive; but unfortanately aloo, because it has led to much misunderatanding of the natare of inductive reasoning itself. Inductive Logic has not really hid bare any new forms of reseoning;) we have already seen that Bucon's Indaction is a disjunctive argument. The true antithesis is, as Aristotle anw, the antithesis between Dialectic and Demonstration; or in more modern phrase, between Indaction and Explanation. ${ }^{1}$ Or if any one likes to keep the antithesis between Induction and Deduction, and to call inference deductive when it proceeds from conditions to their consequences, and inductive when it proceeds from facte to the conditions that account for them ${ }^{2}$, he will find
a. that the two processes cannot be kept rigidly apart. Whoever infers from the facts of experience the conditions which account for them must at the same time in thought deduce those facts from thoee conditions.
U. that what has been called Deductive Logic, what Inductive Logic has been contrasted with, analyses forms of inference which, if the antithesis between Induotion and Dedaction be thus anderstood, must be called indactive. This will appear more fally by and by; it will be admitted now that, if it is true, though we allow a difference between inductive and deductive reasoning, we had better give up opposing Inductive and Deductive Iogic.
${ }^{1}$ The two antithenes are not quite identical, becanse mome dialectical argumenta are not inductive, and explanation is not demonatrative unleas the premisees from which it proceeds are known to be true. The reasoning from thoes premimes is however the game, whether the promises are known or only beliered to be true (cf. c. miii, infra).
${ }^{2}$ Induction is often regarded os proceeding from particular facts to the eatabliabment of genersi principles, under which those facts are then broaght by subsumption, and so acconnted for. And though we may aleo inductively eatablish from one particular fact the existence of unother conditioning it, yet anch a concluaion does imply a general principle of connexion. But it must be remembered that this reasoning starte from the amporption that there are univeral comnexions (cf. next ch., and p. 502, infras). Moreover to have written general principlat for conditiona in the text would have narrowed anduly the acope of Deduction, which frequently, as in Msthematics, proceed from one fact to another withont any applice. tion of a general principle to a particular cese subwumed under it. Cf. infra, pp. 401 n. 1, 487 n. 2, 505 n. 2.

CHAPTER XIX

OF THE PRESUPPOSITIONS OF INDUCTIVE REASONING: THE LAW OF CAUSATION

' Why is a single instance, in some cases, sufficient for a complete induction, while in others myrisde of concurring instances, withoat a single exception known or presumed, go such a very little way towards establiehing an universal proposition? Whoever can enswer this question knows more of the philosophy of logic than the wisest of the ancients, and has solved the problem of Induction.' However we may think of the knowledge possessed by the wisest of the anciente, the question which Mill asks is no doubt an important one. By what right do we ever generalize from our experience? and how can we tell when we have a right to do so? To these questions we mast now attempt an answer. Afterwards we may note what other processes of thought besides generalization enter into the sciences; and then we shall be able to realize better the true nature of that antithesis between induction and deduction which was apoken of at the end of the last chapter.

The present chapter will addrese itself to the question, by what right do we ever generalize from experience. This is the primary question. Syllogiem never generalizee. Unlese it is provided with universal propositions for premisses, it cannot arrive at them in ite conclusions, snd even so, its conclusion is never more general than its premisses. ${ }^{1}$ It is just this fact which raised the difficulty,

[^159]how to get the universal propositions which syllogism needs to start with. If experience givee us only particalar facta, how are we to get aniversal conclusions out of them? A mere enameration of particulars will justify a conclasion sbont no more than the particulars which have been enumerated, whereas we claim in any generalization to $g \circ$ beyond the observed factes on which the general. iration is based, and to drave a conclusion trae in any possible instance whateoever. By what right do we do this ?

The anower is that all induction asemmes the existence of univeraal connexions in nature, and that its only object is to determine between what elements these connaxions hold. The events of our experience are no doubt particular, bat we believe the principles which they exemplify to be universal ; our difficalty lies in discovering sokat principles they exemplify; in that, a cloee study of particular facts will help us; bat were we to be in doabt whether there are any such principles or not, no amount of stady of particular facts coald resolve our doubt.

There are many ways in which this assumption may be expresed. It will be well to consider some of these, and to ank what precisely it is that we aemume. We may then show that (as hea just been said) it is hopeles to attempt to prove the assumption by any appeal to experience; and ask ourselvea what justification we have for making it.

The commonest expreesion for it is the Lavo of Universal Caunation, or (more briefly) the Law of Caneation; again, we my that we believe in the Uniformity of Nature; but the same ides is implied in the distinction between easential and accidental circumatancee, or in asking what circumstances are reletast to the occurrence of an event, or what are the material circumstances in the case. For only those circomstances can be called material, or relevant, or essential, without which the event would not have occurred, or whose non-occurrence would have made some difference to it; and the occurrence or non-occurrence of any particular circumstances can make no difference to an event, ualess there is some connexion

[^160]between them and it. Were everything in natare loose and unconnected, it would be impossible to say that an event occurred lecouse of any one thing rather than another. All these phrases therefore imply Causation, and imply Uniformity.

Both the Law of Cassation and the Uniformity of Nalure are phrases open to misuaderstanding. There is a sense in which it is the businese of induction to discoser laws of causation; in the plural, the term refers to the various particular principles of connexion exemplified (whether we detect them or not) in the conrse of nature; it is equivelent to Laves of Nature, or Nabural Lavot, such laws, for example, an that matter gravitates, or that organisms reproduce themselven after their lind. Used sbeolately and in the singular, however, it means the principle that there are such particolar principles, and hence we speak of the Law of Universal Causation, intending to assert that soerylhing has a cause, and that no change occurs except under conditions with whioh its oocurrence is connected universally. And it in becanee we believe its occarrence to be connected universally with such conditions, whatever they are, that we apeak of the wniformily of natare. We do not mean to deny variety, bat ouly to seeert the unbroken reign of law. That which collectively we call nature is a vast asemblage of pabstances of divers kinds diversely intermingled: intencting with one another in ways that depend upon their abiding character and their shifting situation; what we call single things are highly complex, and their properties and behaviour depend apon their composition, and upon the circumatances in which they are pleced; we may believe that whenever a thing of precisely the same kind is placed in precisely the same circumatances as another, it will behave in precisely the same way; nor is more required by the principle of the Uniformity of Nature; and yet we may doabt whether such precise repetition ever occurs. Watch the movements of a waterfall, bow it breaks into a thoussnd parts which soem to shift and hang, and pause and hurry, first one, and then another, so that the whole never presents quite the same face twice; yet there is not a particle of water whose path is not absolately determined by the forces acting on it in accordance with quite simple mechanical lawe. No one would suppose that because these mechanical law are anchanging, the waterfall must wear a monotonous and unchanging face; and so it is, on a larger scale, with the
course of nature Nature is aniform in the sense that under like conditions like events occur; and in fragmenta, as it were, she is ever presenting us with the repetition of conditions that have been fulfilled before; so that in fragments there is recurrence of like events enough. But sooner or later, because the surrounding circamotances are not quite the same as before, the course of like events is broken in apon; from the beginning the likenes whes probably not completa. Were it indeed possible for the procesion of events to bring beck precisely the atate of thinge which had existed at some moment in the past, then it must follow, from the prisciple of the Uniformity of Nature, that the same procession would reour, and terminate again by reinstating the phase in which it had begun; ω that the bistory of the world as a whole would really repeat itelf indefinitely, like a recurring decimal, and to a spectator who could watch it long enough, might aem as monotonors as the music of a musical box which, as it played, somehow wound itself up, to paes always from the conclusion to the recommencement of its atock of tunes. But nothing of this kind occurs; and the uniformity of neture is consistent, as Mill seid, with her infinite variety.

But it may be said, the Law of Causation is one thing, and the Uniformity of Nature is another; every event may have a canse; but the same cause need not always produce the same effeot, nor the cause of the same effect be always the same. The human will, for example, is a cause; bat it does not always act in the same way under the same circumstances; to-day in a given situation I may act meanly; yet it is possible that in a situation of the same kind I may act better to-morrow.

The freedom of the buman will is a peculiarly difficalt problem, not to be argued here; doubtless there are some who so understand it (if underatanding is then the proper word) as to make it an exception to the Uniformity of Nature. Some would say that, in this sense, it is not to be called a canse at all; that to assert it in this sense is to assert mere chance, the happening of evente for no reason, the very negation of cause; for they hold that there is no causation which does not act uniformly. Others would make an exception to that principle in this one case; but even if we were to allow it, we should atill have to say that, except so far as a cause is of the nature of the haman will, there is no meaning in a cause which does not act uniformly.

Let us ask what is involved in the conception of a cause not acting aniformly: we shall see that it is the same as if we devied the existence of causal connexions altogether. For suppose that every event bad a cause, but that there was no reason why the same event should have the came cause or produce the same effect on different occasions. There need therefore be no appearance of order in nature at all, but things might happen just as if all changee were fortuitous. As it is, we believe that plants produce seed after their kind; we do not expect to gather grapes of thorne, or fige of thistles; where we see garden fruit upon a wild stock, we look for a graft, convinced that the aame stock will only bear different fruit in virtue of some material difference in the conditions. If any plant might produce any seed, or any seed any plant, and it was impossible to discover, in such circumatances as graft or coil-because no reason of the kind existed-why the same plant produced now one seed and now another, or the mame seed now one and now another plant, then we should just deny that there was any cause for the things that happened. We should not say that there whe always a cause, though the canse need not act uniformly. If two plante, whose nature is really the same, can determine the growth of totally different seeds, how can we call either the reed of that plant at all? Grant that a seed may some times be prodaced by a plant of its own kind, and sometimes by s plant of another kind, withoat any difference of circumstances, and merely becanse canses do not act uniformly, and you have really granted that anything may produce anything; flint and steel may produce oeed instead of a apark, and oil raise the wavee or quench a conflagration. But to any that anything may produce anything is to empty the verb 'produce' of all its meaning. For the causal relation is a necessary relation, such that if you have one thing you mual have another. - To add that it doea not matter what the other is, destroys the force of the mact. The distinction between essential and accidental, material and immaterial, relevant and irrelevant, will ranioh. So long as causal connexions are universal, there is a meaning in it. That is essential to health, without which health is impossible, and that is accidental to it which (though doubtless it has ite effects) has no effect upon health. But if exercise, which is essential to my health to-dsy, should suddenly and without any change in my condition give me epilepsy to-
morrow, while the lose of a letter in the post somewhere in the antipodes should on the following day care my epilepsy, then it would be impossible to say that anything was accidental, or anything cesential, to the same result for two minutes together. And the discovery of the causal connexions that determine the succession of events now would certainly be of no use in enabling any one to forecast the futare; because the connexions themselves might have altered in the meantime. It is difficult to see how all this differs from denying that there are any connexions.

Causal connexions then are necesary and univenal ; to assert causation is to assert uniformity of connexion. Were it otherwise, to discover them would mean only to discover the connexion subsist- f ing at a particular moment; and we could not tell that auch connexion would aubeist the next moment. For this reason, we could not generalize, even though we believed in the Law of Causation; nor indeed could we so mach as discover what connexions did subsist at any moment. For aince anything might produce anything, there would be nothing to make us connect a change with one rather than another of the evente that were observed to occur immediately before it. No light would be thrown upon the problem by comparison with other instances, sinoe, ax kypothesi, the cause might be different there. As it is, if the sun comes out when I bear the clock strike, I do not suppose that the striking of the clock canses the sun to shine, becasse it 80 often strikes without relieving the gloom, and is so often silent when the san comes out. But when I reason thus, I assume that if one event were really the canse of the other now, it would be so always. If it can be the canse now, and not another time, how am I even to tell whether it is the cause now or not? We spoke of the human will as an alleged exception to the rule that the same cause must always produce the same effect. We may notice hare that just in so far as it is allowed to be an exception, human actions are allowed to be incalculable. And if everything were endowed with a will like man's, and all these wills were free in the sense in which nome suppose that man's will is, then we should have no logical justification for any generalization whatooever. But those who claim this freedom for the haman will would attach no value to it unless the act to which a man was determined by his free choice produced effects that were necessary in accordance with universal laws.

There is no need then to distinguish the Law of Cansation from the Uniformity of Nature; for-bating the possible exception of the causeality of the buman will-s cause which does not act oniformly is no cause at all; and if we are looking for the presuppositions of inductive inference, it is plain that the only connexions whoee oxistence wrould justify such inference are uniform connexions. But two cantions must be given here. First, it must not be imagined that uniformity is the fundamental element in the conception of causal connezion, but meceavity or law. Secondly, we must be carefal not to confuee a conditional with an unconditional neceseity.

David Hume, whoee enquiry into tho meaning and origin of our ides of Caasation whe epoch-making in the hiotory of modern philosophy ${ }^{1}$, eould find no other meaning for the atatement that one event is the canse of another than that in our experience the one is always immediately followed by the other; and according to bim, the thought and expectation of this aniformity of sequence is all that is present to our minds when we assart causation. In agreement with this view, J. S. Mill (who differed from Hume on this matter chiefly in not drawing the logical consequences from the same preminses) defined a canse as the invariable and unconditional antecedent of an event. The word anconditional in this definition may seem to betray ideas inconsistent with the resolution of the cansel relation into one of time; but Mill explains an unconditional equence to be one that is subject only to negative conditions ${ }^{2}$, and the negative condition of any phenomenon 'may be all eammed up under one head, namoly, the abeence of preventing or connteracting causes's; so that those circumstances are the carse of an event, upon which it followe whatever other circumatances may be present as well ${ }^{4}$; and the relation remains one of invariable sequence after all. Now it is not denied that if any set of conditions a is the cause of an event x, x will be produced as often as the conditions a are fulfilled; and in this sense the sequence will be invariable; but we cannot intend to assert primarily that, when we say that a is

[^161]the cance of ε. For if a is the canse of \approx, the relation subeirts between them in every cave of their occurrence; it subsinta between this a and $t h i s a$; and it is clear that the relation between this a and this a cannot be the aniform sequence of all instances of x upon instancee of a. The action of light of certain wave-lengthe, \&e., upon a chemical surface prepared in a particular way may be the cause of the production of a photographic negative of a particular peak in the Himalayan mountains. I cannot mean by that that the production of all auch negatives has been preceded by a similar assemblage of conditions on each occasion, since mine may be the only photogreph ever taken of the peak in queation. No event could have a cause antil it had, been repested at least once, if the essence of the causal relation lay in uniformity of sequence; nor could that relation ever be one subsiating between a and x in a determinate instance; and it is difficult to see bow a cansel relation which subsiste between no determinate instances of a and x coald subaist at all. So far then from the causal character of a sequence being derived from ite uniformity, its uniformity is derived from its causal character. We avail oureelves of the uniformity which must characterize causal sequencee so far as they are repeated, to determine which of the sequences that we observe are caunal; and that is why the repetition of an event ander diversity of conditions is of auch ascistance to ue in determining what conditions are eseential, or material, to ite ocenrrence. But an event that was absolutely unique must just as surely have its cause, though we may be anable to discover what it is. For the causal relation hes nothing to do with member of instances, so far as ite asidence-though not so far as ite detoction-is concerned; it is bound up altogether with the nature or character of thinge, and the natore of anything is not a question of the number of such thinga that may be or have been fachioned. We have seen indeed that a cause which doee not act uniformly is no cause at all; but we may now see that were it otherwise, a thing would have no determinate nature If a thing a under conditions c produces a change s in a subject a-if, for example, light of certain wave-lengthe, passing through the lens of a camera, produces a certain chemical change (which we call the taking of a photograph of Mount Everest) upon a photographic film -the way in which it acts must be regarded as a partial expreasion of what it is. It could only act differently, if it were different.

As long therefore as it is a, and stands related under conditions c to u subject that is s, no other effect than acan be produced; and to say that the same thing acting on the aame thing under the same conditions may get produce a different effect, is to asy that a thing need not be what it is. Bat this is in fiat conflict with the Law of Identity. A thing, to be at all, must be comething, and can only be what it is. To assert a causal connexion between a and x implies that a acts as it does because it is what it is ; because, in fact, it is a. So long therefore as it is a, it must act thras ; and to assert that it may act otherwise on a subeequent occesion is to aesert that it is something else than the a which it is declared to be. It may be replied that no two things evar are the name, and-what that reply must commit you to-that no one thing ever is the same for two successive momente. The fact of change is not disputed, nor the difficulty of finding two things that are qualitatively the same. But if the effect of the second is different, that must be because of its qualitative difference from the fint, and not merely because it is a second; and so far as it is qualitatively the asme, the eflect most be the same also: it being understood of course that to sameness of effect qualitative sameness is equally necessary in all the material conditions. To deny this is to deny the possibility of reseoning altogetber. If we cannot truly make the same cesertion about a number of things, then, as Aristotle observes, there will be no universal, and so no middle term, and no demonstration. ${ }^{1}$ For an universal judgement connecte a certain attribute with a certain subject in virtue of their content and without regard to the frequency of their existence. If we can do this, we can make the same assertion about all things of such and such a kind; if we cannot do it, we are left with nothing but particular things whowe attributes must be ascertained from inspection or experience of themselves; and not by transference of what we have once found true of such a kind of thing to others of the kind. What holds for the relation of subject and attribute holds in this respect co ipso for that of cause and effect. To suppose that the same cause-other things being equal-can have different effects on two occasions is as much as to suppose that two things can be the sarae, and yet so far their attribute different. To reply that two things cannot be the same, and that the same cause cannot be ' Anal. Powt. e. xi. 77^ 5-9.
repeated, is either to miss the point, or to abandon reasoning. If it is meant that two complex thinge cannot be qualitatively the same, nor can conditions precisely the same in kind ever recur, such an objection misses the point. One need not maintain that such identity, or such recurrence, in fact occurs, though it in not perhaps inconceivable that it ahould; all that is maintained is, that co far as things are qualitatively the same they have the same attributes, and so far as conditions precisely the same in kind recur, they must, if there is such a relation as cause and effect at all, bave the ame effect. If, on the other hand, it is meant that there is no qualitative samenese in what is numerically different, we can only say that if 00 , there is no reasoning. But this denial of identity between different thinge is what is really at the bottom of the attempt to resolve the causal relation into uniformity of sequence. For the causal relation which connects a with \boldsymbol{z} connects a cause of the nature a with an effect of the natare a. The connerion is between a and \boldsymbol{x} as such, and therefore must hold between any a and any x, if they really are a and x respectively; in other words, it must be uniform. The denial of this is just the denial of universals; while if there are universals-the same content in numerically divers things-the relations between them must be universal. If, on the other hand, we are to substitute for a relation one and the same in all its instances a mere similerity between the relations that connect the respective terms of many different instances-if for the relation between a and as ouch we are to subetitute the uniformity between the relation of this a to this x, and of that a to that x, and of the other a to the other x, then we are substituting for the common content of many things a bundle of things united by notbing in common. How then can we apeak of them as things of a kind, or hold our sequences uniform except in the fact that they are sequences ? ${ }^{1}$ The cause of an event might then indeed be anything to which it stood in a relation of sequence at all, and need no more be the same on different occasions than ite antecedent need be; since we should have agreed that it was impoesible that the sequence of the same thing \approx upon the same thing a should ever be repeated.

We may pass now from this to the second of the two points mentioned on p. 376. If it is thus necessary that causal relations
' Strictly speaking, even requence could not be a featare common to two successiona.
should be uniform, it is all the more important that in speaking of the Uniformity of Nature we should not confuse conditional with unconditional necesaity.

We saw above that the Uniformity of Nature whe consintent with any degree of variety in the course of evente; but that it implied that the principles in accordance with which these events occur, or what we often call the Lawe of Nature, are unchanging. In other words, the uniformity which a particular law requiree in evente can admit of no exception; for an exception would mean, that evente did not necesearily happen in socordance with the law; and a law that changea is no statement of the way in which evente meat happen. Nevertheless, we often use the term Law of principles which we abould not be prepared to declare unchanging; which, as we might any, do not hold good always. In the strioteat sense of the word, no dosbt, a law must bold good always and onconditionally ${ }^{1}$; bat we use it in a looser sense as woll. It is important to realize this distinction, and also to consider how far, when we speak of the Uniformity of Natare, we meea to aceert that what are commonly called ' natural lawi' are uncoaditional.

The first law of motion is an example of a natural law which would perhape be regarded as unconditionally true-that every body persists in its state of reat, or aniform rectilinear motion, until it is interfered with by some other body. The same might be said of the law of universal gravitation, that all bodies attract one another with a force that varies directly as the mase, and inversely as the equare of the diatance. Compare with these the principle that acquired characters in a plant or animal are not inherited. Sapposing this to be true (for it is still sub indiec), yet it is not true anconditionally. We are not in a position to say that living things could not be so organized, in reapect of their reproductive syatem, as to make aoquired charactere heritable, but only that, with the organization which we find, they are not heritable. That organization therefore conditions the trath of our principle. Just as the prevailing necensity for sexual union in the reproduction of all multicellular organisms does not exclude arrangements in some species which make them parthenogenetic, so there might possibly be conditions

[^162]nuder which the non-heritability of sequired charmoters held good no longer. And as conditions may change, thoee realized at one time not being realized at another, so the conditional prinoiples which prevail may change with them. It appears to be the caee that living matter can only be produced from other living matter; there is no apontaneous generation of it from the inorganic; omme riowm ew vico. Bat many scientific men have supposed that though this is true and neceseary now, yet in an earlier period of the earth's history, under very different conditions of temperatare and so forth, it whe not so.

Conditional principles are necessarily derivative: i. e. their truth, so far as they are true, follows from eome unconditional laws, which wmiter given conditions involve them as their consequence. They therefore admit, theoretically if not as yet actually, of explanation. But derivative principles, or principles admitting of explanation, are not necemarily conditional. For when we call a priaciple conditional, we mean that the trath of oar principle depends apon conditions which are not stated in it. If we bring the conditions into the atatement, then, though it remains derivative, it is conditional no longer. Supposing that we knew precisely those conditions of organization in animals and plants which made acquired charscters non-beritable; then the atatement that in animals or planta of that orgonisation aoquired characters were not inherited would be unoonditionally true, although no doubt it would admit of explanation. It would probably not be called a law of nature, becanse it would bo derivative ; but it would have all the neceseity of a law of natare. ${ }^{1}$

The Uniformity of Nature then involvee the trath, without exception or qualification, of all anconditional laws; bat conditional principles admit of apparent exceptions, withont derogation to its truth; and if we are ignorant of the conditions within which these conditional principles hold good, we cannot tell when the exceptions may not ocear. To retarn to our previous illustration : if we do not know under what conditions of organization sequired characters are and are not heritable, we must be prepared to admit evidence that in some cases they have been inherited. Where, however, exceptions occar to some conditional principle, they constitate no exception to the trath of the Uniformity of Nature; bat only imply

[^163]that the conditions, under which that principle held good, are not fulfilled in the exceptional case. And the exception leads us, not to deny that 'Nature is uniform', but to revise or to determine more precisely the particalar principle which we have found invalid. It is only unconditional lews that can have no exception.

It becomes therefore important to determine, if possible, when we have discovered an unconditional law. We may diaregard here those derivative laws, which we may be capable of explaining from others more general than themselves; for the question whether they are unconditional is the same as the question whether the more general laws from which they are derived are so. Now, if wh have no better reason for accepting a law as unconditionsl, than that by assuming it to be true we can account for the facte of our exparience, then, though we might provisionslly accept it, we can hardly be content with our warranty; for perbape some other law might also account for the facta. But if (and this, as we shall see hereafter, is a distinction of the first importance in inductive theory) -if, without assuming it to be true, it is impossible to scoount for the facts of our experience, we should have to sappose it unconditional; though such impossibility may be hard to establish. Still, we should not be fully aatisfied; for had the facta been otherwise, we need not have admitted the law ; and we do not see, except on the hypothesis that the law is trae, why the facts might not have been , otherwise. Complete satisfaction woald only come, if the law which the facts had forced us to recognize ahould, when considered, lappear eelf-evident.

Are there any unconditional laws known to us? There is no doubt that the fundamental principles of physical acience are often so considered. It is held that we have discovered certain physical laws prevailing throughoat the material universe, in eccordance with which every event in the material order takes place; that these laws are mechanical; and that nature is, in trath, and in the laot resort, a purely mechanical system. And this view is supposed to be confirmed by the character of the principles with which physical science works. A great deal is purely mathematical; and abont mathematical principles at any rate we can say that they are unconditional because self-evident; no apparent exception would make us doubt them or revise them; we should only doubt the fact which was supposed to constitute the exception. And some of the
most general physical laws have often been held to poseess the same self-evidence; the first law of motion, and the lawe of the conservation of energy and the conservation of mass, are instances, That anything should occur in the material aystam unconformably with these principles would then present the same kind of contradiction es that two and two should make five. The explanations of phyrical science, at least so far as they rested on laws of this kind, would be complete and final.

On the other hand, there are very serious difficulties in the way of admitting the finality of the explanations which physical ecience offers of events in the material system. These difficulties arise from the relation of some of these events to human, and also to infra-haman, consciousness. Experience reveals to us a correspondence between certain changea of a material kind in the nervous syatem, and changes in our consciousness. No astiafactory theory of this correspondence has yet been found; it cannot be eaid that what is involved in treating as unconditionslly true the principles of physical science is satisfactory in theory. For if all physical changes are to be explained as determined altogether according to physical lawe, then they are purely mechanical; the existence of consciousness has made no difference to anything which has occurred on the surface of the globe; we are, in Huxley's langrage, what Descartes thought the lower animals to be, conscions antomata; and the laws of matter and motion would of themselves have sufficed (if we may borrow an illustration from Profeseor James ${ }^{1}$) to produce the manuscript of Shakeapeare's works-and indeed every edition of them-though Shakeepeare had been no more than a lump of matter as devoid of thought and feeling as the pen be wrote with, or the antomaton of Vaucanson.

Such a conclusion is undoubtedly paradoxical, bat paradox does not by itself constitate a refutation. It is, however, impossible to accomnt on physical principles for the facts of consoiousness. They cannot be physical procesees; and a mechanical theory demands not only that a physical event should depand only on physical conditions, bat that physical conditions should determine only a phyrical reault. Mass and energy are to remain constant in amount, but to undergo redistribation in accordance with certain lawe, which can be expressed
' Principles of Poychology, i. 182.
in a mathematical formula enabling us to calculate the precise degree of change in one direction that will be involved in a given degree of change in another direction. ${ }^{1}$ In these redistribations there is no room for knowledge or feeling among the 'forms of energy'; for mechanical conditions are to have their complete mechanical equivalent, in terms of matter and of motion, potential or actual. Thne to a physical theory of the world conscioumem remains unsccountable; such a theory therefore cannot be complete or final.

Now philosophy suggests that in the last resort, instend of explaining consciousnese in terms of phynical law, we ahall have to $s e e$ in phyrical law a manifestation of intelligence. The whole material order is an objeot of apprehension; therein, however, it stande related to minds that apprehend it ; it and they together form the complete reality, or ree completa; and they cannot be understood except together. There is, however, another paradox here; for what understands is mind, and so one term in this relation has to understand both itself and the other term.

It is not our business to discuss here this ventral metaphyrical problem. But we are concerned with the conception of an unconditional law; and a self-evident principle mast be unconditional. With regard to the claims of physical science to have discovered principlea really unconditional we must therefore either aay that they are not eelf-evident, or admit that they are unconditional.

If we adopt the latter alternative, then we shall hold that whatever tranformation our view of the material order may undergo, yet the interconnexions of evente within it, the connerions of canse and effect there trased, will as it were be taken over en bloc, unbroken and undistorted, by any interpretation of the universe which takes knowledge as well as ita objects, mind as well as matter, into account. A moring body may be something else than a moving body; but its motion will for ever appear determined in accordance with physical lawe. If, however, we adopt the former alternative, the principles of physical science may not be unconditional.

Now we are perhape sometimes too hasty in supposing that we see the neceseary truth of physical principles. The specolations of men of ecience themselves have lately called in question the doctrines

[^164]of the conservation of energy and of mass; ${ }^{2}$ though doubtless without questioning the poseibility of getting some physical formula that will be unconditionally true. It might le said that in the first law of motion it is eelf-evident indeed that a body will persist in its state of rest or uniform rectilinear motion until something interferes with it, bat not that interference can only come from another body; that the mathematical reasoning in physical acience is necessary, but not the physical principlea which aupply the data to which mathematical reaconing is applied; and that the doctrine that a body can only be interfered with by another body is one of these. If these physical principles are only conditionally true, the same will hold of their resulis; and changee may occur in the material order not accountable in terms of physical conditions, and not conformable to physical 'lawe'. Nevertheless, because these physical 'laws' are not unconditional, there is nothing even so that conflicts with the Uniformity of Nature.

We need not here determine which of these alternative positions to take. But it must be pointed out with regard to the latter, that if physical laws are conditional in the way suggested, there is an important difference between them, and the conditional principles with which we are already acquainted. For in the case of a conditional principle like the non-heritability of acquired characters, we conceive that the laws on which it depends might be found, and would be in eodem genere with the principle iteelf; i. e. the principle stated with the conditions to ite trath (and stated then in a form unconditionally true) would be derivative in an intelligible way from principles more general, but from principles that bold like itself of what is material. On the other hand, if the fundamental physical laws are only conditionally true, yet it is impossible to derive them from phyrical principlee more general than themselves; and so the kind of explanation which is possible of other conditional principles (when their conditions are taken into account) from principles of the same sort with themselves, whereof they are really but examples, is here precluded. Supposing that there are, if we may eo put it, epiritual conditions apon which the movements of bodies in the last resort depend, and under some of these the first law of motion holds good, and not ander others, then phyaical science at any rate cannot deal with those conditions.

[^165]For this reason, physical ecience will ignore this alternstive. If the non-mecbanical conditions upon which physical changes depend (sopposing that such there are) cannot be secertained and formulated in a way which enables physical ecience to take account of them, it will treat them as non-existent. It is of no use to regard a fector, whose mode of action is onsecertainable. It mast remain for science -what the will is upon one theory of human freedom-a soarce of parely incalculable and to it irrational interference. But irrational interference is just what cannot be supposed to occur. No doabt an interference which admits of explanation according to law is not irrational; but if the law is unascertainable, it is as good as irrational. And this attitude of physical science has the practical justification, that if eventa are onceadmitted to occur in the material order whoee conditions are anascertainable within that order, there is no point at which we can draw the line. Only by amoming that it can explain everything is it possible to find out how mach it can explain in physical terms.
What bae been maintained then is this:-It is part of the conception of Cause to act uniformly : and so far, the Universality of Cansation and the Uniformity of Nature are the eame thing. But it consista with the Uniformity of Nature that many principles which we use to explain events should be only conditionally true; these admit of exception; but no unconditional principle admits of exception. If a principle is self-evident, it must be unconditional ; and the fandamental principles of physical science are commonly treated as anconditional. On the other hand, there is much in the world not explicable from principles of physical science. But if any of them are self-evident, what follows from them must be retained, and not contradicted, in any complete explanation which takes into account what physical science leaves on one side. And if the principles of physical science are only conditionally true, yet eo far as the conditions under which they do and do not hold good are unascertainable, physical science may fairly treat these conditions as non-existent.

After these explanations and qualifications we may aay indifferently that the inductive sciences presuppose the Law of Universal Cansation or the Uniformity of Nature. But as it has been held by eome to be the taak of induction to prove this principle ${ }^{1}$, ${ }^{\prime}$ Cf., e. g., Mill, Logic, III. xxi.
it may be worth while to show that that is impossible. It is alleged upon the view now to be considered that our experience of the great extent to which like antecedents have like consequents is the ground upon which we believe that this is universally the case. Against this we may point out in the first place, that such an inference rssumes the course of eventa in one time and place to be a gride to their course in other times and places: which is really the very principle that is to be proved. As Lotze has arged, if a reason can be given for the inference, it rests on some previous aspumption; and if no resson can be given for it, what is its force? ${ }^{1}$ Next, it is to be noted that two very different kinds of argument are confused. It is supposed that to infer the uniformity of nature from the observed succession of like consequents apon like antecedents is an argument of the same lind as to infer an universal connexion between two events a and x from the frequency with which one has been ancceeded by the other. This, however, is not the case. We infer under such circumstances an universal connexion between a and ε, because upon the assumption that there is some set of conditions upon which every change follows nniformly, it the only thing consistent with the facts of our experience in the case of ∞ to sappose the conditions to be a. Upon the assumption that there is some set of conditions upon which every change follows uniformly, the uniformity in general has not got to be inferred; while, if that assumption is to be made in neither case, an universal connerion between a and x could not have been inferred. There is therefore no parity between the two argumenta. That may indeed be soen if we attempt to put them into symbolic form. In the one case we reason that because a has in many instances been followed by a, therefore the connexion $a-\infty$ is universal. In the other wo reason that becanse a has in many instances been followed by a, and b by y, and so forth, therefore there is eomething by which every other event, such as p, q, or r, will be uniformly followed. Again, the uniformities which are said to be the empirical besis of our generalization are not really matter of direct experience. We have said above, that the particular connexions which we believe to provail in nature have been inferred with the belp of the assumption that all changes occur in accordance with laws. But if any one likee to queation this, he must at any rate agree that moot of the
${ }^{1}$ Mefaphyoic, Introd. § V .
uniformities in which we believe have been inferred somehow : very little has come directly under our observation. We believe that winds are caused by differences of atmospheric preasure : thee differences of atmoepheric preeaure are themselves inferred rather than observed; but waiving that, for what proportion of winds have they been noted? We believe the sound of the notes of a piano to be caused by the atriking of strings : for what proportion of the notes which we have heard have we first seen the strings struck by the bammer? It is needless to multiply such examples: but when it is alleged that we are justified in inferring the uniformity of nature to hold good universally because we have direct experience of it over vastly the larger portion of the field, it is important to point out that our direct experience of it is singularly small, and that the vastly greater proportion of what we believe ourselves to have ascertained is matter not of experience but of inference. Now we may offer the empiricist his choice. If this inference is made by the help of the assumption of the aniformity of nature, its results cannot be used to prove that assumption. If it is made without that help, by his own admiseion it falls to the ground, for the inference of any particular uniformity is cupposed to need that assumption; and so he is not left with experience sufficient to justify his generalization. We may present the argument against his poaition in yet one more light. The easence of his contantion is, that we must come to the facts of experience without any preconceptions; we must have no antecedent view of what is conceivable or poseible. For all that we can tell to the contrary antil experience has instructed us, anything whatever is possible; and if it occurred with sufficient frequency, anything would be conceivable. Now, it will be admitted that if there are a number of independent alternatives all equally possible, an event that is inconsistent with only one of them leaves us quite unable to decide between the rest. But if, as the empiricist insista, all things are antecedently equally possible, then sll proportions of regularity to irregularity in the world are equally possible antecedently. All evente may oceur in accordance with uniform principles: or there may be no event which ever has the same consequent twice; and between these two extremes an infinity of alternatives may be conceived, among which we cannot select except upon the evidence of experience. The extent to which regularity, or uniformity, prevails may therefore be limited in any
conceivable way, whether as regards place, or time, or subject. There is no reason why the succession of like consequents upon like antecedents, while exemplified at other times and pleces, should not fail in the hitherto unexplored parts of Central Asis, or on all Fridays subeequent to the Friday in next week. Nothing less than this is involved in the refusal to prejudge experience. But if that is so, experience itself can never enable us to prejudge. For why should any degree of aniformity observed till now in the succession of evente induce us to expect such aniformity to continue? It was antecedently as possible that such uniformity should continue till today, and then terminate, an that it should continue till to-day and atill continue. The fact that it bas continued till to-day has disproved what until to-dey was a possible hypothesis, viz. that it might terminate sooner; but between ite terminating to-day, and still continuing-two independent and antecedently equally probable alteraatives with which that fact is equally consistent-it does not in the least enable us to decide. This argament will hold good, at whatever point in the series of time to-day may fall; so that we never get any nearer being able to infer a degree of uniformity which goes beyond what hes been actually observed. It aeems conclusive therefore against the view that the Uniformity of Nature can be an induction from experience, if by the term induction any legitimate process of inference is understood. ${ }^{1}$

[^166]With what right then do we assume it? The answer to this has been given in discussing what we mean by it. To deny it is to resolve the universe into items that have no intelligible connexion. If the universe and the events in it form a systematic whole, then any change must be determined by something in the nature of that whole; and for the same change to occur on different occasions except under the same conditions is not consistent with its having a determinate nature. It is not, of course, denied that changes partially the same may occur under conditions partially different; and the task of disentangling the identities in what is partially different is one of the tagks of the inductive sciences; but oeferis paribus-s proviso about which it is very difficult for us to know in individual cases how far it is fulfilled-the same conditions must produce the same effect, and the same effect must have been due to the same conditions. The universe is otherwise anintalligible or irrational. If any one likes to accept that alternative, it may be impossible to remeon him out of it; for he has disallowed at the outeet the appeal to reseon. At least let him not maintain that, while the alternative is conceivable, experience proves that it is not the case. ${ }^{\text {. }}$
that they should occur with the same apecified degree of regularity down to the end of the year 2001 A.D., and thence with leas or none or other, is another such issue. And theo inues are perfectly detached alternatives a prioni. Let them be called X and Y.
5. The empirical obeervation of that apecified degree of regularity down to the end of 2000 A.D. is equally consistent with the bypothesia that X, or that Y, expreases the truth. Therefore it afforde no ground for deciding between them.
6. It would therefore be equally likely at the end of 2000 A.D. that the oventa should thenceforward exhibit none or lese of the regularity that they hed bitherto exbibited, or conform to quite different rules, an thet they should continue to exhibit the mane regularity even for a year longer.
7. The dividing date might be taken anywhere; and one might take equally a dividing place, or department of fact.
8. Hence the actual issue never afforde any ground for preferring the hypotheain of a continuance of the obeerved regalarities to any hypothecis of their discontinusace, complete or partial, with or without the subetitation of other regularities, in any period, region, or department of fact, in which they have not been empirically varified.
${ }^{1}$ In spearing of caumality in the present chapter, prominence han throughout been given to the conditions which determine ouccessive erents. But eo far es ecientific explanation appeals to principles of inferaction, it regards a thing as determined by what is contemporaneous with it and not by what is entecedent. Moreover, if the whole sariee of eventa in time can be
regarded an an expreseion of the activity of that which is in come way exempt from aubjection to mucceasion, then what appears in time as future may have to be taken into socount in giving a reason for the pretert and the pent, though of courne the future cannot detarmine the present in the ame why an what precedes it does. The present chapter is porhapa already more than sufficiently metaphysical. But it is important to realice that the ground of onr beliof in the Lgw of Caustion has nothing to do with succension. It reats rather on the perception that a thing muot be iteelf. If it is the nature of one thing to produce a change in snother, it will almay produce that change in that other thing; just as, if it is the nature of a triangle to be half the ares of the rectangle on the aame bees and between the esme perallala, it will always be half that area. And modern soience largely eliminates the relation of anccession from its otatement of scientiflc lsws.

CHAPTER XX

OF THE RULES BY WHICH TO JUDGE OF CAUSES AND EFFECTS

Ws sam in the last chapter that all inference from experience rested on our belief in wniversal connexions in nature. If there are no circumstances material to the occurrence of a landslip, it would be foolish to expect that any examination of the circomstances under which lendslips bave been found to occur would enable us to determine under what circumstances they will occur in the future. But if such oniversal connexions do exist, the examination may belp us to detect them; and if we can detect tham, we ipso facto generalize.

Our problem then is how to detect them; and indeed the discovery of causes is the popular conception of the taak of an inductive science. But cause is a relation ${ }^{2}$; and how are we to determine what stands to what in that relation? The relation iteelf cannot be perceived. Events as they occur by no means display to obeervation the lines of causation that connect them. What we call the puerile fancies of the savage mind, which thinks that the incantations of a medicine man will produce rain, or the glance of a witch wither the crope-or at a latar atage of civilization, that walking under a ledder, or overtarning the salt, will bring disesterthese would never have arisen, if you could obeerve with what effect such incidents are connected, as you can obeerve that the medicine man is gesticalating, or the salt lying on the table. We may $/$ obeerve the eventa, bat never their connexions; theee can be ouly indirectly aocertained by considering whether the events occur as they should if they were connected.

It is here comes in the working importance of the uniformity which is involved in the conception of a causal relation. All manner of eventa are occurring simultanconaly at every moment;

[^167]and the events of one moment, taken in the lump, must be the causes of those at the next. ${ }^{1}$ But which is the caves of which, the single experience of their ruccesaion will not determine. A man may run for an hour round his garden on a frosty night, and when he wakes up next morning may notice that his legs are atiff, and the dahlias in his garden blackened. If he had really no other experience of such events than in this succession, he might equally well conclude that the froat had made him stiff and his running blackened the dahlias, as vice verse. But it is involved in the causal relation that if two thinge are really canse and effect, the one never occurs withont the other; and hence by comparison of that experience with others, be might conclude that running round the garden did not blacken dahlias, because at another time they had not gone black after he had been running round it; and that frosty nights did not make his legs stiff in the morning, because he had waked up aftor another frosty night without any stifiness in them. So far he would only bave disproved the connexions to which his mind at first had jumped. To prove that frost does blecken dablias, and that it was the running that made his legs stiff, is a more difficult matter; for the mere fact that one has been followed by the other many times constitutee no proof. Yet the repotition of the same event under different circumstances is constantly narrowing the feld of poseibilities; for no two events can be precisely cause and effect, of which one in any case oecurs without the other; so that if we can show that out of all the circamstances under which the bleckeaing of dahlins has been observed to occur, a frost is the only one that has not aleo on another oecasion either occurred without such an offect befalling the dahlias, or failed to cocur when it has befallen them, we may conclude that there is nothing except the frost to which their blackening can be attributed.

[^168]In this example we find the simple principle apon which the ressoning of induction resta: though the successful prosecation of inductive science requires very much besides such reasoning. The cause of any phenomenon ${ }^{1}$-in the strictest eense of that relationis molated to it, an to occur whenever the phenomenon occurs, and never when it doen not; and to vary or be constant as the phenomenon varies or is constant, when susceptible of variations in quantity or degree. From this it does not follow that becanse in a limited number of instances some two particular phenomena a and s have been obeerved to be present and abeent, to vary and be constant together, they are related ac cause and effect; since there may be another phenomenon b which also astisfies the conditions, and it is impoesible so far to tell whether a or b or the combination of thom is the canse of a. But it doee follow that nothing is the cause of w which fails to sentisfy the conditions; and it is apon that consideration that all discovery of canses from experionce rests. In eaying this we do isdeed but repeat what was said in reference to the 'New Induction' of Becon.

Thus inductive ressoning rests upon the definition of Cause ${ }^{2}$; for unlese we know what causal relation is, we cannot know that certain phenomens do not stand to each other in that relation. And from the definition of Cause proceed what may be called Topics of Cause, or rules whereby to judge whetber two phenomena are thus related to each other or not: just as from the definition of Property proceeded what Aristotle called Topics of Property, or rules whereby to judge whether a given predicate was or whs not a proprime of a given subject. But you can only prove that they are related as cause snd effect by proving that there is nothing else with which either of them can be causally connected.
J. S. Mill formulated four 'Methods of Experimental Enquiry',

[^169]or tes he also called them, ' Inductive (or 'Experimental') Methods,' to which he attached considerable importance in his System of Logic. ${ }^{1}$ He called them the Method of Agreement, the Method of Difference, the Method of Residues, and the Method of Concomitant Variations. Among other defects of his exposition, there is one that darkens in e special degree the aubject of induction.

We shall be able to appreciate the nature of this defect if we realize that the essence of inductive reasoning lies in the use of your facts to disprove erroneous theories of cansal connexion. It is, an Mill bimself aeserts, a process of elimination. ${ }^{\text {a }}$ The facts will never show directly that a is the cause of a; you can only draw that conclusion, if they ahow that mothing else is. In order to show that nothing else is, it is of course in the first place necessary that you should know what other circumstances there are among which the cause might be eought; you cannot 'single out from among the circumstances which precede or follow a phenomenon those with which it is really connected by an invariable law' (to borrow an excellent phrase of Mill's ${ }^{3}$) unless you have ascertained what circumstances do precede or follow it on divers occasions. But as to do that is no part of the inductive reasoning which we are now considering, we may for the present neglect it, or aesume it to have been done. The important thing to notice here is, that you do not discover what is the cause, except by eliminating the alternatives. Yet it is very often impossible to do this completely; nevertheless the nature of your reasoning is precisely the same, when you are left with the conclusion that the cause is either a or b or c, as if you had been able to eliminate b and c aleo, and so determine that the cause is a. Moreover, it makes no difference to the nature of your reseoning, as a process of advancing to the proof of the canse by the diaproof of the alternatives, what the principle is to which you appeel in order to disprove them. You know that nothing is the cause of a which does not satisfy certain conditions-which is not present whenever x occurs and abeent when it does not, which does not vary or remain constant as \boldsymbol{e} doee er. It is sufficient to be able to show that one of these conditions is not eatisfied by a given circumstance p, in order to conclude that p is not the cause of α; and which condition it is does not mattor in the least. It is unlikely that in any particular

[^170]investigation every elternative hypothesis which we disprove as to the cause of the phenomenon that we are atudying will be rejected because it fails to astiafy the same one of these conditions; the facts of our experience will probably show us one occurring where the phenomenon is abeent, and the phenomenon occurring in the absence of another, a third unaffected in quantity or degree through all the variations of the phenomenon, and so on. All that is essential to the progress of our enquiry is that we should be able to show some fact inconsistent with supposing such and sach an alternative to be the cause; then that alternative is eliminated, and the cause must lie among the rest.

The essence, then, of these inductive enquiries is the process of elimination. The reasoning is disjunctive. And the chancter of the reasoning is unaffected either by the completeness of the elimination (i.e. the fact that there are no allernatives left in the conclusion) or by the ground of elimination used. Yet Mill has so formulated his 'Methods' as to make it appear (a) that they are only used when the eliminstion is complete; (b) that they are different when the ground of elimination is different. From this it follows that very few indactive reasonings really conform to any of them; but the credit which this part of his work has obtained, and still more the currency given to the names of bis ' Methods', in which his doctrine is enshrined, threaten us with a repetition of the same sort of mischief as arose from supposing that every argument could be put into the form of a syllogism. Just as arguments not syllogistic at all were forcibly tortured into the appearance of it, to the deatruction of any proper understanding of what syllogism really is, and how it differs from other forms of reasoning, so inductive arguments are now often forced into a peeudo-conformity with the cenon of one of these 'Methods', to the utter confusion of the mind. For in the procese, we are made to allege that some circumatance is (say) the only one in which a number of instances of a particular phenomenon agree, in order to conclude in accordance with the canon of the 'Method of Agreement' that it is therefore the cause of the phenomenon, when we know perfectly well that it is not the only such circumstance; and as we know that it is not by such assumptions that we really conclude that circumetance to be the cause, we are only confused by a Logic which makes it appear that it is.

There are passages in Mill's work (\mathbf{s} is often the case with him) which implioitly correct his own error. In spesking of what he calls the 'Method of Agreement', be writes: 'The mode of discovering and proving lawe of natare, which we have now examined, proceeds on the following axiom. Whatever circumstance can be excluded, withoat prejudice to the phenomenon, or can be absent notwithstanding its presence, is not connected with it in the way of causation. The casual circumstances being thus eliminated, if only one remains, that one is the canse which we are in search of : if more than one, they either are, or contain among them, the cause; and so, mulatis mutandis, of the effect.' ${ }^{1}$ It is plain from this that I am not the less ressoning in mocordance with this method, because I am only able to say in the conclusion that the cause of the phenomenon is one or other of several alternatives, than if I were able to offer a definite solution. Yet this is quite ignored in what immedintely follows: 'As this method proceeds by comparing different instancen to ascertain in what they agree, I have termed it the Method of Agreement; and we may adopt 28 its regulating principle the following canon,' which Mill proceeds to enunciate thas :-
-If two or more indlances of the phenomemon suder investigation have only one circumatance in common, the circumstance in which alone all the instances agree is the oamse (or effect) of the given phonomenon.'

Every one who has tried knows how difficult it is to find cases to which this canon can be applied; for it is seldom that your instances have only one circamatance in common. Where such instances are forthcoming, they are peculiarly instructive to the inventigator; and therefore Becon placed them first in his list of Prerogative lnetances (i.e. instances to be conaralted first), under the name of Instentiae Solitariae: Bat what if your inatances have sseveral circumstances in common? Are they, therefore, useleas to the inventigator? Throughout the organic world it is observed that epecies present a number of adaptive stractares-that is, structures fitting them for the conditions under which they have to live. To the queation how this has come about several answers
${ }^{2}$ Logic, III. viii. 1 ad fn.
? Noo. Org. II. 22, where ingtances aneh as are required by Mill's Method of Agreement and by his Method of Difference are described ander this name. And this is the proper wry to treat them-not an inatances the use of which constitutes a distinct method of indactive reseoning.
have been auggested; one, the oldest, attributed them to special design on the part of the Creator: another to the inherited effects of use and disuse: another to the survival of those individaale who happened to be born with a body more saited in any respect than their neighbours' to the conditions of their life, combined with the elimination of the less fit. Now if it is pointed out thst some adaptive structures, like the horny back of a tortoise or the shell of a mollusc, cannot be improved by nee as a muecle can, one of these suggestions is overthrown, at least as a complete solution of the problem; but it remains doubtful so far whether we are to refer the structures in question to design or to natural selection: yet we have certainly made some way in our enquiry, and this argument is part of our inductive ressoning. Mill's canon, however, is inapplicable to such a case as that, because the tortoine with his horay back, and the elephant with bis powerful trunk for eeizing branches, though both possessing adaptive structuree, which may in both have been developed by natural selection, are not instances with only one circumstance in common. It is excellent advice to see in what the instances of your phenomenon agree; but the ground of the advice is that you may eliminate the circumstances in which they differ; and the principle at the foundation of the - Method of Agreement' is not that ' the sole invariable antecedent of a phenomenon is probably its cause ',' for the ' Method' is often employed when there is no sole invariable antecedent; it is that nothing is the cause of the phenomezon in the absence of which it ocewr.

Again, so obvious is the difficulty of finding sach instances as the application of this ' First Canon' requires, or such as the second, that of the 'Method of Difference', requires, that Mill, having begun by mentioning four methods (of Agreement, of Difference, of Residues, and of Concomitant Variations), adds a fifth, which he calls the Joint Method of Agreement and Difference. In order to apply the ' Method of Difference', you are to find an instance in which the phenomenon under invertigation cocurs, and another in which it does not, agreeing in every circamstance except one, which last circomatance is to occar only in the former; and that will be the cause (or effect) or an indispensable part of the cause of the phenomenon. Such instances as theee may aloo not be forthooming; and therefore, under the name of the Joint Method, Mill describes the

1 Jevong, Elomentary Lranone, p. 211 (1880).
case in which you look for a circumstance about which it can be asid that it is the only one that is neither absent in any inatance where the phenomenon occurs, nor present in any where it does not. ${ }^{1}$ Here then both grounde of elimination are employed; but there is no reason in the world; as a stady of his sccount of his Methods would show, why he should not have had another Joint Method, of Difference and Concomitant Varistions, or of Agreement and Residues, and so forth. An enquiry into the canse of one phenomenon need not confine itself throughout to one ground of elimination.

For the above reacons it would be well to recognize that Mill has not formalated four (or five) but one ' Method of Experimental Enquiry'-as indeed Bacon might have shown him; of which the essence is, that you eatablish a particular bypothesis about the cause of a phenomenon, by showing that, consistently with the nature of the relation of cause and effect, the facte do not permit you to regard it as the effect of anything else (and mutatis ambandis if you are enquiring into the effect of anything). It is this which makes the reasoning merely inductive. If you could show in accordence with known or socepted scientific principles that the alleged canse was of a nature to produce the effect ascribed to it, your reasoning would be deductive; leaving aside the question how those scientific principles were ascertained, you would be applying them to produce a conclusion which you see to be involved in their trath; and if we suppose the principles to be of such a nature that we can see they must be true, then the conclusion will appear necessary, and a thing that could not conceivably be otherwise.

[^171]Thke, for example, the maxim that men hate those who have conferred a benefit on them. ${ }^{1}$ We may regard that as, in the first place, an induction formed from the consideration of many instancee of ill will, which are unaccountable otherwise then on that priaciple; yet so far it remains a thing obscure and unintelligible, a relation which the facts forbid us to dispute, but in which we nee no necessity. Now if a man were to aay that men hate to feel themselvea in a position of inferiority, and that they do feel themselvea in a position of inferiority to thoee from whom they have received a benefit, the maxim follows deductively; and these principles are not only, like the original maxim, capable of being indactively supported by an appeal to experience, but they are also intelligible to as in a way in which that was not; it is mercifully untrue to eay that they appear neceseary, but they do appear more or les natural. Where, however, we have to rely parely on induction, there is none of this ' naturalness': I stand on my conclusion because ' I can no other', and not because I see any intrinsic acecssity for it. Necesity there is, if I am right sbout my facts, and am to reason in this cave consistently with what I know to be involved in the causal relation; but that necessity is not intrinsic; had the facts been otherwise, and for all I can see they might have been, I should have concluded otherwise; and then I should have been just as content to accept that as I now am to eccept this conclusion.

There is an enormons number of general propositions, which we accept for no better reason than that the facte are inconsiatent with our denying them, and not because in themselves they have anything which could bave led us to suppose them true, antecedently to our experience. When it is said that we ought alwaye to follow experience, it is meant that we ought not to truat our notions of what seems antecedently fit to be true, or mere greeses as to the connexions that subeist in nature, bat accept only thofe connexions which our experience forces us to accept because it is inconsistent with any alternative. Such ressoning is called a posteriori, becunse it starts from the faots, which are conceived as logically dopendent on, or posterior to, their principles, and thence infere the pribciples on which they are dependent. Conversely, deductive remoning is

[^172]often called a priori, because it starts from the principles or conditions, which are conceived as logically prior to the consequences that follow from them. ${ }^{1}$ When a priori reasoning is condemned, it is not meant that we are never to reason deductively, but only that we are not to reason from principles that are not warranted by experience; at any rate this is the only sense in which the condemnation can be justified. But it is an error to suppose that all general principles are arrived at a pastoriori, or by proces merely of showing that facts are not consistent with any other; the Law of the Uniformity of Nature itself, as we have seen, is not arrived at in that way, since if we once doubt it, it is imposeible to show that the facta are any more inconsistent with its falaity than with its truth; neither are mathematical principles so arrived at : we do not believe that three times three is nine, because we show succeesively that it is not five or ten or any other number except nine. Still it is true that in the inductive sciences the vast majority of our generalizations are reached either in this a posteriori manner, or by the help of deduction from other generalizations so reached. And it may be well to show by one or two examples bow generalizations that rest merely on induction preeent as it were a blenk wall to our intelligence, as something at which we cannot belp arriving, bat which we can in no way see through or make intrinsically planible. Facts show that the excision of the thyroid gland dulls the intelligence: could any one see that this muat be so ? Explanation may show that on a contribution which the gland, when properly functioning, makee to the circulating blood depends the health of the brin; but that comes later than the discovery of the effects of exciaion; and even eo, can we understand the connexion, which facts establiah, between the state of the mind and the health of the brain? Or take a thing more frequent and familisr. It sounds perhape the most nstural thing in the world, that we should see with our eyes, hear with our cars, taste with our palate, and so forth. Yet for all that we can see a priori, it might just as well have been the case that we should see with our cars and hear with our ayea, smell with our palate and taste with our

[^173]fingers. Doubtless if we teated with our fingers, we shoold not have to eat in order to taste; there might be some advantages in that, and at any rate it is not antecedently inconceivable. It may be said that the mechanism of the eye, by which light is focased from many pointa at onoe upon the extended surfice of the retina, and the ege is readily turned in any direction, makes it a priori a more suitable organ of sight than the ear could be; and it is true that upon the assumptions that light-sensations are produced by the stimulation of a nerve, that this stimalation is supplied by weve-motions in the ether, that distinguishable colours are produced by differences in the wave-length, and that the arrangement of these colours in the virual field corresponds to that of the serve-fibres appropriately stimulated in the retins, we can find in the eye an excellent srrangement for securing clear vision. There is nothing, however, in those assumptions (which have only been proved inductively) that is any more intelligible to us than if the wave-motions of the ether stimulated the fibres of the ear; though doubtless our vision would be leas serviceable in the latter case. There is in fact no paycho-physical correspondence that is at present intelligible to us, although particular correspondences may be intelligible in the sense of conforming to more general principles which we have found to prevail. The aame may be said with regard to the properties of chemical compounds, which are not for the most part intelligible from a consideration of the properties of their elements; bence in saying that they depend upon the composition of the subatance we rely merely upon this, that no other view consiste with the facts which we have observed in our experimente. The largeness of these two classes of inductive generalizations may perhaps make it unnecessary to illustrate further what Broon would call the 'sand and positive ${ }^{1 \text { ' }}$ character of conclusions resting only on induction; but, as showing how the mind desiderates something better, we may notice the attempt continuously made to conceive chemical as at bottom only physical proceses. In the physical process, the successive stagen do to some extent at least appear to follow necesarily one out of another ; on their mathematical side, the principles that connect them are not mere matter of fact, but matter of necessity which we cannot conceive otherwise. Hence the attraction of

[^174]reducing chemical processes to physical terms. It is true that the appearance of new sensible properties in bodies in virtue of their physico-chemical composition is not hereby explained; but it is supposed that they only poseem these for we: that the appesinnce is subjective, or in other words that while the proceseses in bodies themselves are puraly physical, we are determined to receive qualitatively different sensations by different phyuical stimuli. There is not much proepect at prewent of rendering paycho-physical correopondences really intalligible; thus there is a temptation to regard the emergence in a chemical compound of properties which cannot be seen to have any neocesary connexion with the properties of its elements as only subjective, a freah case of that paychophysical correspondence which we admit that we can only escertain and not anderstand: in order that we may if poosible find in the principles of chemistry itaelf something intalligible, and not merely neceseary to be admitted. The gain is more apparent than real; but the procedure betrays a rense that though it may leed us far and win us much, induction tarns ont at leat to be the blind alley of the reacon.

We must return, however, from theee general considerations upon the natare of induction to the particular inductive reesoning which rests upon our knowledge of the requirements of the causal relation. By and by we ahall find that reasoning which is really inductive enters into processes of a more complax and partially deductive kind. What we are at present considering is in principle quite simple. The cause of a phenomenon ${ }^{1}$ is to be sought among thowe circomstancee under which it oocors in the instances that we take. The causeal circumstances are indicated by a process of exhaustive elimination. Those which are not causal can be eliminated because the facta show that in regard to this phenomenon they do not satiofy the conditions of a canse. Now the grounds on which we may eliminate are these; and each points to some particular requirement of the causal relation, failure to antiafy which disproves that relation as between two given phenomens:

1. Nothing is the cause of a phenomenon in the abeence of which it nevertheless occurs.
${ }^{1}$ Or mutatis mutandis the effect. I nhall not complicate the exposition by alwaye edding this.
2. Nothing is the canse of a phenomenon in the presence of which it nevertheless fails to occur.
3. Nothing is the cause of a phenomenon which varies when it is constant, or is constant when it varies, or varies in no proportionate manner with it.
To these may be added a fourth ground :
4. Nothing is the cause of one phenomenon which is known to be the canse of a different phenomenon.
This lest principle is also, like the others, involved in the general conception of a reciprocal causal relation; but in applying it we appeal not merely to what we observe in the instances of the phenomenon under invertigation, or in the instances where under more or less similar circumstances the phenomenon does not occur; we appeal aloo to previous generalizations regarding the connexion of phenomens. These generalizations, however, are used not to account for the connexion which we are now establiahing-it is not deduced from them; but merely to exclude alternative explanations of the present phenomenon, and so force un upon the one which we finally aceept; and so far the ressoning which appeals to such a ground of elimination is still inductive. ${ }^{1}$ But it belongs especially

[^175]to the later stages of a acience, becanse it presupposes the discovery of other causal connexions, as a means of prosecuting some present enquiry.

It is plain that we cannot get to work in the application of these principles, until we have clearly conceived the phenomenon we are stadying, and ascertained and distinguiabed the circumstances ander which it occurs (or fails to oceur) from one another. And if all this were done, their application would be an easy matter, as Bacon imagined he could make it. All symbolic representation of such inductive argoments by letters of the alphabet, where one letter stands for the phenomenon investigated, and others for the circumstances among which its cause is sought, presume these tasks to have been achieved; and thus they are apt to convey a totally false impression of the degree of difficulty attaching to inductive enquiries ${ }^{1}$ The truth is, that inductive reasonimg is in form very

Treatise, Of the Understanding (already, like this chapter in Lotse, referred to), gives a number of Rules by which to jodge of Causes and Effects which are derivative, but highly important, as for example that " where several different objecte produce the same effect, it must be by means of some quality, which we diacover to be common amongst them:. But thoes in the text reem to be really the ultimate principles, if a reciprocating cause is meant.
${ }^{1}$ On the artificial simplification which letters of the alphabet aloo imply, cf. Venn's Empirical Logic, c. xvii. pp. 406, 407. If they are to be used at all, to which I 200 no objection m long as their limitations are onderstood, it is important how we use them. In Mill's use of them, which has been followed by Jevons, Elementary Lessons in Logic, and by Fowler, Inductive Logic, and I dare ay by others, there are two defecte. He usea big letters to symbolise 'antecedents', or causes, and the correaponding small letters to aymbolise 'consequents' or effecta. Now in the first place he has thua alwaya an equal number of big and amall letters; but when wo are looking for the canse of some phenomenon x, and neok it among a number of alterns. tives a b c d. . . . We have not almo before ne effecta as many as the alternatives among which the cance of this phenomenon is sought. Only in ajmbolixing his 'Method of Readues' is this festare sppropriste; there certain cireumstancee collectively are supposed to be known to be the cause of a number of offects (or of an offect of a certain quantity or degree), and out of theee we reject, at not the canse of one among the effecta, those which we know to produce the others (or if the question is one of quantity or degree, we reject those whose total effect we know to differ from what we have to eccount for, at not eccounting for the remaining component). Hence eeparate symbole for the effects (or components of the effect) of the Thions circumstances among which the cause of one effect (or component) in sought, as well as separate symbole for the cansea, are required. The eccond objection is, that he uses corresponding big and amall letters ($\boldsymbol{A} \boldsymbol{B} C$ followed by a b c, \&c.). Now, as Mr. F. H. Bradley points out (Principlas of Logic, p. 899, note ${ }^{*}$), the lotters are intended to symbolize the phenomens as presented to us before we spply our inductive canons; and therefore they ought not to imply, se by this correspondence they do, that the phanomena themselves, at diatinct from the facts of their joint or soparate occurrence,
simple; bat the discovery of the proper premisees is very hard. As Home well obeerves of the rales he gives 'by which to judge of canses and effects', 'All the rales of this nature are very easy in their invention, bat extremely difficalt in their application.' ${ }^{1}$ It is easy enough to see that if out of eo many alternatives abcd...s, the cause of a is not $b \circ d \ldots$ or z, it mant be a; and it is easy enough to see that if c occurs without x, it is not its canse. But to show that c occurs without ε, and to show some reseon for rejecting b d . . . z, as well, and to discover b ed . . . ε, and ahow that no other alternatives are possible-all these things are ertremely difficalt. Something will be said of these operations in the next chapter. Here we are concerned with the form of the reasoning, which is of a digjunctive kind, and may be symbolized thus:-

The canse of x is either a or b or c or $d \ldots$ or z
It is not b or c or $d \ldots$ or z
\therefore It is a.
In this argument the minor premise is proved piecemeal by hypothetical arguments that rest upon one or other of the above grounds of elimination, or 'rules by which to judge of canses and effecte'.

If b were the cause of a, it would be present whenever a is present
But (in this instance) it is not.
If c were the carse of a, it would be absent whenever a is absent
But (in that instance) it is not:
and oo forth. Or if any one prefers it, he may repreeent this part of the argument as a oyllogism :

Nothing is the cause of x, in the absence of which a occurs b is a thing in the absence of which x oceurs
Nothing is the canse of a, which variee without relation to it d variee without relation to c.
It is of course possible that $b c d \ldots z$ may all be eliminated, or shown not to be the canse of a, by the application of the same principlo or major premiss ; in this case the minor of the above diajunctive argament might be proved en bloc, and not piecemeal;
have anything about them that proclaims which is the cause of which. CC. alco Profemor Bomenquet's Logic, II. iv. vol. ii. p. 128.
${ }^{1}$ Treation, Of the Underatanding, loc. cit.
but this is by no means necessary, and in fact unosoal, and does not affect the nature of the argument. It is, however, the only case contemplated in Mill's formalation of inductive reasoning. It is also ponaible (and this Mill's formalation does not recognize at all) that we may not be able to prove the whole of the above minor promiss; and then our argument will take the form

The cause of a is either a or b or c or $d \ldots$ or z
It is not c or $d \ldots$ or z
\therefore It is a or b
or It is not d or z
\therefore It is a or b or $c .$.
where the degree of uncertainty symbolized as remaining at the end of our enquiry is greater.

It appears plainly enough in this analysis how all induction rests on the Uniformity of Nature; for in proving the minor of the disjunctive argument a principle is always appealed to, that would fall to the ground if the Uniformity of Nature were denied. It is not indeed necessary, in a particular inveatigation, to assume this uniformity to extend beyond the department of facts with which we are dealing; if I am looking for the cause of cancer, it is enough that cancer ahould be sabject to oniform conditions in its oceurrence; and I should not be impeded in my research by the fact that thanderstorms oceurred quite capriciously. There is, however, no ground for assuming cancer to be rabject to uniform conditions in ite occurrence which does not apply equally to thunderstorns, or to anytbing else that could be mentioned; if I assume the principle of Uniformity at all, I must logically assume it altogether; and ∞, though I may be anid to appeal to it in any particular inductive argroment only 00 far as concerna the department of nature to which my inveatigation belongs, I really assume it universally. ${ }^{1}$ Neverthelese it is not correct to eay that it is the ultimate major premies of all indactions ${ }^{2}$; for that imfplies that an inductive argument is, formally considered, a ayllogiam, and we have seen that it is not. It is indeed imposaible to see how this principle can be made the major premiss of any inductive argument as a whole, though ite particular applications

[^176]may afford the major premise of an argument by which we prove any part of the minor in our diajunctive argument. Let us any that 'Nature is uniform', or (since we can bardly make a middle term of 'Nsture', which in the sense of nature as a whole is not predicable of any particular subject) that 'All events in nature take place in accordance with uniform laws'; we may then proceed to argue that 'Cancer is an event in nature', and therefore that it takes place in accordance with uniform laws; but we are thus no further advanced than we were at the beginning, since so much is assumed in looking for a cause of it at all. Or if we put our major premiss in the form 'Every relation of canse and effect that is observed in any instance between one phenomenon and another holds good universally', and then used as our minor 'The relation between a and x is a relation of cause and effect between one phenomenon and another observed in certain instances', we might indeed take the formal step of concluding that it holds good universally (though that is already implied in calling it a relation of cause and effect), but the whole question at issue is begged in the rainor premiss; for what we want to prove is just that a is related to a as a cause, snd not in time only and sccidentally. For the formalation of the reasoning by which that is proved-which is the inductive reasoning-nothing therefore has been done. And any other attempt to reduce inductive reasoning to syllogism with the principle of the Uniformity of Nature as altimate major premiss will be found equally unsucceseful.

It remains to illustrate by a few examples the trath of the contention that inductive conclusions are establisbed disjunctively by the disproof of alternatives.

1. The power of the chameleon to change colour in accordance with the colour of its surroundings is well known. But this power is not confined to the chameleon; it occurs, for erample, also in certain froger ${ }^{\text {. }}$ The question mised is as to the cause of this change. We have first indeed to show that the change is due in some way to the colour of the surroundinge; that implies a previous inductive argument; for so long as it was only noticed that the frog changed colour from time to time, it would be quite uncertain with what that change was connected. Of the suggestions
'This axample is taken from Dr. Vornon's Variation in Animals and Piants (Internat. Scient. Series), pp. 255 seq.
that might oceur to a biologist (for we may diaregard anch as might occur to a collector of portenta; Livy gravely records as portents of disaster some facta quite on a par with the statement that 'a frog changed its colour in broed daylight', but it would be easy to show that the phenomenon had occurred at a time of no dieaster)-of the suggeations then that might occur to a biologist we masy conceive the nature of the animal's food to be one: time of day or season of year to be another: intensity of aunlight to be a third, and 80 on; but when it was shown that the frog might variously change ita diet, and be of the me colour, and that the change of colour might take place at any time of the day or year, and in various degrees of cunlight, these anggestions would be discarded, and so on until the only reasonable suggestion left wes that which connected the change of colour with the colour of the surroundings. Of course this conclusion would acquire great strength 80 soon as any one noticed the frog in the process of changing colour upon removal from one groand to another; for thus the alternatives would be confined to those matters in which a change of conditions hed been just then effected. The preliminary induction implied in saying that it changes colour according to the colour of the ground on which it rests need not, however, be further considered; we wish to know more precisely what produces the change. Now differently coloured grounds may vary in temperature as well as in colour; but it can be shown experimentally that the colour-reaction is independent of tempersture. Granting then, in the absence of any other alternative, that it depends on the colour as such, we may ask in what way the differently coloured rays ${ }^{1}$ affect the animal. Lord Lister showed that they affected it through the eyes; for s specimen of Rasa temporaria whoes eyes had been removed was no longer affected by any change in the colour of the surroundings in which it was placed; thus the alternative, otherwise not unreaeonable, is excladed, that the resction is somehow determined through the skin, the principle applied being that no circumstance in the presence of which the phenomenon fails to oceur is its canse. This conclusion is further confirmed by the fact that in other species that normally exhibit a similar colour-reaction individuals have been found, in whom the power of adjustment to the colour
${ }^{1}$ To apeak otrictly, rayi are not differently coloared, but of different wavelengtho.
of their surroundings is aboent, and that these individuale on examination have been accertained to be blind; but it may atill be asked how the otimalation of the eje by different kinds of light effects the colour-change. Perhape there are two alternatives here; it might be necessary for the frog to be aware of the colour of its surroundings, or there might be a reflex mechanism. The latter is supported by the fact that a blinded frog, aftor a violent struggle to eacape, changed from dark to light, bat in half an hour, though pleced in a bright light, became almoot coal-black again. Here it is shown that a colour-resction can take place withort swareness of colour; so that awareness of colour is eliminated from among the conditions necessary to the prodaction of the reaction, on the principle that a circomstance in the absence of which the phenomenon nevertheless occurs is not its canse. We muat look then for some circomstance common to the case of a blind frog changing colour after a violent straggle, and of a normal frog changing colour'with a change of surroundings; and we may find this in nervous axcitation, for that may be produced by the action of light apon the eye, and also by the struggle. Until some other feature common to the two cases was suggested, we ahould sccept this on the principle just cited; but it is also sapported by the known physiological fanction of the nervous syotem in the building up of reflexes ; it consists too with the fact that when the excitement subsided the frog returned to a colour not adapted to its environment. Yet how can the animal's colour be affected by different linds of nervertimulation? There have been found in the skin of the frog pigment granules of divers colours, so arranged that different surface effecte can be produced by different degrees of concentration in the granules. The final connexion of the phenomenon of colour-reaction in the frog with these pigment granules is indeed rather deductive than inductive; for the part which efferent carrents from the nerves play in provoking muscular contractions and relarations is already known, and so in the fact that an afferent nerve-current diecharges into an efferent nerve; and we have just shown that the colour-reaction in connected with afferent nerve-stimulations.
2. Let as take next a cimpler example, and one in which there is little or no generalization : for inductive reasoning may be applied to discover the cause of a single event, ae well as of an event of a certain
kind; and it is not necessary to carry the analysis (of which more in the pext chapter) во far as to make a general conclasion possible. Let a novice notice that his bicycle makee an unpleasant noise in running, and try to ascertain the cause. We are to suppose a novice, because any one of any experience may be presumed already to have arrived by induction at the knowledge that one kind of noise is made in the chain, and another kind in the bearings; and the application of this previously acquired knowledge to a particular case would be deductive. In this problem the determination of the alternatives among which the canse is to be sought is tolerably simple; for the noise mast originate in one or other (or it may be several) of the non-rigid parts. Say that these are, on the machine in question, the axle-bearings of either wheel and of the cranks, the bearings of the head, the pedal-bearings, the clutch, the backpedalling break, and the saddle-springe. All that the rider has to do is to aseertain which of these parts may be at rest while the noise occurs, and which may be in motion without the noise. If the noise censes in freewheeling, it is not produced in the axlebearings of either wheel, for they are still ronning, and that is not the cause, in the presence of which the phenomenon fails to ocour; for the same resson it is not in the bearings of the clutch, which is now running. If it is not produced in 'wobbling' the head, or turning sharp corners, he may acquit the bearings of the head on the same principle. If it occurs in driving with each pedal singly, it does not arise in either pedal-bearings, because it occurs with each pedal in turn undriven, and that is not the cause in the absence of which the phenomenon occars. Similarly if it occors without putting on the back-pedalling break, or when he removes his weight from the saddle, it does not originate in either of those quarters. Two alternative remain : it may be in the crank axle-bearings, or in some looseness of the clutch when that is caught and driving. As between these alternatives a decision might be made it he diamounted, and listened while be whirled the hind wheel round by the pedals; here however he would be rensoning deductively from the principle that sounds are more distinct when you are nearer to their point of origin. The difficulty of generalising in such a case arises from the difficalty of distinguishing the phenomenon investigated from others that may be like it but have different causes. If the noise which each part of his bicycle could make were of a distinctive
kind easily recognized, a man might very soon determine that such and auch a noise (at least in his bicycle) only originated in such and such a part; or if he could note the differences between noises otherwise similar coming from before or behind him, from right or left, he might then (without having originally known, although he distinguished their quality, from which quarter each kind of noise came) establish inductively in the way described a generalization that such and such a noise was produced by something in the front axle-bearing, and such another by something in the left pedal; again, further experience, argued from on similar lines, might show him that a particular character in a noise was due to want of oil in a bearing, and another character to a broken ball. But eo long as the phenomenon studied is submitted to no such analysis, it is liable to be confused with others that are not really the same, and error would obviously arise if we generalized about it under these circumstances. Hence one may bave to be content with a conclusion that assigns the canse of it in the particular case. It is, however, instructive to observe that the same process of elimination among the members of a disjunction is emploged here, as if one were establishing 2 general conclusion. For ex kypotheni the novice recognizes in the noise no intrinsic character which he knows to be connected according to any principle with a particular origin; he has therefore to fall back upon ascertaining ita origin by the indirect method of showing that among the possible origins to which it can be secribed there is none bat one to which the facts permit him to secribe it consistently with the principles of causation.
3. Professor Weismann's theory of the 'Continuity of the GermPlaom' is well known. The reproductive cells, whether of a plant or animal, are different in certain important respects from those composing other parts and tissues, and called somatic or bodycella ; and in particular of course, whereas the latter, in the process of increase and division, produce only cells of one kind, such as compose the part or tisune to which they belong, the former produce cells of every kind that occurs in the organism, and, in fact, are capeble of reproducing the whole organism and not merely a special part of it. In so doing they must, of course, reproduce the reproductive cells also, in order to provide for the following generation. Now Weismann holds that the reproductive cell, or germ-plase, as it develops, sets aside from the outset a part of itself to serve
the purpose of reproduction once more, and that this, which is still germ-plasm, remains as it were isolated in the developing organism, and unaffected by the other and heterogeneous parts, or somatoplasm, which the reproductive cell develops into; and as this happens in each generation, there is an abeolute continuity of the germ-plaem; from which it follows in his view that no characters acquired by the individual in the course of ita lifetime and not congenital can be transmitted to ite offapring; for a character which is puraly an soquired character arises in the somatoplasm, and the germ-plasm is from the first secladed from the possibility of being affected by the somatoplasm. Infuences which reach the germ-plaem can slone modify subsequent generations; of which the moet important is the fusion of two reproductive cells that takes place in serual propagation (for the theory applies only to the metazos, which increase by copulation); for the germ-plasm of the oram blends with another germ-plasm conveying more or less different heritable tendencies, and a sort of shoffling takes place as a result of which there arises a new individual resembling precisely neither parent, but exhibiting those 'spontaneous variations', as Darwin called them, which form the material for Natural Selection to work apon. Darwin himself, on the other band, believed that 'acquired characters' might in certain cases be inherited, and that it was very difficult to eccount entirely for the progressive modification of apecies in adaptation to their environment, without allowing the inflaence of this so-called 'Lamarckian' factor. ${ }^{1}$ The question has formed a subject of protracted controversy among biologists, and it is not an easy one to settle conclusively on inductive principles by appeal to evidence, because most facts admit of being interpreted in either way. One of the most important investigations into the subject ${ }^{2}$ is a series of experiments on guinea-pigs, conducted during thirty years by BrownSequard and extended by two or three other naturalists; and it is claimed that in the course of these experimenta certain modifications appeared in some of the guinea-pigs, the cause of which lay in injuries done to the nervous syntem of their parents.
${ }^{1}$ Because Lamarck (174-1829) had propounded a theory which ascribed the gradual modification of apecien largely to the inherited and accumalated effects of use and disuse of organs.
'The following argument is taken from G. J. Romanes' Daroin and after Davrin, vol. II. ch. iv.

It was found that epilepsy sometimes appeared in animala born of parente which had been rendered epileptic by an injury to the spinal cord or a section of the scistic nerve. Here whe a fact to be accounted for, and the cause must be sought among the circumstancea to which the epileptic offepring were axpoeed. Brown-Sequard attributed it to the injury done to the parent; but nobody professes to see how that could produce the effect, so that one can only be forced to acoept that explanation by default of anything else to which to attribute it. It might be aaid that the epilepsy was due to some congenital defect that had no relation to the experiment performed on the parents; but opilepsy is not otherwise known to occur spontaneously in guinea-piga, and apart from any improbability in the concidence, we should expect that if some congenital modification of the germ-plesm produced epilepsy in these cases, it would have occurred and produced it in others. Weimmann suggested that it was due not to the injury to the parent, bat to 'some unknown microbe' which, entering at the incision whereby the injury was made, both produced the epilepay in the parent, and by invading the ova or apermatozon, produced it also in the offispring. But against this suggestion we may urge that, though there may be microbes anough unknown to us, yet if this microbe of epilepsy in guines-piga exist, it would be likely to seize other opportanities of entering; the disense, however, as already mentioned, is not otherwise known to attack them. And it was also found that the epilepey might be produced (and apparently transmitted) without incision, by a blow on the bead with a hammer, in circomostances that preclude the entry of microbes. To this Weiamann rejoined that the shock of the blow might have 'caused morphological and functional changes in the centre of the pons and medulle oblongata, identical with those produced by microbes in other cases', and so set up the epilepey; but these changes would not penetrate, as microbes may be conceived to do, to the ove or spermatozon, and so the disease in the offepring occars without the presence of the carse alleged. Moreover, there are cases (though the facts of them are not eo clear or well confirmed) in which other diseasen produced by other traumatic injuries to the parent have reappeared in the offopring; these diseases were not such as could have been produced by microbes; and to suppose, with Weismann, that the shock of the injury cansed
a general weakness of the nervous system, in consequence of which the animals would be likely to bear 'weak descandants, and such as are readily affected by dieesse', does not account for the diseases in the offispring being of the same sort as those respectively produced in the parents. So far, therefore, the alternative hypotheses to that which attributes the disease in the offopring to the injary done the parent seem to be excluded; but Weismann has a final argament to urge against the 'Lamarckian' bypothesis. If the epilepry was produced in the parent by the injury inflicted, it ought not to occur in the offispring in the absence of that injury in the offispring; and it would therefore be necesaary to ahow that the nervous lesion which is the alleged canse of the epilepay, and not merely the opilepry iteelf, is transmitted. To this Romanes replies, that it very well may be transmitted; since even if adequate errmination had been made (which is not the case), there may be structural injaries in a nerve which are not diecernible. Neverthelens, he admits that the rewalt of the whole debate is to leave 'the Lamarckian interpretation of Brown-Sequard's reaulta' rather unaeaciled than proved. The facte alleged are 'highly peculiar', and hardly sufficient by themselvee to furniah 'positive proof of the tranemisaion of aquired charaoters'.

This axample has been chowen becanse it illuatratee very well how the inductive proof of a conolusion rests on excluding alternative explanations. The whole chapter in Romaner work, from which it is taken, may be profitably studied from that point of view. ${ }^{1}$ A further knowledge of facta might enable a biologist to auggest a cases for the appearance of epilepery in the second (or later) generations of gainee-pigs, concistent at once with the factes and with Weirmann's theory of the continuity of the germ-plaem. Bat this does not detract from the value of the example as an illartration of the method of inductive reasoning; indeed, it must be remembered that such ressoning, if the premisees are false, will probably involve us in false conclusions. Bat it must be pointed out, that in the process of excluding alternative suggestions as to the canse, it was sometimes necessary to do more than merely
'Cf. Romanes' own words with reference to another experiment on guinespige : 'Naturally, therefore, the hypotheais of heredity seems lees probablo than that of mere coincidence on the one hand, or of tranemitted microben on the other. But I hops to have fairly cxeluded both these alternatire exjamafions, Dancin and after Dancin, p.119. (The italica are mive.)
appeal to one of the grounde of elimination set down earlier in this chapter; some deduction of the consequences of accopting such alternative was needed, more elaborate than is involved in saying that, if such were the cause, the epilepay would appear where it did not, or not appear where it did. Thus it was argued that the epilepsy was not to be attributed to a microbe, because other diseases equally appeared to be tranomitted, which a microbe could not have originated; we cannot be said to be here applying the simple prisciple, that that is not the cause of a phenomenon, in the absence of which it occurs, for these other diseases are not the same phenomenon as the epilepsy. To make the evidence of thase other diseases serviceable, it had to be shown that there was no tensble alternative to the Lamarckian interpretation put forward (in lien of microbes) in their case; and the principle involved in the use of their evidence was this, that if it is necessary to attribute the reappearance of one kind of disease in offespring to its artificial production in the parente, it is more reasonsble to attribute the reappearance of another kind of disease (epilepey) in offspring to its artificial production in the parenta, than to a different sort of cause of whose presence and operation there is no evidence. This principle may in turn be said to reat upon the principle that like effects have causes correspondingly like; and all rests ultimately on our understanding of the causal relation; but in order to see that facts are inconsistent with the aecription of a given phenomenon to some particular cause, a more or less extensive hypothetical deduction of the consequences that ought to follow if that were the canse is often necessary. It may be noted, too, in this example, that some of the stepe of the argament are only probable; if the entry of a microbe at the incision were the canse of the epilepey, it would probably occur in caces of natural injury where, so far as we can see, the microbe might equally well enter: sccording to the principle that that is not likaly to be the casse of the phenomenon, which is probably present on some occasion when the phenomenon fails to occur. ${ }^{1}$ And leatly, Bomanea cautioualy
${ }^{1}$ In the Prior Analytics Aristotle discusses at great length modal allogiams, i.e. ayllogiams where one or both premigeen are problematic or apodeictic; ahowing under what conditions the conclasion will be problematic or apodeictic. We have here an example of what might be called a modal induction; the parallelimm may be commended to the notice of any who think, with Mill, that an inductive argument which can be represented in symbole (like his 'Inductive Methode') is the lees formal because it in inductives
concludes that the attribution of epilepey in the offispring to ite artificial production in the parent is not proved, because the canse may lie in comething hitherto undetected; and this illustratee what was maintained earlier in the chapter, that the getting of a positive conclasion, hat not the inductive character of the argament, depends on the completeness of the elimination.
4. Adsm Smith, in the Wealth of Nations ${ }^{1}$, discussing the inferences which can be drawn from the low money prices of goods in ancient times, and wishing to show that from the low prices of goods in general nothing can be inferred as to the wealth of a country, though mach can be inforred from the comparative prices of different kinds of goods, such as corn and meat, mentions that it wes commonly sapposed that the said low money prices of goods in ancient times were a proof of the poverty and barbarism of the countries where they prevailed. He uses the following argument to ehow that this is not the case, but that they prove only the barrennesa of the mineen which then supplied the commercial world. First, he asps that China is a richer country than any part of Earope, yet the value of the precions metals is higher there than anywhere in Europe: now on the principle that that is not the cause of a phenomenon which does not vary proportionately with it, we cannot attribute low money prices to poverty in the fece of lower prices where poverty is lese. Next, he edmits that eince the discovery of America the wealth of Europe had increseed, and the value of gold and cilver diminished; but be urges that the two eventa have ecarcely any connexion; the first being due to the fall of the ferdal cyrtem and the growth of public eecurity, the eecond to the discovery of more fertile mines. In support of this way of connecting the facts he points to the case of Poland. Poland was the most beggarly country in Europe, as beggarly as before the discovery of America; yet the money price of corn (the most important single commodity) had risen equally there: if poverty were the cause of low money prices, it ought not to be found where pricee were high. On the other hand, Poland was still feudal, so that her beggarly state was consistent with the connerion of facte alleged by Adam Smith. Again, Spain and Portagal were the next moot beggarly countriee in Earope to Poland, and prices ought therefore to be low there, if there were ${ }^{1}$ Bk. L. c. xi, rol. i. p. 865, 7th ed, 1793.
the connexion between low money prices and poverty that was suppoeed; but it was not the case; prices were high; as might be expected if they depend on the facility with which the precions metals are obtained, for, owing to their control of the American mines, gold and silver were brought more cheaply to Spain and Portugal than to any other country in Europe. The canse of low money prices in general, therefore, is not poverty and barbariam, and may be the barrenness of the mines supplying the commercial world with gold and silver; and this has been shown by inductive reasoning. Adam Smith also offers deductive argaments to show ithat it is the latter, and is not the former. It is not the former, because a poor could not affiod to pay as much as as rich country, in laboar and means of subsistance, for such comparative superflities as gold and ailver; it is the latter, because the purchasing power of gold and silver, or the amount of goods for which they will exchange, depends on what has to be given in order to get them; and where the mines are fertile, a lew amount of labour and means of subaistence needs to be supplied in the work of getting them, than where they are more berren. The logician may diatingaish an inductive from a deductive argument; but investigators will gladly use arguments of both kinds to eapport the same conclusion.
5. We may conclude with an example drawn from the Poor Law Commissioners' Report of 1884, with regand to the cause of the appalling increase of pauperism in England daring the eariy part of the last centary ${ }^{1}$. The Commissioners who were appointed to find the cause and to suggest a remedy, attributed the evil to one principal fact in the situation, viz. that the condition of those receiving parochial relief had been allowed to become not lese eligible than the loweat condition of men maintaining themselves by independent lebour. In proof of this finding, they pointed out in the first place that the cause alleged was present in all instances of the phenomenon to be accounted for. The great increase of pauperism had dated from 1796. In that year, an Act of 1723 , providing that no one should be entitled to relief who would not enter the workhouse, had been repealed; and it had become customary for the parish to asoure to all labourers, in their own homes, a certain weekly sum, varying with the numbers in the ${ }^{1}$ o. the Blue-book, eap. pp. 186-216.
family and the price of bread. This aum was made op in various ways; sometimes grants were given in supplementation of wages (which naturally tended to make farmers and other amployers give a lesser wage, and so interested them in the sapport of a system from which they saw more clearly the immediately resulting benefit tban the remoter bat far greater evils); sometimes the parish found work, generally lighter than what was axacted for the same price by private employers (and this led men to prefer to work for the parish); bometimes a money-grant without any retarn of labour was made to men out of work (who were not, therefore, the more likely to look for work) ; but in any case, it whs made possible for a man to count upon parish pay, sofficient to maintain him as well as many independent labourers were maintained, whether or not he endeavoured to support himself.

The cause alleged, then, was present where the pauperiam was present; but that was not enough to show that it was the cause. It might indeed be plausibly argued, from familiar principles of human nature, that auch a metbod of administering poor-relief would be likely to increase pauperism faster than it relieved it: but this deductive reasoning was not, and atill is not, sufficiently convincing to men who, from one motive or another, are attached to auch methode-whether from compession for the immediste suffering of thoee applying for relief, or from desire to get relief on the easient terms, or from fear, if relief is lees readily given, that it will become necemary to give higher wages to the labourer. To bring conviction, it was necessary to show that there was nothing else to account for the phenomenon. Now several other canses had been suggested to account for this growth of pauperism. One was the great rise in the price of corn, which had occurred during, and partly in consequence of, the French war: another was the increase of popalation : and another was the introduction of machinery-a highly unpopular thing at the time, because ite first and moat obvious effect was to displace labour; and there had been agricaltural riots directed against the use of machinery in 1880.

It would not be possible to show that none of these causes had ever made a man a pauper. But it was possible to show that in the main the pauperism so widely prevailing (which was so great a national evil because it prevailed so widely) could not be due
to them. The Commissioners were able to point to numerons instances of three kinds, in which the peaperism oo prevelent elsewhere was absent; in all of them, the cause they alleged wes abeent too; but the alternatives whiah they wiahed to disprove were present.

The first clase of instances consisted of certain parishes where what was called a Select Vestry had adopted the plan (still then lawful, though not since 1796 compuleory) of refusing relief to any able-bodied labourer except in a workhonse where a full task of wort was exacted. It was their experience that pauperism immediately and greatly diminished. And naturally; for when men who had hitherto been content to take parish pay found they had to work as hard all the same, they preferred to work for themselves; with 2 motive for independent industry and thrift, they became more induatrious and thrifty; becoming more industrious, they were better worth employing; and the farmer beaiden, knowing that the parish would no longer supplement the inadequate wagee by which be had obtained lsbourers upon his farm, was compelled, if he would still have libourers, to give a better wage.

The second class of instances was furnished not by parishes which, in removing the cause alleged, had removed the peaperism which it was alleged to be the cause of ; but in the pariahee themselves where the paraperism existed. It was furnished by what are called the non-settled labourers, who in all parisbes were found to be more industrious, thrifty, and prosperous, and leas parperized, than the eettied labourers. As the circumstances of two sets of labourers in one parish are likely to be more nearly alike than those of labourers in distinct parishes, these constituted what Becon calls a prerogative instance; for all the conditions equally affecting settled and non-settled labourers may be excluded, in looking for the canse of this difference between them, on the principle of rejecting the circumstances present when the phenomenon is absent. By a non-settled lebourer is meant a labourer living in another parish than that which is legally bound to support him. If he becomes a pauper, such a person can be removed to the pariah to which be is legally chargeable; and to save their own ratea, overseers were always anxious to remove any one they conld. To the labourer, on the other hand, removal wae at a rule by no means welcome; such labourers, therefore, found that they had to choose
between removal, which they did not want, and an effort to maintain themselves by their own labour; for if the parish relieved them at all, they would oaly get-unlike their settled neighbours -little relief on hard terms where they were.

The third class of instances was afforded by parishes which had never adopted the practice, so common since the Act of 1796, of relieving able-bodied men out of the workhouse; i.e. they had never consented to make the condition of the pauper as eligible as that of independent labourers; and in them the same extensive panperization and incresse in the rates, which had occorred elsewhere, had never happened.

Now in all these three classes of case, the Commissioners' theory held good; for when the effect was absent, so was the cause to which they attributed it. But the same conld not be said for the alternative theories put forward. If it were alleged that nonsettled lebourers had smaller families, which is doubtful, yet the incresse of popolation was not confined to parishes which had adopted, or banished from those which had abandoned, the practice rendered permissive by the Act of 1796 . The price of corn had risen, and the introduction of machinery must have had its effects -whatever they were-in the pariahes which had abandoned or never adopted that practice as much as in the rest, and among the non-settled as much as among the settled labourers of any parish. In short, looking to the mass of panperism, there was no other circumstance which might be suggested as its cause, that could not, upon one or other of the plain grounds of elimination 00 often referred to, be rejected; and the Commissioners' cause was left in posession of the field; with the additional oupport derived from the deductive reasoning that might not have been thought of even if it would have carried conviction-by itself. For it often happens that we can subsequently show that a cause, to which an effect has been sttributed on the grounds that there is nothing else to which the facts permit us to ascribe it, must, in according with some accepted principles prevailing in the subject-matter to which the enquiry belong ${ }^{1}$, produce that effect: although, but for the help which the inductive argument bad given us in finding the cause, the deductive argament would never have oocurred to us.

[^177]
CHAPTER XXI

OF OPERATIONS PRELIMINARY TO THE APPLICATION OF THE FOREGOING RULES

Ir was allowed in the last chapter that it is impossible to apply the kind of reasoning there analysed until a good deal of work has already been performed upon the material which experience offers ua. That work is really much harder than the reasoning that succeeds it; indeed so simple does the reasoning look when thrown into symbolic form, that it would not be surprising if any one mistrusted the foregoing account on the mere ground that induction must be a harder businese. A consideration of the present chapter may reassure him on this point. ${ }^{1}$

The operations that have to be parformed in order that the foregoing rules, or any other more specisl rules of the same kind, may be applied, are difficult to classify in a perfectly satisfactory manner. Different writers have called attention, and have given different names, to processes which are sometimes more or less the same essentially. Moreover, we should make our list ahorter or longer according to the extent to which we considered what may be called the Methodology of the several sciences. By this is meant an attempt to give special directions, based partly on general logical considerations and partly on the nature of the facts with which it deals, for mastering the special difficulties which a particular acience presents; for example, a mythologist might be enjoined to adopt the comparative method, and collect, with all the precautions which the experience of those who know the difficulty of rightly interpreting the savage mind can suggeat,

[^178]the myths and customs of many different lands: in biology again we should probably be told of the importance of obtaining atstiatics of a trastworthy kind regarding the mode in which divergences were distributed on either side of the average or normal in reapect of divers measurable character in animale and plante: and so forth. The particular preliminaries, without whioh inductive reasoning in each science may have little proepect of sucoess, could of conrse only be determined by some one well acquainted with that science; though it is quite poesible that a man of logical training, coming fresh to the atudy of what others have done, may be the better able for that training to make contributions to the work of acientific inventigation; still, here as elsewhere, Logio learno by reflection on the immedinte operations of thought about things. A methodology of the several scienoes lies bowever beyond the scope of this volume, and would require far greater knowledge than it has at ite command. The list of operations therefore which follows makes no pretence to go as far as it might, or to embody the only posaible division.

First of all may be pleced what has been called the Analyais of the Given ${ }^{1}$: and this is requisite in two waye,

1. in determining precively the phenomenon to be studied;
2. in distinguiohing and detecting the various circumstances wnder which it ocemrs, or mnder which il fails to oceur when perkaps it might have been expected.
Long before we consciously seek 'rerum cognoscere causas', a beginning has been made in the performance of this analysis: and the results are embodied in the general namee by which men group and distinguish different objects, attributes, or events. But there are many distinctions which ordinary language igoores, and it often gives different names to things which are in some important respect identical. For ordinary purposes the identity may be of no account, and yet in a scientific enquiry it may prove fundsmental. For example, to the lawyer hares and rabbits are vermin, to the sportaman they are game, and to the zoologist they are rodents; each of these men for his own purposes is interested in characters that unite them reapectively with quite a different group of other animals; but there is nothing in their specific
${ }^{1}$ Profescor Welton's Inductive Logic, a. v.
names to indicate their affinitien with any one of these groapa Or again breathing, burning, and rusting are three procemes for all practical purpoees so very different, occurring in such different connerions and of importance to us in such very different ways, that they naturally have obtained distinct mames; yet one of the greatest steps in the history of cbemistry was connected with the diecovery that they are, chemically speaking, all processes of the aame kind, viz. the combination in the fint two cases of carbon and in the third of iron with the orygen of the air. ${ }^{1}$ These cases illustrate the way in which it may be neceseary to ignore oar customary clasaification of things, and bring together, upon the strength of some identity which an analysis may have discovered in them, thinge that we have habitually kept quite apart in thought. It is equally neceseary at times to distinguish things which we have habitually cleased together, if we are to make any progress in the invertigation of them. The case of rent furnishes a good instance. The name is given equally to the sum which a man paya for the occupation of land, and to that which he pays for the occupation of a building; as these are very commonly paid to the amme person, as a lump sum is then charged for the two, and as the ordinary tenant in search of a dwelling is prepared to pay so mach for accommodation, bat indifferent to the question whether the owner considers his charge to be based on the value of the house or of the site it stands on, it followe that most of us find no inconvenience in this double use of the word. The farmer who has to consider separately what the land he farms is worth to him per acre, and what the value of the homestead is to him, is more or less aware of the ambiguity; but the political economist, when he comes to consider the causes that determine rents, is bound to distinguish house-rent and ground-rent by name. Indeed until that is done, his investigation will make no progrees; for the two depend apon quite different conditions. The rent of a house, apart from any special history or sentiment, depends chiefly on the cost of building another like it, and the current rate of interest on money in the country at the time; but land cannot be produced as it is wanted, and this natural limitation of supply may give to a particular piece of land, in virtue of its fertility or its situation, a rentable value that depends mainly on its superiority in those ${ }^{1}$ Cf. pp. 486, 437, infra. Of courre the orygen need not be atmoepheric orygen.
respects over other land which cannot be dispensed with for caltivation or for boilding, and only very alightly and remotely, if at all, apon the circumstances which regulate house-rent.

The procese of discovering identities between things in which we commonly ignore them, and that of discovering differences between thinge which we commonly take for the eme, very generally involve one another. We perform as it were a mental re-grouping; and in the act of bringing together what we had hitherto only distinguished we most probably break up or find dirtinctions in the groups from which members are brought together. Bat in a given case one sapect masy be much more prominent than the other; and Bacon hee observed ${ }^{1}$ that some men have a greater caplacity for the one kind of work than for the other, insiating (like Plato before him) on the necesity of noting, in the invertigation of nature, both the resemblances and the differances that are ordinarily overlooked. Analysis is at the bottom of each process, for until we have distinguished the varions characters of thinge, we have not discovered the besee on which to compare them. It must be added however that analysis may be of great importance, yet without leading to any act of fresh clanification, when we want primarily to know the circumatances under which a phenomenon occura.

We have now to some extent considered the nature of the work involved in the performance of the two tasks above mentioned: namely, in determining precisely the phenomenon we heve to stady, and in distingriahing and detecting the various circumstances ander which it occurs, or under which it fails to occur when perhaps we should have expected it. It is sufficiently obvious that without performing them we should hope in vain to discover cansel connexions by way of induction. If we have no precise or exact conception of the phenomenon to be studied, or have not (as one might say) duly determined it, we may examine instances that we ought to ignore, and ignore instances that we ought to examine. The resalt of the former error will be that we shall try to make our theory as to the cause of m consistent with the facts of the occurrence of a different phenomenon y : and the result of the latter, that we may be ignorant of facts which might throw great light upon the cause of a. The necesaity of making a correct enumeration of the circomstances under which a pheno-
${ }^{1}$ Nou. Org. L 55.
menon occurs, before aking with which of them it is careally connected, needs no comment; nor is it less plain that, if the quention is to be answered, we need equally to recognize the circumstances, where they occur also is the abeence of the phenomenon.

But though this work is no necesenry, it is imposesible to give any rulea for the efficient diapatch of it. Familiarity with a science may help a man to perform it in the invertigations of that acience, teaching him the sort of thing to look for, and the sort of way in which to look for it. Yet the sagacity upon which the discovery of new truth depends does not come to most men even by such familiarity. The logician's business at any rete, since be cannot teach them to do it, is to make men realize the part which it plays; and one or two further examplee may be given with that object.

A research which has been so frequently cited in works on Induction as to become almost a stock inatance will serve this pur-pose-Welle's Theory of Dew. Dew, as is now pretty generally known, does not rise but falls : the atmosphere can hold in suspension a certain proportion of water in the form of vapour, but the amount depends upon the temperature of the atmosphere, and incresses with it. If anything suddenly chills the atmosphere, it precipitates such a portion of the moisture which it holds as exceeds the maximum it can hold at the temperature to which it is reduced. It may be chilled in various ways. One is the contact of a colder surface, on which the moisture is thereupon precipitated; and the rapidity with which the surface of a body gets chilled depends on various circumstances-partly on its substance, partly on its texture (rough surfaces, or those with many points, like graes, radisting heat more rapidly than smooth ones): another way is by the inrush of a heavier and colder current: another is by radiation to the sky, and the degree to which that takes place depends on the amount of cloud about; a sheet or other covering stretched over the ground acting in the same sort of way over a small ares, though with more effect over that area, as the clouds spread out over the earth. This precipitation of moisture held in suspension in the sir is seen not only when dew falls; when warmer weather comes after a frost, particularly if accompanied by rain, the cold surface of a atone wall, if painted or otherwise not porous, drips with the water it has extracted from the air which its contact chills. In the same way cold apring water poured
into a glass in summer will chill the outside of the glaes，so that water is deposited on it from the air without：and when hot water is poured into a glass without flling it，and sends its vapour into the air above，some of this vapour bedews the interior surface of the glass above the water－level，until this portion of the gless has scquired by conduction the temperature of that below it．Now our present business is not with the ressoning by which Wells showed the deposition of dew to depend apon a relation between the tem－ peratare of the atmosphere and of the body on which the dew fell， taken in conjunction with the degree of saturation of the atmo－ sphere at the time．But it is plain that he could never have done this，if he had not taken note of all the above points，the material and texture of bodies，as affecting their surface－temperntare， －the clearness or clondiness of the nights on which he looked for dew，the conditions of air and wall when the latter drips with moisture，and so forth．It would bave been in rain to observe that one body collected more dew and another less，unless their rougbness and smoothness were noted，as well as their subetance： or that on some nights there was heavy dew and none on others，onless the maturation of the atmosphere were ascertained as well as ite temperatare．And similarly，it was neceesary that he should get a right conception of the thing called dew that he proposed investigating．There are clammy days when everything growe damp from a moist fog hanging in the air．It would not have been unnataral to look in this for a phenomenon of the same nature as dew，and to overlook such things as dripping walls and moistare－frosted tumblers．Yet the mistake would have put the enquirer altogether of the scent．

Curative effects of different kinds are exhibited by certain waters．To the eye many of the waters are indistinguishable； and if the palate detects a difference，yet it would not be found poseible to connect efficacy in particular complaints with particular flavours according to any explicit and invariable rule．It is plain that no progress can be made unless the various diseases are described not merely by their more obvious symptoms but by reference to the physiological character involved ：and the water chemically analysed， so that one may know each separate ingredient，and the different proportions in which they are present in different cases．Again，the bacteriological theory of disesse would never have been formulated，
until the becteris themselves were found-bodies 80 amall that before the constraction of powerful microscopes their presence was of necessity overlooked; and when one hears of pathologists endeavouring to isolate the microbe of some particular disesse, one realizes bow impossible it is, without the preliminary work of distinguiahing the circumstances, to apply the 'canons of induction' to any effect. Or suppose that an enquiry is undertaken not into the physiological cause of a disesse, but into the causes of its disseminstion, either generally or on eome particular occesion: let the disease, for example, be malaria Malaris was long supposed to be contracted from the exhalations of the ground; and it was true that many malarious districts were marshy, and that persons who avoided the swamps at duak and dawn seemed less liable to be infected; bat it was not until it was notioed that such districta were infested with mosquitoes of a particular apecies, and it occurred to some one to connect this circumstance with the communication of the disease, that false ideas were exposed and the true law of the matter established.

The last remark suggenta a transition to the next preliminary operation that we may notice-the formation of hypotheeee. Much has been written upon the question whether Logic can lay down any rales by which the formation of hypotheses ahould be controlled; but beyond the somewhat obvious and quite general consideration that an hypothesis must contain nothing inconsistent with principles which thought finds necessary, it doee not seem that Logic can be of any more eervice here than in the performance of the work of analysig. It would be an illegitimate hypothesis on the part of a bank clerk confronted with a small discrepancy in his books, to suppose that on this occasion two and two made three; but a petty theft on the part of the Principal Manager, though very likely a foolish bypothesis, would not be logically illegitimate. It might indeed be urged, that the hypothesis of angelic intarvention, though there is nothing inconceivable in the existence of angels, would not be a legitimate way of proposing to mccount for an event; and this may be admitted; for there is no use in attributing phenomena to causes whose presence we have no means of ascertaining; since such hypotheses can never be brought to the test of facts. It is obviously more reasonable to go on trying to account for them by ascertainable natural causes in the hope of being able to connect

xII] PRELIMINARIES OF INDUCTIVE REASONING 429

them by general principlee with other observable phenomens, than to abendon that hope at the outset and invoke the agency of beinge whose existence cannot be empirically verified; so that although we can hardly pronounce it logically inconceivable (however it may be scientifically inadmisaible) for the physical order so to depend on something beyond iteelf as to make it impossible to account for a particular natural event by reference solely to other natural events preceding it, yet we may on logical grounds pronounce it unscientific: i. e. it is seen to be unscientific not in virtue of any special knowledge of the particalar science to which such bypothees belongs, but in virtue of our general appreciation of the aim of science as such, and of the logical conditions under which that aim can be realized. And this is perhaps what Mill really had in his mind when he said ' that ' It appears, then, to be a condition of the most genuinely scientific hypothesis, that it be not deatined alwaya to remain an bypotheeis, but be of ruch a nature as to be either proved or disproved by comparison with observed facta'. It should be of sach a nature that observible facts, if we could find them, might prove or disprove it ${ }^{2}$: i. e. it should not appeal to the agency of canses (like the intervention of an angel ${ }^{3}$, or the inflaence of the organic type as a whole upon the growth of the individual organ. ism) of whose presence we can have no independent evidence, and whose nature we are not able so to ascertain as to determine deductively how they muat act if they are present; for with the agency of such canses as theee any facts are equally compatible; and thus they furnish no explenation why the facta are so and not otherwise. For this reason, as Becon maid, in looking for the canses of things in nature Deum aemper excipimas ": and Laplace, when Napoleon obeerved to him that there was no mention of God in his Mdeanique Ceteste, replied that he had no need of that hypothesis. But that an hypothesis should be of such a nature that observed facts will ultimately either prove or disprove it, and not merely might nltimately do so, seems a condition quite imposaible to

[^179]lay down. We cannot tell the fature in theoe matters; how long may an hypothesis be dertined to remain an hypothesis without prejudice to ita genuinely scientific character? The ultimate deatruction of life on the earth is assumed by science; for human minde, on hypothesis which is not proved or diaproved before that date will alwaye remain an bypothesis. We cannot sappose that its scientifio character, when it is made, is to be eatimated by the prospect of its trath being definitely ascertained a few years, or even a few myriads of years, earlier or later. Darwin, in the Origia of Species ', writes as followe : 'As the embryo often shows more or less plainly the structure of the less modified and ancient progenitor of the group, we can see why ancient and extinct forms so often resemble in their adult state the embryos of existing species of the same class. Agasoiz believes this to be a universal law of nature; and we may hope bereafter to see the law proved true. It can, however, be proved true only in those cases in which the ancient state of the progenitor of the groap has not been wholly obliterated, either by successive varistions having supervened at a very early period of growth, or by such variations having been inherited at an earlier stage than that at which they first appeared. It should also be borne in mind, that the law may be true, but yet, owing to the geological record not extending far enough back in time, may remain for a long time, or for ecer, incapable of demonetrotion.' But that the rale in question is an universal law is a acientific hypotheria.

An hypothesis then must be thinkable ${ }^{2}$, consistently with the fundamental assumptions of the science which makes it: bnt we cannot reetrict, within these limita, the freedom of acientific hypothesia. What is important is that men should be cantions not in

[^180]framing bat in teating hypotheres. The publication of every wild conjecture is nodesirable; but it would be equally undesirable that a man should never entertain an bypothesis which contemporary opinion could pronounce wild. Darwin said that he had framed and abandoned many an hypothesis which be would be ashamed to avow : be does not imply that he was anhamed to have framed them. The best control over the licence of the imagination is exercised by opecial knowledge. The man who knows most about any department of nature will see moat readily what hypotheses are foolish in that department, juat as in sach practical V matters as legialation the best oritica of a bill are those who have experience of the afinirs with whioh it deals.

It is clear that every causal connexion presents itself at the outset in the light of an hypothesis, to the mind to which it first occurs. The framing of the hypothesis may cometimes be very simple, though the proof of it may be very difficult. If we know exactly what persons were oognizant of a secret which has been betrayed, it is eany to say that one of them must have betrayed it; and so far there is no bypothesis; hypothesis begins so soon as we aecribe the offence tentatively to any one of them, and in this there is not the least difficulty; buta proper test of it may be imposible. Wheress liere, however, all the alternatives are before us, and in the aborract any one of them would equally fit the facto, because it is cimply a question of connecting an event x with one of s number of conditions $a b c$, abont which we do not know enough to say that it might not be connected with any one of them : yet commonly it happens that the facts which an bypothesis has to fit are more or less elabonte; and then the framing of it is not such a simple matter as the pairing off of two terme a and a. Take for example the queation of the anthorship of the Acts of the Apostles; if that book must have been written as it stands by one of the recorded companions of St. Paul's joorneys, it is a aimple thing to eay that the author may be Lake, or may be Silas: although it need be by no means a simple thing to decide between them. But if that is not necesary,
frmming them. We restrict it to something which the facts of experience might tent: but the fandamental asamptions of a science may be metaphyaically untenable, and we enlarge it to extend to all which these asomption covar, however it may be ultimetely impomible to think the fects in terms of them.
if the book may be of late dete, and contain the work of eeveral hande, it becomea very difficult to frame an hypotheris which shall do justice to all the features of it . We have a large number of facts to co-ordinate; and the aerumptions by which we connect them must all be mutually coherent. Historical criticism presenta many problems, where no hypotheris is free from difficulty; and though doubtlese a problem must bave a molution, yet an ignorance of some detaile, and very likely the erroneons accounte that we have received of others, may leave us permanently unable to find it And the penetration and ingenaity of the historian are shown in such casee in devising es well es in testing hypotheses; indeed the two operations cannot be kept altogether distinct: for when our knowledge of the concrete detail of events is considerable, the process of framing an bypotheris to fit them all is itself a procem of teating. Now what is true in history, where upon the whole ${ }^{1}$ our basiness is rather to determine eventa in conformity with acknowledged principles than to determine principles in accordance with empirically sacertained evente, is true also in science, of whose basiness the latter would be the more aecurate deecription. Scientific hypotheses consist for the most part not in the mere conpling in the mind, as canse and effect, of two insulated phenomena (if the epithet may be allowed) : bat in the weaving of a large number of phenomena into a coherent system by means of principles that fit the facta. In the framing of hypotheses therefore we are called upon to conceive facts in new ways: and to conceive not simply that certain facts are connected, but how, or in sccordance with what principle, they are connected. And this often involves a radical tranoformation in our way of looking at the facte themselves; for a fact is not such an easily ascertainable thing as the language we sometimes use might esem to imply. In a sense facte are stabborn : in another sense they are pliant to our thought. They are atubborn ∞ far as we have rightly apprehended them; but what we call fact is largely matter of inference and interpretation, performed often unconscioaly, and often erroneoualy; there is room

[^181]
xxi] PRELIMINARIES OF INDUCTIVE REASONING 488

here for re-interpretation, in accordance with the requirements of the rest of our knowledge, and so far as facta lend themselves to this they may fairly be called pliant. It would have been called a fact, for erample, in the days before Copernicus (though some of the Greeks had queetioned it) that the sun went round the earth; but this was only an interpretation of appearancee which we have now been taught to see to be equally compatible with the fact that the earth goes round the sum. It would have been called a fact that species are fixed and immatable; and it is the case that they breed so true upon the whole in any one generation as to make that a fairly eccurate statement for practical parposes. Yet we have learnt to see that this comparative atability is consistent with any degree of modification over long enough perriods of time. These instances will be enough to show how the familiar facts take on a new appearance in the light of new theories.

Now some new theories or hypotheses are, as we all know, more far-reaching in thoir effecta than others; for some are much more general, and apply to a mach larger number and variety of facts. Their introduction marks an epoch in the progress of science; and Whewell stteched more importance to the framing of such hypotheses than to any other of the operations connected with inductive ressoning. Indeed he held that this step was the induction; and that the history of the inductive sciences could be re-: presented as the preparation, elaboration, and difurion of successive hypotheses each more adequate to all the facte of a ecience than its predecessors. He did not use the word hypothesis very prominently in this connerion; he preferred to apeak of comecptions: and what be called the colligation of facts by meant of appropriate conceptivnd ${ }^{1}$ whe in his view the essence of induction. The new conception, however, is alwaya an hypothesis as first entertained, and only converted into a part of the accepted body of knowledge by its superior success in co-ordinating facta. This work of 'colligation' therefore must not be regarded as something distinct in its nature from the framing of hypotheses: it is rather a apecial and important case of it, where the hypotheris, instead of merely connecting facts in - more or leas familiar way that leaven our view of them very much what it was before, involves a profoand and far-reaching

[^182] c. $\mathbf{~ I i i}$. $\$$ 1-37.
change in our view of the facts themselves. Thus the suggeastion that malaria is communicated by the bite of the Anopheles mosquito neither altered seriously our notion of the nature of that insect (though it altered our prectical attitude towards it in a way by no means favourable to the numbers of Anopheles) nor introduced any new way of conceiving diveace; for the bacteriological conception of disenes had already been applied to many other fevers. But the first suggeetion that a diease depended on or consisted in the presence and multiplication of some specific nozions becillus in the blood altered profoundly men's view both of what it whe, and of how it was commanicable, and of how it might be cured. In the relation of this 'colligation' to the more genaral notion of framing hypotheses we have an instance of the difficulty of distinguishing sharply the different operstions of thought which logicians have enumerated as preliminary (though by no means subordinate) to such application of the rules on which inductive reasoning resta se we examined in the leat chapter.

A somewhat unproftable controveray arose between Whewell and Mill as to the part which the 'colligation of facts' should be regarded as playing in induction. While Whewell anid it was the induction, Mill said that it was improperly eo called. Mill seems to have been influenced in part by the idea that an induction must end in establishing a general proposition, whereas it is possible to bind facts together by a new conception and ao place them in a different light and reinterpret them, without apparently generalizing; be seems too to have considered that nothing in the whole process of thought, by which general conclusions were reached from the axamination of particular facts, ought to be called induction, except what could be reduced to the form of inference or reasoning: the rest was all subsidiary to induction. But the operations of thought preliminary to the application of such rales as inductive ressoning reats on are not subsidiary in the sense of being of secondary importance; and it would perhape aloo be better to distinguish induction as the whole process from the reasoning employed in it. We might then agree with Whewell that in induction, i.e. the whole procese of the 'interpretation of nature', what he called the 'colligation of facts' is an operation of the very first importance, demanding higher and more uncommon powers of mind than inductive reasoning; while we agree with Mill that it is not the

Ix] PRELIMINARIES OF INDUCTIVE REASONING

inferential operation. Bat if by induction we mean the inferential operation, then we shall have to say that this 'colligation of facts' is more momentous in the history of acience than induction; for most of us, as Becon rightly axid ${ }^{1}$, would light upon the use of the methods of inference to which Mill would reatrict the name of induction, by our ordinary intelligence, without their being formulated for us; bat few can originate the new conceptions that bring order and intelligibility into a maes of facte.

The instance which served to illustrate the dispute will help to show what this 'colligation' is. The anciente at first supposed the planets to move in circles round the earth. When further obeervation showed that this was not eo, they concerived the centre of the circle in which a planet moved to travel on the circomference of another circle; these circles were conceived not as mere imaginary paths, but as phyaical entities actually revolving; and it was possible to assign such a radius and rate of revolution to them as would account for the planet fired upon the outer circle deacribing the path it does. This hypotheeis had grown more and more complicated, as the mass of observations upon the movements of the planets had increased; and though it was capable of application to the heliocentric no less than the geocentric theory, Kepler sought for one more satiofactory. After trying a large number of other carves, and rejecting them on the ground that they did not agree with the observations, he at last discovered that the planet Marathe primary subject of his inveatigations-moved in an elliptical orbit round the eun, which stood in one of the foci. Now the ellipse is here the appropriate conception which binds together into an unity the succesaive obeerved positions of the planet Mars. Each ponition taken singly must of course necesarily be on the circumference of that or any other curve; for any curve can pase through any point. But he sought for a carve which would peas through all the positions; and he found that in an ellipse. There was indeed nothing disjunctive in his argument. Other ourves were rejected because digproved by the observations; but the ellipee was accepted because the observations agreed with it, and not because no other curve would satisfy them. If it had saggested itself nooner, the others would not all have been tried. There are curves, of higher degree, that will equally satisfy the observations, and had
${ }^{1}$ Nor. Ory. I. 180.
7 f 2
they occurred to Kepler, he could perhapa have given no other reason for proferring to accept the ellipee than an a priori preference for the simplest curve that would do so. It is to be noted, however, that even here the critical matter whe the thinking of an ellipee, and not the teating ita agreement with the facte: any one with the neceesary mathematical training could have done that, whenever the ellipee had been thought of. And no it often is, though not always, when the appropriate conception is a conception of causal relation: not slways, because sometimes there may be as much difficulty or more in teating the conception than in thinking of it. To teet it, we may have to dednce its consequences by some intricate methemetical calculus, as in the case of the Newtonian theory of gravitation; or to derise an experiment in which we may eee whether the theoretical consequences of our conception occar. Great mathematical power or great ingenuity may be wanted here; but the ressoning will be deductive. Yet even so, to introduce the appropriate conception is much; new ideas are scarce; inductive reasoning, if the material were given all ready prepared, is easy.

An excellent example of the part which a new hypothesis may play in inductive enquiry is furnished by the Oxygen theory. It in borrowed from Whewell ${ }^{1}$, whose works afford many more. It was for a time supposed that combustible bodies were combastible because of the presence in them of a peculinr subetance, that escaped in the procese of burning. This hypothetical substance was called phlogiston; and it was very nataral to think that one could see it escaping into the air wherever s fire was burning. When it was found that there was one air (or, as we should now say, gas) in which bodies burnt readily, and another in which they would not burn at all, it wes conceived that air could only abeorb a limited quantity of phlogiston in proportion to its volume ; in the former it was supposed that there was no phlogiston, and it was called dephlogisticated air; the latter was supposed to be already saturated with all that it could hold, and was called phlogisticated air eccordingly. The phlogiston theory received a shock when it was discovered that if a body were calcined, or reduced to ashes, in a cloned vessel, the weight of the ashem was greater than that of the boily before it was burnt. This, however, whe explained by supposing phlogiston to be a substance naturally
${ }^{1}$ Whewell, Eied. Ind. Sci., voL, iii. Bk. XIV. II. 4-7.
light, whose eecape therefore left a body heavier-s view plasible, perbapa, when we remember how the sparks fly upward, yet really presenting great difflculties in relation to the theory of gravitation. The great French chemist Lavoisier, however, applied a new conception to the facts: he conceived that, when a body barned, what happened wae not that a substance naturally light eacaped from it into the air, and so left it heavier; bat a substance naturally heavy was witbdrawn from the air and combined with the barning body; burning in fact was a process of what we ahould call chemical combination; and Lavoiaier supported his theory by showing that after the calcination of a body in a close vessel the air in the veasel was lighter by the same amount by which the ashes were heavier; this obeervation perhaps was not conclusive, if the phlogiston had carried its natural levity into the air ; but the new way of conceiving the facta accorded far better with the general theory of gravitation. The rubetance thus withdrawn from the air in burning he called oxygen; and oxygen now took the place of dephlogisticated air; while phlogisticated air, instead of being conceived as eaturated with phlogiston, was conceived to be a different sabetance from oxygen, incapable of entering into those chemical combinations which constituted burning. This sabstance wes rechristened azote, and afterwarde nitrogen. Lavoiaier further showed that oxygen was withdrawn from the air and chemically combined with other subetances not only in burning but also in the familiar procesa of breathing, and in the rusting or oridation of iron, which could rust in water also because oxygen was present there as well; and thas his new conception, that burning was really a process of chemical combination between a substance in the atmosphere, which be called oxygen, and the substance of the body barnt, serred to throw light equally on processes at first sight quite remote from burning. In this example, therefore, we have as it were a 'colligation' of two kinds : primarily, in so far as a large number of facta sbout burning were all rendered consistent with one another and bound together by the help of this new conception of what goee on when a body burns; secondarily, in so far as that conception wha shown to be applicable to other phenomens as well as barning, and they are therefore brought under the same explanation with it. It may be worth while to give one more example of the transforming and connecting power exercised by a new and
appropriate conception apon a multitude of facta, in the biological theory of Evolution, or the modification of epecies through natural descent. We are not for the moment concerned with the queation whether the only agency in determining such modification is Nataral Selection. The theory of Natural Selection, as a theory of the way in which modifications have, not indeed originated, but been established when they had once arisen, teachee that in each generation individuals vary more or lese in colour, size, structure, \&ce., from their parenta; that some of these variations are useful to their posseseors under the ciroumatances in which they live; and that their posesesors will, in the constant etruggle for existence going on in the world, have an advantage over their competitors; so that those individuals who happen to poseese 'adaptive' variations will survive and propagate, while their leas fortanate and worse-adapted rivals will perish; and thus apecies are brought into and kept in conformity with the conditions under which they have to live. Now there is not complete agreement among biologists either as to the extent to which the pecaliarities of different species of plant or animal are adaptive, or as to the extent to which those that are adaptive can be accounted for by the theory of Natural Selection alone ; though there is no doabt that the doctrine of Evolution won its way on the strength of the success of the principle of Nataral Selection in accounting for at any rate a vast number of adaptive structures, instincts, and colourings. Bat the doctrine of the Evolution of Species, or their modification by descent, as opposed to their special creation in immatable form, does not stand or fall with the view that Natural Selection is its exclusive modwe operandi. This doctrine has brought into intelligible connexion with one another whole departments of fact. It explaina the various and intricate relations of likeness and unlikeness between different species of the same genus, different geners of the same family, different families of the same order, \&c.; it explains why the same structural plan is obeerved in many cases where the function of some part of the stracture has been lost or altogether altered: und why it is that where their life requires the performance of the same function in groupe otherwise very remote morphologically from one another, we find the function fulfilled by such very different means as are, for axample, the wing of an insect, of a bird, of a bat, and of a llyingfish. Again, it explains the divers series of fossil forms: and

Ix] PRELIMINARIES OF INDUCTIVE REASONING 489

accords with the facte of embryology, such as that the embryo of a given vertebrate only gradually develops the more distinctive specific features, and at an earlier stage is very little distinguishable from the embryo belonging to a different genus or family; for the characters which appeared later in the course of evolation and sapervened as it were apon a simpler structure appear later in the growth of each enbeequent individual of the eame more complex type, and rapervene apon the aimpler atructare there. Again, it explains the fects of geographical dirtribation, such as that the degree of affinity between species is much greatar when they inhabit a oontinnons ares, than on either aide of a geographical barrier; and that the barriers on either side of which the difference is moet marked are not the ame for every kind of organiam, bat are for each kind those which would offer the most effective obstacle to the migration of that lind-high mountain rangea in the case of land animals or freah-water fish, deep seen in the case of salt-water fish, and so forth: or cuch factes again as this, that 'wherever there is evidence of land aross having been for a long time separated from other land aress, there wo meet with a more or lese extraordinary profusion of anique species, often ranning ap into unique geners'.' All these facta, and many others, for which opon the old hypothesis of the special creation of immatable species it is impossible to suggest a reason or a motivo, fall into line apon the hypothesis of modification by deacent, and are bound together by that conception an common coneequences.

We have now considered some of the most important operations, without which inductive reasoning would be poweriess to adrance inductive acience. One or two others may be noticed. It may seem unneceseary to mention the obseroation and registration of facts; yet that is no small part of the work that has to be performed before we are in a position to tell what phenomens may be supposed to stand related to one another as canse and effect. Along with this goes often what was incidentally referred to on p. 486^{2}-the deviring of experimonts by which to test whether a phenomenon is

[^183]present or absent, varies or is constant, as should be the case if its canse is what we take it to be. If it be supposed, for example, that apirit-rapping is really produced by 'cracking' the joints, it will be neceseary not only to show that a man can produce such noises that way, bat to devise conditions under which one may be certain that the joints cannot be 'cracked' without its being detected, and see whether the 'epirits' still continue to rap. ${ }^{\text {t }}$ The collecting and sifting of statistica, and their reduction to tabular form or curves, is also in many enquiries a necessary preliminary to the application of the rule that nothing can be the canse of a varying phenomenon which does not vary proportionately with it.

This is perhaps enough to eay upon the present subject. There are other tasks set to our thought in ecience, which are of great importance to ita development; but we have been concerned eepecially with those that are presupposed in inductive remening. The help sfforded to the 'interpretation of nature' by a well-choses armowry of technical termer, great as it is, is not confined to the nae of indactive remeoning. And the work of abstraction has had acconnt taken of it in what was asid of analysia and hypotheais and the formation of conceptions. By abatraction we mean considering some special feature of the concrete fact, in mental separation from all with which it is combined in its existence. It is between feature and feature that we strive to trace connexion. The concrete mase of events changes from moment to moment. Not until we pick it to pieces are we able to see what it is in one state of the mase that determines what in another. Every common term involves some degree of abstraction; but in ecience we have to break up what in daily life we treat as a single matter, and to consider by itself, or in abstrection, that which had hitherto not been specially noted and distinguiahed in the total nature of some comparatively concrete notion.

CHAPTER XXII

OF NON-RECIPROCATING CAUSAL RELATIONS

In all that bas been so far asid with regard to the process of inductively determining the canse of a phenomenon, it has been assumed that the canse, whatever it is, reciprocates with the phenomenon : ie e. that not only does the phenomenon occur whenever the cause is present, but that the cause must be present whenever the phenomenon occars; so that you may asfely argue from either to the other, as in geometry you may equally infer that a triangle is equilaternl from the fact that it is equiangalar, and that it is equiangular from the fact that it is equilateral.

But we often apeak of one thing as being the cause of another, where this reciprocal relation by no means obtains. We say that drankenness canses crime, although many people get drank without committing crime, and many people commit crime without getting drunk. And in come of the examples of inductive reasoning given in provions chapters, the canse found was not a reoiprocating cance. The appearance of congenital epilepey in guinea-pigs was shown to be poseibly dae to a traumatio injury producing epilopery in the parent; yet it whe not alleged that the production of epilepey by these means in the parent was always followed by the appearance of epilepey in the offlapring.

It was said that the inductive proof of the cause of a phenomenon rested on the definition of cause; for nothing that does not stand to the phenomenon in relations that satiafy the definition can be the cause of it; and it is by eliminating all slternatives that its cause is indactively established. Our definition of cause assumed that it reciprocated with its effect. Bat if it does not, we clearly have no right to eliminate whatever fails to reciprocate. The admisaion that there are non-reciprocating causal relations may seem therefore to invalidate ressoning that starte with the assumption that canse and effect reciprocate.

This difficulty has been postponed till now, partly that the exposition of the subject might not be unduly complicated : but
also, because the cansal relation is really, and in its strict sense, reciprocal, and without anderstanding that first, we could never render non-reciprocating caumal relstions intelligible to ourselves. Properly speaking, to give the cause of anything is to give everything necessary, and nothing superfluons, to its existence. Nevertheless we ahould often defeat our ends, if we gave precisely thia; if our object in seeking the cause of a thing is that we may be able to produce or prevent it, and if something in necesary to its existence which is a property of an object otherwise superfinous, it would be of no use specifying the property necesary unless we also specified the otherwise superfluons object in which it was found. ${ }^{1}$ Even though we have no such practical purpose, so long as we do not know what object contributes, in the property which it possesses, the factor necescary to the effect, we can hardly be said to understand completely the production of the effect. Hearing at a distance, for example, depende on the transmiasion of certain vibrations through an elastic mediom; the neceasary elasticity is a property of the air; and therefore we can hear at a distance in the air, while if there is a vacuum interposed between the sounding (i. e. the vibrating) body and the ear, the transmisaion of the sound is prevented. It is true that, except in reapect of its elesticity, air is quite superfluous so far as hearing at a distance is concerned; not air in the concrete, bat that property in sbstraction, is one of the conditions that make up the reciprocating canse of hearing at a distance. But an olastic medium cannot be just elastic and nothing else besides. We want to know what possessed of the necessary elasticity is present when we bear at a distance; nor could any one, without knowing that, prevent the transmission of sound by removing the elastic medium; for he would not know what to remove.

We may parsue this illustration a little further. It might be shown inductively that the interrening air was the cause of the trans*
${ }^{1}$ e.g. it mey be the toxture of pumicestone that fits it to romove inkatains from the strin; but it would be of more use to tell a man with inky fingers to get a piece of pumicentone, than to give him a deacription of the fineness of texture which would render a body aspable of mating his fingers clean

It is just the feot that we know no more abont the ether than ite form of elaeticity which makea it a somewhat unsatiafactory conception; and led the late Lord Salisbury, in his Preaidential Address to the British Aseociation at Oxford in 1894, to say of it that it morely fornished a nominative case to the verb to wndulate'.
misaion of sound; indeed it was shown inductively, by the help of a well-known experiment. And speaking loosely, it is true that from the presence of air it can be inferred that sound will be transmitted, and reciprocally, from the transmisaion of sound, that sir intarvenes. Yet neither inference is quite safe. The first is only true with qualifications : the distance must not be too great in proportion to the loudness of the sound, and so forth. The second may be altogether false; for cound can be tranamitted through weter, or (with the help of a talephone ${ }^{2}$) througb a vacaum. And in this case the reason is that the elesticity is provided in some other way than by mean of a continuum of air. We saw that, except in reapect of its elasticity, air was saperfloous : bat we could not get the elasticity alone. Now we find that there are other eleatic medis which will serve, and the elasticity may be provided by them. An elastic medium is what is wanted; but divers things will supply the want. They are alternatives, and none of them exclusively reciprocstes with the effect; for the effect may be produced by the help of any one of them, so that the occurrence of the effect does not prove that any one more than another is producing it. But their common property of providing an elantic medium doee reciprocate ; sound cannot be tranamitted without that.

There is, then, alwaye a reciprocating cause ; but it is not always most instructive to atate only that. And very often that is not what we want to know. There are several reasons for this.

In the first pleoe, though the objeot of a acience in to discover strictly univanal propositions, and though in most scienoes ${ }^{2}$ these involve relations of cause and effect, yet as a moience advances, its problems often take a different form than that of an enquiry after the canse of a given phenomenon. We may start with eome phenomenon that seems comparatively simple; and, as we proceed, may find that it depends upon s namber of conditions being combined together, each of which can be fulfilled in a number of waya, but none of them withoat much that is superfloous or irrelevant to the production of the phenomenon in queation; each is an incident of come concrete event, or implies the operation of a property of someconcrete object,

[^184]like the elasticity of air in the case of the tranamission of cound. To state in abstriact form the conditions that murt be satiafied, withoat indicating the kind of object or event in which suob conditions can be realized, is uninstructive; for it fails to explain by what the phenomenon is produced; yet to mention every object or event in which the conditions might be realized would be an endless and unprofitable task. Hence we alter the form of our problem. Looking upon the phenomenon as the complex result of many conditions, we attempt to detormine not what assemblages of objects or events will produce the reanlt, nor on what properties or incidents therein it depends; bat what is the principle of action in different objects or evente, in virtue of which some one particular condition neceseary to the production of the phenomenon is realized in them. For the reciprocating cause of a complex phenomenon we subetitute as the object of our search the principle in sccordance with which a cartain kind of object or event acta. Our problem is better expressed as that of discovering laws of nature, than causes For example, we may ask what is the cause of the monsoons-that is, of the regular and periodic winds that blow steadily in certain regions for one part of the year in one and for another in the opposite direction? If we said that they were due to periodic alternations in the distribation of atmospharic preseure, it would not be very instructive; for we really want to know what evente, happening in those regions, produce theee differences. Yet the events which contribate to determine the deviation and direction of the monsoons are numferous and variable : the exact combination of them differs from year to year and from plece to plece, and produces corresponding differences in the result. It is better therefore to take these events, by their kinds, singly : to point out the difference in powar of the sun at any place produced by the varying direatnees of iterays; how the see givee off vapour; how vapour abeorbe part of the hest of the sun's rays; bow the heated water circulates with the colder; how the earth abeorbs and retaine the heat of the sun ; how air is expanded by heat; how the principle of atamospheric pressure scts under conditione of different expansion; and eo forth. Then we can see that if a certain combination of events occors, a particular complex result must arise; if the sun travels from over the see to over the interior of a continent, we ahall find monsoons ; for the difference between summer and winter temperatare will in
the interior be very great, bat on the sea, owing to the way in which the moisture of the air abeorbe pert of the heat, and the currents in the water carry away part, it is not eo great; hence as summer is ending, the air inland will be hotter and have expanded more than out at sea, as winter is ending it will be colder and have contracted more; so that at one time the current of air sets inland in accordance with the laws of atmoepheric preenre, and at another time it sets shoreward. The principles, or waye of acting, on the part of the ann according to ita altitude, of the earth and sea respectively under the influence of heat, of air when unequally expanded, \&c., are not exhibited solely in the phenomena of monsoons; while the details of thone phenomens display the influence of other principles of action on the part of other objecta (e.g. the sotion of a mountain-wall on a moistare-laden wind). To give the canse of monsoons, without defieienoy or superfluity, would mean that we must not mention the sun (becmuse only the heat of its rays is material) nor the see (because only its fluidity and its power of giving off vapour concern us, and a lake, if it was big enough, would do as well) nor any other of the concrete things which act in the way required, but only their requisite actions. If we do not go to this length of abetrection, we shall have to include in oar atatoment of the cause elements at least theoretically superflions; and evan eo, we ahall have to choose some particular monsoon, supposing we are to state overgthing that goes to produce it. It is clearly simpler to break ap the problem, and look for the principles in eccordance with which objects of a certain kind act under certain circomstances; then we can show that the monsoon is only the complex reault of the sction of a number of objecta under the particular circumstances of the case, and in accordance with the principles of action which our 'laws' exprese.

This then is one reason why what we want to know is not by any means always the reciprocating cance of a determinate phanomenon: the phenomenon under invertigation is often highly complex, and sabject to all sorts of varistion on the different occasions of its occarrence, through varistion in the objects or evente contribating to its production; not the whole nature of the objecta or events under whowe influence it occars is relevant to its occurrence, but only certsin particular properties or modes of action; and it is ponible to formulate severally the principles of action involved,
from which the joint result may be seen to follow, where it would not be possible to assign to the phenomenon any group of concrete objects or events as canse, about which we coold asy not only that, given them, the phenomenon must be given, bat also that, given the phenomenon, they must have been given too. These lews or principles of action may of courne be proved indactively in just the same way as may a causal connerion between two particular phenomens a and m. Jurt as we may argue that a cannot be the case of ε, if it occurs in the absence of ε, or is absent when ε occurs, so we may argue that a law or principle of aotion camot be rightly stated, if consequences should follow from it as thus stated which do not actually arise, or should not follow, which do arise. Here, as there, we may have no other resson for accepting a theory than that the factes are inconsisteat with any other that we can devise; and then our argument is indactive.

Another reason for the same fact is that for practical purposen it is generally more important to know what means will produce a certain reault, than by what it has been produced. We cannot alter the past; we may control the future. The means preecribed for the production of a certain result may contain much that is not relevant precisely to the production of that result; and as this irrelevant matter may be different on different occacions, there may be a choice of means. To have a choice of means is undoubtedly useful; bat if any of these means is called the canse of the result in question, the term cause is clearly not used in the strict sense; for we may be able to argue forward from the means as cause to the result as effeot; bat we cannot argue beokward from the result as effect to this particular mesns as cause. Yet this may be of comparatively little consequence, if our interest lies less in being able to determine by which means the result in question was produced on a past occasion, than that it will be produced if such and such means are employed. About a variety of advertised rat-poisons, all that we should care to know would be that they would rid us of rata; and we might endeavour to determine inductively whether a particular poison was efficacious. But we should be indifferent to the fact that other poisons might be equally efficacious, and that rats who died off need not have been killed by this particular poison; in other words, we shall not want to learn the reciprocating cause of the dying off of rats. Indeed as long as the effect is
stated in such a general way, a reciprocating cause cannot be given. There are, as Mill obearved, many canses of death; and though he was referring to men, it is also true of rate. But death is not altogether the same thing whenever it oceurs; and the doctor or the coroner knows this. The many different canses of death do not have sltogether the anme effecta; if you shoot a man and if you bebead him, the difference in the result is visible; if you poleaxe an ox and if you poison him, he is not equally edible. As soon as we begin to be intereated in the particular variety of death produced, we find the number of canset that produce the result in which we are interested diminish rapidly; if we carried our interest far enough into detail, we might eay that for death of a particular kind there was only one cause possible. But aince much of this detail is quite unimportant, we treat as instances of the same event events which in some reapecte are different, and then asy that the mme event has divers casses: forgetting that the differences between these peveral casses consist partly in irrelevant circomstances, included in our statement becanse indissolably bound up with what is relevant, but otherwise superfluons to the production of this event: and partly in circomstances that are represented by differences in the resulting event, only by differences which we ignore. Here then, in the fact that our vearch is often for means to the production of a phenomenon of a certain general charscter, to the precise form of which we may be indifferent, is a second reason why the causal relations which we seek to establish are often nonreciprocating.

On the other hand, thirdly, there are cases where it concerne us more to be able to argue from one phenomenon to another as its cause, than from the lattor to the presence of the former as effect. For example, there may be alternative symptoms of the same diresee: for the effecte of the disense may differ to come extent in patients of different age, or eax, or race. Here it may be important to show, that if a certain aymptom occurs, that disease must be present to produce it ; while the fect thst the disease may exist without giving rise to that aymptom is a minor matter, and one which, if we could be certain that some other equally conspicnous and unambiguous symptom woold occur instead, might be called altogether unimportant. In such a case we shall be anxious to show a cancal connexion between the disease and the aymptom in quee-
tion, though again the relation will be non-reciprocating; bat it will fail to reciprocate this time, becases the so-called canse may oxist without the so-called effect, although the so-called effect cannot exist without the so-called cause; wheress in such casen as were considered in the last paragraph, the so-called canee always produced the so-called effect, bat the so-called effect might exint without the so-called canse.

Fourthly, our enquiries are often directed to the discovery of the casae or effect of some singular event-singolar, not in the sense of unusual, but of a ringle and definite instance : we ask, for example, what has been the effect of the repeal of the corn laws, or what was the canse of a particalar railmay acoident, or epidemic. It is plain that the relation we wish to entablish in such cases as theme is a non-reciprocating relation. The repeal of the corn laws whe a measure introduced into a highly complex eocial and economic state, and whatever resulte we can point to depend on much else beeides that measure; no one would pretend that the same measare would have produced the same resolts in other ciroumotanoes. Itmight be posesible here to substitate for the question, what effeot repeal bas produced in the United Kingdom, the more ecientific question, in what way corn laws act: the answer to the lettor question might be given in the form of one or more universal propositions : bat the anawer to the former will be a singular jodgement. For it is practically impossible to opecify all the conditions which have combined with repeal to produce the realles in which the influence of repeal is exhibited; so that wo cannot hope to eatablish an universal proposition of the form that repeal of corn laws produces alwaye ander such and such conditions the result which we secribe to it in the case of the United Kingdom since 1846. If a man says therefore that the repeal of the corn lawe has incressed the population, or depopulated the country, or crippled the ancient Universities, or made inevitable a calibate clergy, he is not to be understood to mean either that it would almays produce any one of these effecta, or that they must always be due to a repeal of corn laws: but only that in the history of the United Kingdom, had the corn laws remained in force, other thinge being equal, these effects would not have occarred in the same degree. So also when we enquire the canse of a singralar effect: it may be known that the reoiprocating cause of small-por is the presence of a certain

xxil] NON-RECIPROCATING CAUSAL RRLATIONS

microbe in sufficient strength in the blood; bat if we ask for the cause of a definite outbreak, something else than that is wanted. We want to know what particular precsution hae been omitted, by taking which this outbreak might have been prevented; or in what particular way the infection was conveyed to the neighbourhood. Thus we might say that the outbreak was due to a tramp aleeping in a common lodging-house, or to insufficient vecination; bot it is not imagined that a tramp suffering from small-pox cannot oleep in any common lodging-house withont an outbreak of amall-por following in the plece; or that no such outbreak ever occura anlem from that reason; while insufficient vaccination, even if no serions outbreak ever occurred where it conid not be alleged, may prevail without an outbreak following, so long as nothing brings the infection. Similarly in the cuse of a milway accident, the quection is, what particular act or omission that some one is responsible for, or what other unforeseen event, can be alleged, without which on this accasion there would have been no accident: did a signalman give the wrong signal, or pall the wrong points? did an engine-driver diaregard a aignal? had a flood weshed out the bellast of the line, or a fire dentroyed a wooden bridge? Theee and many more are the 'causes' of railway accidenta, though railway accidents occur without them, and they may ocour without accidenta following.

In previous chapters we have repreeented the phenomens between which it is sought to establish cansal relations by letters of the alphabet. Each of these letters is quite distinct from the reet, ingulated as it were, and discontinuous both with those groaped with it to indicate contemporaneous phenomena, and with those placed apart to indicate phenomens proceding or succeeding it; and the use of them as symbols tends to suggeet that the course of events is a succession of discontinuous phenomena, which produce each the next in a number of parallel or contempornneous series. Nothing could be further from the truth: it is impossible to conceive the matter thus. ${ }^{1}$ We have already noted the ambiguity

[^185]-the convenient ambiguity-of the term phenomenor; eome 'phenomena' which we isolate and individualize by a name do succeed one another; but others do not precede or succeed at all, but endure or pervist. Kant eaid that 'only the permanent can change' : we look on events as occurring to things ; permanent things change their atates; and the permanent thing enters into the carlier and the later atate alike, or persista through them. What that is which remains unchanged, how we are to conceive it, and how we are to conceive the junction between its abiding nature and its changing states-these are very difficult questions. And such deep questions do not belong to the Logic of Inductive Science. But it is clear that our alphabetic symbole fail in the first place to represent the persistence of anything through change : they are discontinuous in their series where they symbolize a change which is continuons. And secondly they are discontinuone within the group that represents contemporaneous phenomens; wheress the contemporaneous phenomena they repreeent are not similarly insulated from one another. What we commonly apeak of as single phenomens are bound together not in independent series unit to successive unit, but by all sorta of cross ramifications, so that each is whst it is in consequence of conditions which are at the same time conditioning many others in the moet complicsted way. To this complication the letters of the alphabet do no justice. Doubtless if we carry our analysis far enough, we may find the a which is the reciprocating cause of x : but a will not in that case as a rule be anything for which we have any single name; a long and carrefully guarded statement of conditions will be what it mast signify.

The fact is that in most cases the reciprocating cane of anything, if we push our enquiries far enough, emerges as the conditions that constitnte it, and not those that precede it and bring it about. The reciprocating cause of small-por is that activity of a specific

[^186]bacillus in the blood in which small-por consists: the reciprocating cause of malarial fever is the corresponding activity of another bacillus. But in the procession of events by which that state is brought about there may be one, which-for one reason or another-it concerns us to single ont, and call the canse: and that will often be a non-reciprocating canse. It need not be so; it is posaible to find an event, whose happening in a given set of conditions or to a given subject always gives rise to some definite new event or state of that subject, and without whose happening such new event or state of that subject never arises. It is supposed for example that malaris is alwaye commanicated to man by the bite of the Anopheles mosquito; there are persons immune to the bacillus, and therefore the bite of Anopheles is atill a nonreciprocating cause; but if we knew what state of a subject precluded immanity, then we could say that the bite of Anopheles caused malarial fever in any man in that state, and we should have stated a reciprocating relation; for no man in that state could be bitten without getting malaris, nor get malaris without being bitten. If with Aristotle we call the conditions which conatitute anything the formal cause, and the event whose occurrence brings those conditions into being when they hed previonaly not all of them existed, the efficient casse', we may say that the formal cause reciprocstes or is commensurate with the phenomenon (as indeed anything must which can in any sense be called the definition of it : and the conditions into which it can be anslysed may be called its definition); while the efficient cause seldom reciprocstes. The event which provides the conditions, or part of the conditions, constituting the phenomenon, may also be called, in a metaphor of Bacon's asing, the velicle of the formal cause; the bite of the Anopheles moequito is the vehicle of, or conveys, the bacillus in whose activity malarial fever consisto; the headsman's axe, or the bullete of the firing party, convey, or are the vehicle of, that bodily state which we call death.

There are indeed many cases where our ignorance of the conditions constitative of a certain phenomenon compels us to seek

[^187]instead for eome event indispensable to ite occurrence, even though our scientific interest would be better satiafied by discovering the constitutive conditions. And there is one moort extensive and important clase of casee where the reciprocating conditions cannot really be called constitative of the phenomenon; it is this class of cases which made it necessary at the beginning of the leat paragraph to write 'moat' and not 'all'. The former sort may be readily exemplified in the biological sciences. 'That form of barrennese,' writes an authority quoted by Romanes ' ' 'very common in some districte, which makes heifers become what are called "bullers"-i. e. irregularly in seeson, wild, and failing to conceive -is certainly produced by excess of iron in their drinking water, and I suspect also by a deficiency of potash in the soil' Here we have one and perhaps two canses alleged for an effect, whowe natare we do not understand sufficiently to see how the causes bring it about, though the facte may prove the connexion. Such a relation may be called discontinwow-i.e. we do not see how the alleged cause, by any intelligible procession of evente, pesees into the effect, or helps to set up the conditions constitative of it. We connect one phenomenon as cause with another as effect, where from our ignorance of the intimate nature of the effect, and of the subject in which it is produced, and from the fact that the intervening proces of change is withdrawn from view, the two seem quite heterogeneons. In Cbicago, one is told, there are machines into which you plese a pig at one end, and receive sausages at the other. The pig and the sausages, to any one who has no conception of the nature of the machine and what befalle the pig in it, appear in a relation of sequence without continuity : first the pig exists, and then instead of it, the sanages; but we do not see how the one becomes the other. This comewhat mgthical mechine may serve to illustrate how our ignorance of the nature of the procees of change connecting one event with another may produce apparently discontinuous causal relations; and such relations are often all that we can at preeent hope to discover; and they are generally, as may easily be understood, non-reciprocating relations. This case is different from that mentioned previously on p. 446; for there it whe our practical ends which interested us in causee that were non-reciprocating;

[^188]here it is due to the limitation of our acientific knowledge that we heve to sequiesce in them.

But in the extensive and important clese of cases to which attention must becalled next, we find discontinuity even where the causal relation reciprocates: viz when the cause is physical and the effect perchical, or vice verse It has already been stated that such connerions furnish one of the best kinds of example of parely inductive reasoning, because there is nothing in the nature of a particular phyoical process which would lead us to anticipate the particular paychical state that we find ourselves led by the facte to connect with it. What may be the true interpretation of this apparent dependence of paychical states on phyrical processes, and phyrical movements on paychical states, is the hardest question in metaphysics. Meanwhile, at the standpoint at which many aciences and all of as in our ordinary thought are content to atop, we attribute many paychical events to physical causes, and vice verse. In science indeed the sttribution of physical effecta to peychical causee is less common than that of paychical effecta to physical causes ; just becanse between the succeesive events in the physical order there are prospects of establishing that continuity, which there reeme less hope of eatablishing in any completenese in the peychical series, and none of establishing between members of one series and members of the other, between a motion of matter in the brain and a sensation or thought or feeling or emotion. The series therefore whose members do appear capable of continuons and coherent connexion is often- treated a independent, and paychical states regarded an by-products of particular terms in the physical series; although further reflection can easily show that anch a statement of the case, when thought out into its consequences, involves us in hopeless contradiction. We are however at present only concerned with the interdependence of physical and psychical states as it appears to exist, and is for many practical parposes rightly treated as existing.

It is supposed that to every distinct atate of conscionsness there corresponds some distinct state of the body; and this bodily state is not separated from the state of conscionsness by any intervening process, the discovery of which might help us to see how one gives rise to the other (ari drinking water with an excess of iron in it is separated from the supervening larrenness in a heifer). There is perhaps no interval of time between them, but the completion of
the conditions in which the bodily state consists is ∞ ipeo the production of the correaponding state of consciousnese ; so that some writers have been led to speak as if the state of consciousness could be analywed into these bodily conditions, and they really constituted it. That however, when examined, proves to be nonsense.

Yet though in this field we may hope to find relations that reciprocate in spite of the discontinuity between the so-called casse and its effect, there are instances here too where the cansel relations are non-reciprocating; and of this perhape the most notable instance is death. It was explained above, how the many alternative causes of death are not all of them causes of the came effect; because they do not put the body into the same state, although the differences may not concern us. But if we look not to what befalls the body, but to the reault on conscioneness-whether we suppose it to be that the soul is separated from the body, or that it is destroyed-we can eee no difference in that main result corresponding to the difference of the means by which it is produced. If the sonl, or individual conscionaness, be destroyed at death, there is of course nothing any longer in which a corresponding difference can be displayed; if it be not, we may conceive that as the manner of a man's death, if it be not aboolutely sudden, affects him while he yet lives-one death being more painful, for example, than another $-\infty$ the differences between one death and another are represented by some difference that persists in the experience of the soul after death, and therefore the effect is not really the same upon the soul when the physical 'cause' is different. But such a suggestion is quite unverifiable; and however that may be, it is well to realize the peculiarity of the relations which we try to eatablish between physical causes and paychical effects; owing to the heterogeneity of the two terms, we cannot hope to find an intelligible cause of the peychical state in the conditions constitutive of the physical state with which it is connected; at this point there is discontinuity; and so there may arise an appearance of different canses producing the same effect which we cannot explain as we explained it in a purely physical sequence. There we saw that different series of events might, in their course and as a part of their result, agree in establishing the eame complex of conditions constitative of some particular phenomenon, although the difference in the events occasioned differences in the rest of their reanlt which we ignored.

Here, inasmach as we cannot see that the different causes establish conditions that are constitutive of the effeot at all, the appearance of the same effect when the causes are different cannot be exhibited as a case where effects different an a whole (in a way corresponding to the difference of the canses) agree so far as concerns the conditions constitutive of the phenomenon we are investigating.

The term Plurality of Cavecs ${ }^{1}$ has been used to indicate the fact that the same phenomenon may have different causes on different occasions. We have seen that the fact is more apparent than real : that the alternative 'causes' of a phenomenon, which make up the plurality, are none of them casses in the strictest eense, but nather evente which agree so far as the production of the phenomenon requires, though taken as a whole they are very different. It would perhape be well if there was a torm to indicate the corresponding fact, that the same phenomenon may produce different effects on different occasions: s fact also more apparent than real, for such phenomenon cannot be the cause, in the strictest sense, of any of the alternative effects which it produces. We might speak in this sense of the Diverrity of Effects. In neither case do cause and effect reciprocate.

Where the cause or effect sought is non-reciprocating, it is obvious that the rules on which the elimination involved in inductive reasoning resta are no longer to be aafely trusted. If the same effect may have divers canses, we cannot say that nothing in the absence of which \& phenomenon occurs can be the cause of it; it cannot be its canse in the particular instance in which it is absent; but it may be on another cecasion. If a small group of plants be geographically isolated from the main stock, it will diverge, and in course of time probably give rise to s new species; but there are other ways in which a particular group may be prevented from interbreeding with the main stock (e.g. by flowering at a different season), so that new species may arise in the absence of

[^189]geographical imolation ; it would clearly be unmefe to conclode, from the fret that new eppeciee had arisen without geographical ieolation, that geographical inolation wa not a cause of new opecies arising.

No doubt such an argament would betray insufficient analysis: it would overlook the faot that geographical isolation wn not a single factor, bat highly complex; and that one featare about it-riz. that it prevented interbreeding with the rest of the atock-characterised aleo such very different phenomena as difference of flowering-enson, or selective sterility. ${ }^{1}$ However, our analysia is very commonly incomplete ; and then it is poosible, that by applying the above rule, of eliminating whatever faile to ocear in any instance of the effect, we have eliminated the canse altogether : and that if some circumatance is laft oneliminated, because it frile to occar in none of the instancee of the phenomens, we take it to be the cause of what it has really nothing to do with. If a child were given the same medicine in a variety of jams, and always had a particalar biscuit afterwarda, it might very likely attribute the effecte of the medicine to the biscuit. Sappose my spple-crop faila four yeara in encceasion, and that each year it was 'overlooked' by a woman reputed to have the evil eje: were I to argue that the failore was not due to insuffioient rain, since in the first year there was plenty-nor to late frosta, for in the leat year there were none-nor to blight, which only occurred once-nor to high winds, since the third year wae singularly quiet, I might at leat attribate the failare of the crop to the ' witch-woman' overlooking it.

In sach a situation it is well to test one's results by the second rule, that nothing is the canse of a phenomenon, in the presence of which the phenomenon fails to occur. If the child were frequently given the same biscuit when it had not been doeed, it would learn to disconnect the biscuit from the effecter of the medicine; and if the witch-woman were observed to overiook my orchard in several years when I aubeequently obtained an excellent crop, I might be cured of my superstition. It is however possible that I might otill hold her reaponsible for the bed oropa, and apply the doctrine of

[^190]the Diversity of Effecte to explain why her action had failed of its previous result on other occasions. Perhape I might have had the crop blessed by a prieat, and attribate to that an effect counteracting the influence of the evil eye; or merely say, that the evil ege cannot be expected always to produce the same resulte, when there must be many contributory conditions that are varying.

There is no remedy against such errors except a wider acquaintance with facts, and a closer analysis of them, and a better way of conceiving them and their connerions. To this end however very special help is given by eaperiment. The resulta of an experiment are of the same kind with the data of obeervation-facts, namely, with which we have to make oar theoriee consistent; and the inductive reasoning to which the facts contribute premises is not altered in character because the facter are obtained experimentally. But where we can experiment, we can commonly discover facts which obeervation would never reveal to un We can introduce a factor into conditions carefully prepared, so that we know more or leas accurately what change we make, and in what we make it; and then, when we watch the effect, the work of elimination has more groands to proceed on. If we are in doabt whether to refer some phenomenon to a plarality of canees, or to a single circumstance which, as present in all our instances, they have not so far enabled us to eliminate, we might reeolve the doubt by producing this circumstance experimentally: should the phenomenon not follow, we have then shown that, at least in the conditions into which we introduced it, the factor in queation will not produce it. We may then try one and another out of the plurality of alleged alternative causes: and if we find each of them prodncing the phenomenon, we shall conclude that they are causes of it. We shall still probably be far from having discovered its precise canse, without deficiency or superfluity; bat we shall have advanced our enquiry. The child who attribated to the biscuit the effecte of the medicine conld correct its error by experimenting with the biscuit separstely, and the medicated jams separately. And if I could bring myself to experiment with the evil eye, I might convince myself that it was innocuous to orchards.

It should be noted that though the Plarality of Canses and the Diversity of Effecta render precarious, when our analyyis is imperfect,
the application of both the groands of elimination just cited-viz. that nothing is the canse of a phenomenon in the abeence of which it occurs, and nothing aleo, in the presence of which it fails to occaryet the amount of error in which we may be involved is not the same in each case. Should we reject in tarn everything, withoat which the phenomenon is found to occar, we might reject all itu several canses, and fall back on something whose presence in the instances we have axamined is quite accidental: something altogether immaterial to the phenomenon. On the other hand, shoold we reject everything, with which the phenomenon is yot found not to occur, though we might be wrong in conclading thet what is left is the whole cause of the phenomenon, or that the phenomenon may not have other canses, yet we should be right in conclading that it was not altogether irrelevant to the prodaction of the phenomenon. I give a dog cyanide of potassium, and it dies; assuming this to be the only fresh circumstance in the case, I cannot conclude that doge do not die without taking cyenide of potessiom; but I can conclude that taking cyanide of potassiom contribated something to the death of this dog, and that the conjonction of the two events was not merely accidental, as eating the biscuit was secidental to the child's subsequent experience, or as being 'overlooked' by a witch-woman was accidental to the failure of my apple-crop. In the former case, where I rejeot everything in whoee absence the phenomenon occurs, I reject too mach : the eseential factor larks andetected each time in a different ' vehicle': each of these 'vehicles ' is rejected in turn, and the essential facts rejected with them. In the latter case, where I reject everything in whose presence the phenomenon fails to occur, I may reject both too much and too little-perhape too much, for what I reject, though insufficient of iteelf to produce the phenomenon, may contain conditions withont which it cannot be prodnced : perhape too little, for what is left, while I take it to be essential to the phenomenon, may still contain more than the easential factor that lurks within it; so that other things, in which the same esential factor is contained, may equally serve to produce the phenomenon; yet still I retain eomething essential, and do not reject everything which I need to retain.

This also is to be considered: that in the loose sense of the term eanse which we are now employing, we may either mean

xxii] NON-RECIPROCATING CAUSAL RELATIONS

(i) something essential, but by itself insufficient, to the production of the phenomenon (as when we say that atmospheric pressure is the cause of water rising in the common pump, though the production of a vacuam by pamping is necessary too) : or (ii) something sufficient, but superfluous in part, to its production (as when we say that the explosion of a powder magazine under the place where he is otanding is the canse of a man's death) : or (iii) something at once auperfluous in part and insufficient, but containing an element that is essential (as when we say that the Company Acta are the canse of a new clase of fraudulent actions) : or, where our phenomenon is the failure or deatruction of an effect that depends on the fultilment of a namber of conditions, in the absence of any one of which the effect cannot occur, (iv) something sufficient but not essential to such failure or deatruction (as when we say that a late and severe frort causes the failure of the froit crop). Now when by 'cause' we mean (i) something essential but insufficient, it is only part of the real cause; and there must be other factors, aleo essential but singly insufficient; and it is false to asy (1) that nothing in the presence of which the phenomenon faile to occur is its cause in this sense; though it is true to say (2) that nothing in the absence of which it oecura is its cause. Neverthelese when we use the former rule to show that certain circumstances are not the canse, and therefore that what remains is so, we use it really to show that such circumatances are not sufficient, and that what remains is ecsential: which if we thereupon call the cause of the phenomenon, we mean to emphasize the fact that it is essential, but not necessarily to assert that it is sufficient; and hence, though what we reject or eliminate may have as much right to be called the cause as what we retain and call so (as being also essential though not sufficient), we fall into no error in inferring that what we retain is (or contains) something essential, nor need we fall into the error of supposing that there is nothing essential in what we reject. But when by 'cause' we mean (ii) something sufficient, but in part superfluous, to the production of the phenomenon, then on the contrary it is true to say (1) that nothing is the cause, in the presence of which it fails to occur: but false to say (2) that nothing is the cause of it, in the abeence of which it occurs ; if a man could be blown to pieces by the explosion of a powder-magazine without dying, that would not be, in this sense, the cause of bis death; but if he may die without being blown to pieces, being
blown to pieces may still in this sense be a cause of it In thin sense (ii) of canse therefore, the second of the above rales or grounds of elimination is false, and the first true; while conversely in sense (i), the firut is true, and the second false. Bat when we are opeaking of canse in sense (i), the application of what is then the false rule is lewe miseading than, in sense (ii), is the applice tion of the rule which ia faleo for it. We really argue from the principle that nothing is anficiont, in the preeence of which the phenomenon fails to ocear, to the conclusion that something else is esoontial. This principle is true. If the something elee is thereupon called the canse, in the sense of being eseential thongh insoffcient, yet what is eliminsted is denied to be cause, in the sense merely of being insufficient. By means of this discrepancy in the meaning attached to the term 'canse' as applied reapectively to what we rejeot and what we accept, in the case where we wiah to establish that one thing is essential to the production of another, though not necessarily sufficient, the rule, that nothing in the presence of which the phenomenon fails to occur is its canse, comes to seom a safer ground of elimination, than the Tole, that nothing in the absence of which it occurs is its cause, appears to be. Bat if the term 'caase' is interpreted in both with the same strictnew and consistency, there is no justification for discriminating between them.
[J. S. Mill, who opoke of what he called the Plurality of Censes as the 'characteristic imperfection of the Method of Agreement', said that the Method of Difference was unaffected by it. Clearly he was wrong. The above argument endesvours to bring out the truth underlying the exaggeration of his statement. That he was wrong may be seen further by belp of the following connideratione If a occurs under the circumstances $a b c$, and not nader the circumstances $b c$, I can infer that $b c$ is not sufficient to produce a, and that a contributed to its production on this occasion; but I cannot infer that s could not have been produced without a: ple might equally produce it. That a and p can equally produce s (or equally produce it in bc) is an instance of the Plurality of Causes; and it is the Plurality of Canses therefore which prevents my inferring universally that x is produced by a, or requires a for ita production, and limits me to the inference thast a produces x, at leaet in $b c$. It will be said that a and p must have some common property r, which is the really essential factor. No doubt; bat, as we have seen, this is equally the case in any instance of Plurality of Causes; if I
[refuse to infer, in accordence with the 'Method of Agreement', from the fect that a occare under the circomstances abe, ade, afg, that a is its cause, urging that for anght I know the cause may be c in one case, e in the next, and g in the third, I muat believe that c, e, and g contain a common r which is the really essential factor; and then a is not the 'only circomstance in common', for r is another: just as in the other case a was not the 'only circumstance of differenoe', where a occurred and where it did not, but really r contained in a was a circomstance of difference as well.

The distinction which Mill draws between the two ' Methods' then is not altogether sound; for the appearance of Plurality of Causes affects the inference which can be drawn in each. But there is this much truth in it, as was pointed out in the text: that in the ' Method of Agreement', where I am eliminating that in the abeance of which the phenomenon occurs, I may unwittingly eliminste the easential factor: I throw away the baby with the beth, and am left enpposing that a is the canse of x, when a may really have nothing to do with it, and its presence in each of my instancee be a mere accident; in the 'Method of Difference', where I eliminate that in the presence of which the phenomenon fails to occor, though a large part of a may be superfluous to the occurrence of x, yet it is not altogether superfluous; I do not this time connect s with momething that has nothing to do with it. But I am unsble to infer a reciprocating relation between a and \boldsymbol{a} for the same rewson that in the former caoe I was anable to infer any relation at all-viz. the Plurality of Canses. And let it not be said that this difficulty would not arise, if the conditions of the 'Method'were fulfilled, and a were the only circumstance of difference where x occurred and where it did not. For (i) I should atill be unable to infer a reciprocating relation : I could only conclude that a was necessary to the production of a in bc: how much of be was aloo esential I should not yet have discovered. And (ii)-what belongz more particularly to the preaent contrast-it is equally the cese that if a were the only circumstance of agreement in the instances where \boldsymbol{a} does occur, the difficulty would not arise. In both cases, if the analywis of the circomstances were more complete, the Plurality of Canse would disappear.

Mill seems unconecioualy to assume that this analysis is more complete when we employ his 'Method of Difference' than when we employ his 'Method of Agreement'. The reason of his doing so is probably that experiment uses the 'Method of Difference' (or the principle of elimination which it involves), and a completer analysis is generally obtainable when we can experiment than when we are confined to the obeervation of evente as they occur in nature: experiment uses the 'Method of Difference', because in experimenting we introduce or remove some particular factor-and that
[ander circomstances which we have endeavoured to accertain as precisely as poseible-and watch the result; and if we are right in aseaming these circomstances to remsin otherwise unchanged, we do approximate to having only the 'one circumstance of difference' which Mill's canon requires; in other words, we are really eliminating at once and by appeal to a single principle all except this factor removed or introduced by us; though it must not be forgotten that what we eliminate is only ahown to be insufficiont to the production of the phenomenon, and may still contain conditions that are essential though not sufficient. We may note here the reason why Mill thought the 'Method of Difference' to be of superior cogency. The reasoning is clearly no better in it; but it is easier, in the case of this 'Method', to obtain facts of the lind on which cogency depends, becanse it is easier to obtain them by experiment, and this 'Method' is practically a formalation of one of the commonest ways in which we reason from the results of experiment. We may indeed eay that the error into which reasoning from an incomplete analysia of the facts may lead us is greater when our ground of elimination is that underlying the 'Method of Agree ment' than when it is that underlying the 'Method of Difference': because in the former case we may reject what is essentinl, and end by attributing the phenomenon under inveatigation to something whose presence is quite accidental ; while in the latter case, we may rather end by supposing that more is essential to it than really is so. Yet there is error in both cases, and for the same reason, viz. oar incomplete acquaintance with the facts. What Mill however saw was, that where you can experiment with precision, your aoquaintance with the facts is moot complete, and hence the conclusions to be drawn most cogent. It is just in these cases that the ' Method of Difference' as he formulates it is specially spplicable; for it requires instances where the phenomenon occurs and where it does not occur with 'only one circumstance of difference'. He overlooked the fact that the ressoning is just the same, where this condition is not fulfilled, so long as your ground of elimination is the same-viz, that nothing in the presence of which the phenomenon fails to occur is ita canse; and so he attributed to the 'Method' a superior cogency which really belongs to the 'prerogative' nature of the instances in connexion with which chiefly he considered its use.]

It has been the object of the present chapter in the first place to acknowledge that the 'Rules by which to judge of causes and effects', whereon inductive ressoning depends, are not infallible where we are dealing with non-reciprocating causal relations; for they rest on the assumption that one effect has only one cause, and conversely that the same cause has never any but the same effect;
and so they furnish no safe guide to the discovery of ' canses' which are not the only causes of the effect aseigned to them, or of effects which are not the only effects that the alleged canse may have. Its second object has been to show that such non-reciprocating causal relations arise from the fact of our including in the cause more than is necessary, and perhaps also less than is necessary, to the production of the effect: or including in the effect less or more than the canse asaigned produces; i.e. our analysis is not perfect: we combine with the matters strictly relevant to one another others irrelevant, but cloeely bound up with what is relevant : so that there appears to be a Plurality of Causes for the same effect, or a Diversity of Effects for the same cause, while really, if we could 'purify' our statement of the cause and the effect sufficiently, we should see this not to be the case. But we admitted that for many purposes, practical and even scientific, it is causes in the looser sense that we need to discover-the sense in which the cause includes more than is material to the production of the effect in question, but a more from which what is material cannot be dissevered, and so forth. And we saw that acience, when pushing its investigation beyond such a level as that, tends to subetitute for the rearch for the determinate canse of some concrete effect the search for laws or principles in accordance with which things of a certain kind act on one another under specified conditions.

In illustrating these pointa, the rules whose guidance we showed to become uneafe when non-reciprocating relations were in question were the first two of the rules laid down in the Twentieth Chapter. But the laet two are also liable to mislend us in auch cases. These are, thut nothing which is constant when the phenomenon varies, or varies when it is constant, or varies independently of it, is its cause: and that nothing which produces a different effect is its cause. In particular I cannot, because elimination based upon these rules reveals that \boldsymbol{v} is not independent of a in the instances before me, infer that a never occurs without a; for p might do as well. If I find that the faster I rum, the hotter I get, and if I know that the temperature of the atmosphere has not altered, and so forth, I may infer that running makes me hot; but not that no one geta hot without ranning. If I experiment over a series of years with a particolar manure, and take care to ascertain by 'controlling' experiments the average crop that I might bave expected without
its use, I may be led to attributs the excen to the use of the manure; but I cannot conclode that a cimilarly lage crop is always due to the use of it. Errors of that eort would be similar to those which I might commit in applying the rule that nothing is the canse of a phenomenon, in the presence of which it fails to ocear: then too I have no right to cesume that what I fail to eliminate is altogether necemary, and that nothing else woald serve equally insteed of it. Bat the danger of eliminating too much, which beseta the application of the role that nothing is the canse of a phenomenon, in the abeence of whioh it occars, doee not equally beset the application of the two rulea we are now considering. It is true that in invertigating the cause of a phenomenon that may vary in quantity or degree, and is due as a whole to a number of contributory factors, this danger is theoretically possible. The quantity or degree of the phenomenon might remain constant, owing to divers complementary variations in the factors, some increaring as others decreased; and becanse the varistions macked one another, I might reject each varging factor in turn, until I had rejected all the contributory fuctors, as capable of varying with no correaponding variation in the phenomenon. But this is not a probable error. And the fact that the phenomens, to which these rulea are applioable, are chielly measurable phenomena, is of great importance in the use of them. Peculiar diffioulties no doabt ofter beset us in tracing the influence of some particular factor apon a phenomenon, which varies in magnitude dependently upon the joint action of a large number of conditions independently variable; it is for example exceedingly hard to determine indactively whether the corn-daty of 1902 influenced the price of bread in Great Britain. But these difficultiea would obvioualy be altogether insurmountable if no measarement of the conditions and of their result were possible. The introduction of the olement of quantity enables us to determine lews which connect a definite amount of change in one phenomenon with some correoponding amount in another. Where we can do this, we are already getting clear of the errors lurking in non-reciprocating causal relations. It still remains true that we cannot, in virtue of a lew which connects with a change in the condition a a correoponding change in the result x, argue beckwards from the presence of x to that of a. But that point has been sufficiently exemplified already; and inasmuch as

[xI] NON-RECIPROCATING CAUSAL RELLATIONS 465

some special attention will have to be paid in another connexion ${ }^{2}$, when we are dealing with the importance of quantitative methods in indaction, to the two rules or principles of elimination leat mentioned, it is perhaps anneceesary to ay anything further here upon the care that must be used in argaing from them when the causal relations which we have it in mind to eetablish are nonreciprocating.
${ }^{1}$ CE. infra, a. miv, pp. 516-521.

CHAPTER XXIII

OF EXPLANATION

To explain anything is to show that it follows from something either already known, or taken as known, or shown by our explanstion to be true. ${ }^{1}$ Explanation is deductive, for it goen from conditions to their consequences, from principles to that which they involve. We may explain either a particular fact or a general principle. There is no fundemental difference between the two undertakings; but in the explanation of particular facta, particular facta necessarily figure among the conditions to which we appeal. In all explanetions, our premiscen are 'special' or 'proper' or scientific principlea. General logical considerations, such as direct us in the inductive search for cansal relatione, mocount for nothing in particular ; every explanation must be consistent with them, but they will not themselves explain anything. The explanation of the facts or derivative laws of any acience rests therefore on a scientific knowledge of the subject-matter of that acience.

In an earlier chapter it was pointed out that the first or fundsmental principles of science are themselves insusceptible of scientific explanation. It does not follow from this that the principles which at any given time are the moot altimate to which a science appeals should be insusceptible of explanstion; the Law of Gravitation, for example, is and has long been a fundamental physical priaciple, but various mathematicians have attempted to show that the behaviour of matter expressed in that law follows necessarily from some more general principles axhibited also in activities whose principles we commonly regard as different, like electricity and light. But the process of explaining must come somewhere to an end. with principles deducible from nothing prior to themselves.

These principles, as was also pointed out, may possibly appear

[^191]self-evident when we have reached them; the First Law of Motion has often been thought to be a eelf-evident or neoespary truth. But in most cases, they do not; and then all that we can say about them is that nothing so well explains those facts, the stady of which ${ }^{\prime}$ has led us to their enuncistion. This however is a pis aller.

It has not infrequently been said that scientific certainty is unattainable. Jevons arges that the conclusions of Induction are only probable at the beat. The resson is that the principles which we arrive at 29 those which explain things are not-at least as a rule-seen to be neceseary; and that we cannot aboolutely prove that mo other principles will explain the facts: just as in simpler inductive enquiries our confidence in the carse which we assign to a phenomenon is qualified by the difficulty of being sare that we have overlooked nothing which might equally, upon the facts examined, be allowed to be the cause.

Jevons indeed suggests ${ }^{1}$ that the true though impracticable roed to certainty would lie in Complete Enumeration. 'Perfect Induction' reste on complete enumeration, the 'Imperfect Indaotion' of actual recientifio procedure does not; and in this he see the source of the 'imperfection' which conclusions only approximately certain possess. But though we may agree with him that many of the conclasions accepted in acience fall short of certainty, we cannot agree that they would rank higher if they were reached by complete enumeration; for in that case they would not be univeral truthe at all, in the proper sense, but only truths about the whole of a limited number of particular facta. Indeed the antithesis of Perfect and Imperfect Induction is an unfortunate one. It belonga to a different sense of the term Induction from that which, in the phrase Imperfect Induction, the term now bears. It is drawn from the completeness and incompleteness of the enumeration of the particulars on which the Induction resta, and to which ite conclusion refers; we have seen that if a generalization rests merely on citation of particular facts, without any attempt to eatablish connexions of a causal character by analysia and elimination, the citation should be complete; though in such cases, the conclusion has not the troe character of an universal proposition. But the reasoning which infers general truths from the analysis of a limited number of

[^192]particalars doee not rely on enumeration, and is not an operation of the amme hind as that which proceeds by complete enumeration. Though the one therefore may cite every instance, and the other not, yet they are not to be contrasted as if they were operations of the aame kind differing only in that feature. They are operations of different kinds; and their other differences are more fandamental than the difference in the completeness or incompleteness of the enumeration they involve. If the one is called perfect because its enameration is complete, it muat be remembered that it requires a complete enumeration; bat since the other does not require it, it is misleading to call it imperfect for not employing it. The imperfection attaching to the conclusions of inductive science-conclusions which are aid to be reached by 'Imperfect Indaction'/springs from the defective analysis of the instances cited, not from failure to cite every instance; and it is a mistake to auppose that ' Perfect Induction', if it could be employed - as it is acknowledged it cannot-would remove the defect of certainty atteching to acientific generalizations. For science seeks after the necessary and the - universal, not after the exceptionless.

However, our preeent concern is less with the reason for the want of abeolute certainty in the principles of ecientific explanation, than with the fact iterelf. It cannot be denied that the first principles of acience rest for the most part on no better foundation than this, that no others have been suggeated which explain the facte equally well ; and this is not the aame an saying that no others can be suggested which will do so. And even if we were matisfied that no others could be ruggeated, i. e. if we could be cartain that molking so well explains the ficts as the principles to which we appeal in our explanation, yet if we cannot $s e e$ why these principles need have been what we find them to be, we are otill left with oomething that at once demand to be and cannot be cccounted for.

We shall be wise therefore to recognize these two things aboat scientific explanation at the outset, vix. (i) that it often starts with principles, or traths, or laws, which are neither accounted for nor in themselves self-ovident, bat only warranted by the suocen with which they account for the facta of our experience: and (ii) that these principles are not abeolutely and irrefragably proved, so long as any others which might equally well account for the facts
remain conceivable. But it would be foolish to let these considerstions engege us in a general and indiscriminate distrust of acientific principlea. Such principles may lack that domonstrable character which we should like them to have; and Logic would abandon its function, if it heaitated, out of reapect for the grestnoes of ecientific echievement, to point this out. But they hold the field; we are not entitled to treat them as dogma, which cannot be questioned; bat we are entitled to say that so long as they remain anahaken, thoy should be treated as true.

It may be objected that they are not nashaken; for the fundemental concepts of science are unable to resist metaphysical criticism : the independent existence of matter, the action of one independent thing on another, the production of a conscious state by a process in a physical organim, are all unintelligible. And it most be allowed that the representation of reality which the physical sciences offer cannot be the ultimate truth. But if the provisional nature of ite metaphysical assamptions be borne in mind (for science does not really discard, though it sometimes professes contempt for, metrphysics), we may then admit the explanations which it offers within their limita.

If however we are to acoept those principles which best explein the facts of our experience, we must have some antecedent notion of what a good explanation is. Now it can certainly be required of an explanation that it ahould be aelf-consirtent. But we are not content with this. There are a number of maxims, which do actually gaide us in theorizing sbout the laws of nature, pointing to some more positive ideal than self-consistency. The influence of these maxims shows that there operates upon scientific minds some notion of what a rational universe should be, as well as a belief that the universe is rational, not derived from experience, but controlling the interpretation of experience. We saw that the principle of the Uniformity of Nature wes an 'anticipation' of this kind; but it does not stand alone in that regard. 'The common notion that he who would eearch out the secreta of nature must humbly wait on experience, obedient to its alighteat hint, is,' it has been said ' ${ }^{\text {, }}$

[^193]' but partly true. This may be his ordinary attitude; bat now and again it happens that observation and experience are not treated as gaides to be meekly followed, but as witnesses to be broken down in crose-examination. Their plain message is disbelieved, and the investigating judge does not pause until a confession in harmony with his preconceived ides has, if poesible, been wrang from their reluctant evidence.' What theee preconceived ideas are, it would be difficult to say precisely; nor is the question of their justification an easy one. They have formed the subject of considersble discussion on the part of philosophical writers since the time at least of Leibniz, who perhape did most to call attention to them. But one of the most famous has a much higher antiquity. 'Occam's razor' ' -entia now sunt maltiplicanda practor necessitatemis a maxim to which science constantly appeals. It is felt that there is a presumption in favour of theories which require the smallest number of altimate principles: that there is a presumption in favour of the derivation of the chemical elements from some (common source, or of the reduction of the laws of gravitation, electricity, light, and beat to a common besis. Again, we are inclined to believe that the ultimate laws of nature are not only few but eimple. The law of gravitation states that the attraction between any two bodies variee inversely as the square of the distance. But it is conceivable that the true relation of the force of attraction to the distance of the bodies between which it acta is not so simple; provided it diverged from the ratio of the inverse equare so slightly that the difference would be less than our obeervation, with the margin of error to which it is lisble, could detect, such less simple relation would have as much to be asaid for it, so far as the facte go, as the simple relation that Newton eatablished. Yet few would seriously consider its claims. It may be said, and truily, that there are sound practical reasons for accepting the simple relation, in preference to any other that has no better claims, because it renders our calculations mach easier; yet it may be doubted whether we really regard it as only a more convenient hypothesia. , We should regard it as more likely to be true, and this because such a simple relation satisfies better our ideal of explanation.
action at a distance. It may however be doabted whether this refosal is as well juntified ace that belief by the maxime in queation.
I William of Occam, ob. 1847.
J. S. Mill's definition of Law's of Nature has been already quoted 'the fewest and simpleat assumptions, which being granted, the whole existing order of nature would result'. ${ }^{1}$ In the words 'fewest and simpleat' are contained perhaps the most important of the preconceived ideas which we have abont the explanation of the facte of neture.

It is impossible to reduce explanation to any definite formulae. When nothing but a middle torm is wanted, to connect with a subject a predicate empirically found to characterize it, there it will fall into the form of syllogism.' But comparatively few explanations can be expressed in a single syllogism. Where, as is commonly the case, they trace the complex result of soveral principles in some particular combination of circumstances, the building up of this result in thought can never be expreseed syllogistically.

As has been said above, there is no fundamental difference between explanation of a particular fact and of a general principle. In the latter case, more abstraction has been performed; we are explaining something exemplified in fecta that constantly occur, that has beep extricated in thought from varying and irrelevant detail. In the former also, come amount of abstraction must have taken place; but the fact we have thus isolated still retains details that make it unique. An oculist may explain the common fast that shortsighted persons grow longer-nighted as they grow older, by showing how clear vision depends on focusing all the rays proceeding to the eye from each several point precisely apon the earfince of the retina; in short-sighted persons, the curvature of the lens of the eye is excessive, and therefore objects have to be nearer than would normally be necesary, in order that the rays proceeding from any point in them may be focused on the retins and not in front of it; but the curvature of the lens is maintained by certain muscles, which relax with age, and therefore as years advance, clear vision of objects is possible at a greater distance. If he were called apon to explain some unique pecaliarity of vision in a particular patient, the task would still be of the same kind; bat the facta to be taken into account would partly be facts peculiar to this case, and though their consequences would be traced according to general principles, their special combination would make the complex reault unique:

[^194]unique however not necesearily, for the same combination might conceivably recur, bat only as a faot within medical experience.

Historical axplanation is largely concerned with events in this sense unique. History has generalizations that admit of explanetion also; but human affiairs are eo complear, and oar interent in them vertends into so much detail, that the noique occupies a quite peculiar share of attention in its invertigations. And its task consists largely in matring fects intolligible by tracing their development. For an institution or event, when we come upon it as it were abraptly, may surprice us: wheren if we know the past, we may see that its existence or occurrence connecte itmelf with other facte abont the same folk or period in acoordanoe with acoepted principlee. The institation of primogenitare for example, acoording to which land descends upon the eldest son, is a pecaliar institution, unlnown, sccording to Sir Henry Maine, to the Hellenic, to the Roman, and apparently to the whole Semitic world; neither did the Teutonic races when they apreed over Wentern Earope bring it with them as their ordinary rule of ancoescion. Whence then did it originate? for auch institutions do not occur at haphezard. Maine accounte for it ae 'a product of tribal leaderahip in its decay'. Chieftaincy is not the mame thing as being a landowner; but some of the tribal lands were generally the appanage of ohieftainoy. So long as times were warlike, the ohieftainoy seems not necesearily to have gone to the eldeast mon of the deoensed ohief; but 'wherever some degree of intarnal peace was maintained during tolerably long periode of time, wherever an approech whe made to the formation of societies of the distinotive modern type, wherever military and civil institutions began to group themselves round the central authority of a ling, the value of atrategical capacity in the hambler chiefs would diminish, and in the amaller brotherhoods the respect for purity of blood would have unchecked play. The moot natural object of this respect is he who most directly derives his blood from the last ruler, and thas the eldest son, even though a minor, comes to be preferred in the succession to hie uncle; and, in default of sons, the succession may even devolve on 2 woman. There are not a few indications that the transformation of ideas was gradual'. The custom, Maine thinks, was greatly fixed by Edward I's decision in the controverry between Bruce and Baliol; where the celebrity of the dispate gave force to the preoedent. The rule of primogeni-
ture was extended from succession to the lord's demesne to succession to all the estates of the holder of the signory, however acquired, and ultimately applied to all the privileged classes throughout fendalized Europe. ${ }^{1}$ In a case like this, a knowledge of past facts enables us to nee how a now custom might emerge conformably to known principles of human nature. There are motives for allowing the chieftaincy to devolve apon the eldeet mon, and motives for conferring it apon the strongeat of the near kindred; when the latter are weakened by change of circumatance, the former are likely to prevail. The influence of precedent apon the human mind is also a familiar priveiple; and though it is imposeible to show that in such cases nothing else could have happened (Edward I for axample might have decided differently), yet what did happen is shown to follow socording to accepted principles from the previous circomstances.

Sciences like Geology or Biology set themedves for the moot part to solve more generalized problems of development: though to them too some particular feot, apparently in conflict with a theory, may offer occasion for a detailed historical enquiry. But the explanation of the occurrence of crystallized rook, common as it is, is not logically different from what it would be if. there were only one place where it occurred; and if we set abont accounting for that local and temporal affinity of apecies which is axpressed in Mr. A. R. Wallece's principle that 'Every species has come into existence coincident both in opece and time with a pre-existing and closely allied species',' we thall not proceed otherwise than if the affinitiee of one particular historical group of apeciee were to be sccounted for.

There are other aciences (e. g. Politieal Economy or Kinematics) which do not concern themselvee with tracing any particular historical development, yet have to explain the laws manifested in a enccession of eventa. Here too it may be of the easence of the explanation to show how one change determines another, and the new fact thas introduced determines a third, and so forth. The laws to whioh we necemarily appeal may be different lawe, and the sequence in explained by resolation into stages, each of which

[^195]exhibits a general principle, while the epecial circumstances in which such a principle is exhibited furnish the occasion for a further change that exemplifies another.

There are cases where the element of time is one of the most (important of the facte. Many effecte depend upon the juxta. position of objects in space, and their jurtaposition depends on time-conditions. The fortune of a campaign may be decided by the rapidity of a march, bringing troops apon the field at a critical moment; the troops may fight apon the same principles and with the same degrees of courage all through, but the result is determined by their being there at the time. The working of a machine would be thrown out by anything that delayed or hastened the movement of a part with which other moving parts had to connect; and the same is of course true as regards the articalated movements of an animal. The disintegration of mountains is largely produced by frost succeeding rain; if rain only succeeded frost, it would not take place in the same way. Professor Marshall has called attention, in his Principles of Economics, to the great importance of the element of time in the working of economic lewe. ${ }^{1}$

There are however also many results that are to be accounted for through the concurrent operation of several principles: or rather -for principles cannot in strictness be said themsalves to operatethrough the concurrent operation of several causes, each according to ite own principle. The path of a projectile at any moment is determined by its own motion, the pull of the earth, and the resistance of the atmosphere. It is true that at every moment these forces are producing a new direction and velocity in the projectile, which forms the basis for an immediate further change; and that it is by following the continuous series of these successive changes that its path is ascertained-a task which the notation of the calculus alone renders possible. The consideration of any term in the seriea of changea as the resultant of aimaltaneoualy operating causes is however different from the consideration of the succosaion of one reaultant change upon another in the series And the explanation of many problems lies in showing the concurrent operation of different causes, each acting continuonsly according to its own law ; as opposed to the case just considered, where one
${ }^{2}$ erg. Bk. III. o. iv. § 5 , 4th ed. p. 182
cause may produce an effect that, by virtue of the conditions with which its production coincides, then produces a fresh effect in eccordence with a different law. The column of mercury in the barometer is maintained according to laws that are all continuously exemplified, and not first one and then another of them; the atmosphere is alwaye exerting pressure, and in the mercury the pressure is always equalized in virtue of its uature as a fluid. Economists are familiar with ' Gresham's Law' that bad money drives out good, i. e. that if in any country the circulating mediam is not of uniform quality, the beat is always exported and the worst left behind. By beat is meant that whose intrinsic value bears the highest proportion to its nominal value; a sovereign which contains the proper weight of 6 ne gold being better than one containing less, and so forth. The explanation of the Law is simple. Government can make the bad money legal tender for the payment of debts at home; it cannot compel the foreigner to receive it. For discharging debts abroad the better money is therefore more valuable, for discharging debte at home it is no more valuable than the worse; it is therefore more profitable to export the good, and keep the bad money for home purposes; and the desire of wealth being one of the strongest and most uniform motives in mankind, what is most profitable is naturally done. Nothing tarns here apon the resolution of a sequence into stages exhibiting different laws; the derivative law is shown to follow from more general laws, ander the special assamblage of circumstances described in saying that the circulating medium in a country is not of uniform quality; but these general laws are exhibited simultaneonsly and not successively. That the power of any government extends to its own subjects only, and that men desire wealth, are principlea more general than Gresham's Law; and both apply to money, which is at once, as legal tender, a matter to which the power of government applies, and, as medium of exchange, the equivalent of wealth.

No logical importance attaches to the distinotion between explanations that derive a complex law from simpler laws exemplified together, and those that derive it from simpler laws exemplified successively. Many explanstions involve both featuras. But there is a difference of more importance between either of these, and that form of explanation which consists in showing that lawe, hitherto
regarded as distinct, are really one and the ame. Newton showed that the familiar fact that heary bodiee fall to the earth, and the equally familiar fact that the planeta are retained in their orbite, were really instancee of the same principle, the general Law of Attraction. Something of the same sort is done when Romanea bringe Nataral Selection, and Serual Selection, and Phyviological Selection, and Geographical Isolation under the general conception of forms of Isolation preventing free intercroseing among al the members of a species. ${ }^{1}$ In casea like these, the derivative law is not deduced from ecveral more general laws exemplified together or succeesively in complex circumstancen of a particular -hind; but a single more general law is shown to be exemplified in a diversity of circamotances which have hitherto concealed its identity. This operstion is sometimes called subrumptios, as bringing eeveral conceptions under one, in the charsoter of instanees, or of subjects of which it can be predicated in common. Yet even here it is plain that the operation, of tracing the distinctive pecaliarities of the laws explained or subsamed to the special character of the ciroumstances in which the amme more general principle is exhibited, is of the same kind as occurs in all other forms of explanation : only the further synthesis of the consequences of several lawe is lecling.

Explanation, as was mid at the beginning of the chapter, is deductive-doductive, that is, in respect of the ressoning involved in it. Yet it has a close relation with the work of Induction, and the consideration of this will form the aubject of the remainder of the chapter.

Explanation starta, as we have eeen, from principles already known, or taken as known; and it shows that the matter to be explained follows as consequence from theme. But it is clear that the reasoning which deduces their consequence from them is unaffected by the nature of our grounds for taking them ae true. If they were nothing more than hypotheses, we might atill argue from them to their consequence as if they were indabitably certain. Just as we may syllogize in the rame way from true premisees and from falee, 00 it is in any other hind of reasoning. Moreover, it was pointed out that many at least of the most general and fundamental of our scientific principles are accepted only
${ }^{1}$ Danvin and after Danoion, vol. iii. c. i.
becanse they explain the facts of our experience better than any we can conceive in their atead; they are therefore, or were at the outset, bypotheses, used in explanation of facts, and proved by their relative succees in explaining them. We do not see why they are trae, bat only why we must believe them to be true. They are established inductivaly, by the faots which they explain, and the failare of any rival hypothesis; the facts are explained from them.

It follows that all the deductive reasoning that enters into an explanstion enters into the inductive proof of an hypothesis which is shown to explain, and to be the only one that will explain ${ }^{2}$, the facts. And many explanations are put forward, which do not appeal only to principles already known, but have it as their avowed object to prove one or more of the principles which they employ. Explanation then figures as an instrument of induction; and J. S. Mill spoke accordingly of a ' Dedactive Method of Induction', and rightly attributed great acientific importance to the process which he called by that name.

No better instance of this openation can be given than the familiar instance of the Newtonian theory of gravitation. Sir Isace Newton ahowed that the movements of the hesvens could be explained from two principles or laws-the First Law of Motion, and the Law of Universal Gravitation. The former is, that every body prewervee its state of reat or uniform rectilinear motion until it is interfered with by some other body; according to the latter, every particle of matter attracta every other particle with a force that varies directly as the man and inversaly as the equare of the distance. The former had already been established by Galileo, and Newton took it for granted; bat the latter he proved for the first time by hie use of it in explenation.

The theory which bears the name of Ptolemy, though muoh older than he, represented the sun, moon, and stars as moving round the earth; and originally it was supposed that they moved in circlea with the earth es centre. While the laws of motion were still

[^196]undiscovered, no difficalty wis found in their cirenlar motion; indeed Aristotle rupposed it to be naturally incident to the sabstance of which the heavenly bodies were composed, that their motion should be circular; for the circle is the perfect figure; movement in a circle is therefore perfect motion; perfect motion belongs naturally to a perfect body; and the substance of which the beavens are composed-the quinta cosentia, diatinct from the four primery anbstances, earth, air, fire, and water, that are found composing this globe-is perfect. ${ }^{1}$ The only dificalty arose when it was found that the orbits of the beavenly bodies, other than the fixed stars, were not perfectly circular; and that was met by the hypothesis of epicycles referred to in an earlier chapter. ${ }^{8}$ The substitution of the Copernican for the Ptolemaic hypothesis, though involving a reconstruction of the geometric plan of the heavens, did not necesearily involve any new dynamics; Kepler's discovery that the planetary orbits were elliptical was however a severe blow to the traditional theory of epicycles, which had already by that time become highly complicated, in order to make it square with the observed facts. But when the first law of motion had been grasped, it wes evident that a planet, if left to itself, would not continue moving in a circle, and returning on its own track, as Aristotle had thought to be natural to it, and as with more or less approximation it actually does: but would continue moving for ever forward with uniform velocity in a straight line. Circular motion, however uniform, was now seen to involve an uniform change of direction for which a dynamical reason was required. And as the planets were constantly changing direction towards the sun, a force exerted from or in the direction of the sun seemed necessary.

Now the greatness of Newton's achievement did not lie in the conception that the orbital motion of the planets was the resultant of two forces, the 'impressed force' (as it is called) which, left to itself, would carry them forward with constant velocity in a straight

[^197]line, and a 'centripetal force' which, left to itself, would carry them to the san. The resolution of curvilinear into rectilinear motions had been accompliahed before him, and the hypothesis of an attractive force had already been hazarded. It had even been suggested that such a force might vary inversoly as the equare of the distance; for the area over which it might be conceived as spreading in any plane talsen through the centre of the sun varies directly an the square of the distance, and its intensity might be supposed to decrease as the area incremsed. Neither was it Newton who ascertained the facts about the movements of the planets-no amall or easy contribution to the solation of the problem. But he did two things. He conceived that the force which deflected the planets into their orbits was the same as that which made bodiee fall to the earth: or, to put it differently, he identified celeatial attraction with terreatrial gravity, and conceived the earth as continually falling out of a straight path towards the sun, and the moon towards the earth; and he invented a mathematical calculus by which he could work out what were the theoretical consequences of the principles which he assumed.

Both these steps were of the bighest importance. The first provided data to calcalate from; the second made the calculation possible. The amount of acoeleration produced per second in near bodies falling to the earth was already known ${ }^{1}$; from that it could be eatimated what it ought to be for a body mo many times remoter as the moon, or what acceleration a body so many times more massive than the earth as the sun is ought to produce, if once a method of performing the calculation could be devised.

With this method Logic is not concerned. Processes of reasoning are too numerons for Logic to enumerate them all, and those of mathematics are for the mathematician to appraise; it is enough

[^198]if the logician can satinfy himself in general regarding the grounds of mathemstieal oertainty. But asoming the task of deducing from his principles their theoretical consequences to have been performed, we may look at the logical character of the reesoning in which Newton made use of that deduction.

The principal atronomical facta to be accounted for concerned the movements of the earth and other planote round the sun, and the movements of the moon roand the earth. ${ }^{1}$ The former body of factes had been already generalized by Kepler, in his three lawn, (i) that the planets move in ellipees round the san, with the an in one of the foci; (ii) that thay demaribe equal aress in equal times; (iii) that the cubes of their mean distances vary as the squares of thair periodio timen: There was also a large body of recorded obearvitions upon the movements and pertarbations of the moon; and when Newton fint worked out his theory, he found it led him to different resolts than thoee aotually recorded. He therefore laid it aside; and it was only after soveral years, when freah and corrected obearvations apon the moon's motion were published, that he retarned to it. He then found the theoretion results agree with the observed facts; bat to show thia wis not sufficient. He demonstrated further that from any other bypotheais as to rate of variation in the attractive force resulta followed with which the observed facta conflioted; and thos showed not only that his theory might be true, but that if the planetary motions were to be accounted for by help of a theory of
${ }^{1}$ Where the planeta are mentioned they may be taken to inclade the moon, anlews the contert expreesly forbide.

P Perhapa it shonld be explained that as a cirole is a ourve, every poial on which is equidistant from a point within it called the centre, \boldsymbol{o}_{0} as ellipse is a curre, the rum of the distances of overy point on which from two points within it called the foci is equal; that the area described by
 a planet in moving from a point a to a point b on ita orbit in the area comprised between the arc, and the linee joining those points to the centre of the run: so that if ine planet is nearer the sun, it will move faster, since if $a c, b c$ are shorter, $a b$ muet bo longer, to make the area abc the cume: that the mens distapoo of a planet is ita averago distance from the ans during its revolation, and ite periodio time the period of ite revolation, ∞ that if the cubes of the mean distance vary an the equares of the periodic time. it follows that a planet whoee mean distance from the sun is twioe that of the earth would have, a ' year' or period of revolution, whose gquare was to the equare of one (earth's year) as the cube of two to the cube of one-i.e. that its period of revalation would $=\sqrt{ } 8 \times$ the earth's year,
attraction at all, the law of that attraction must be as he formulated it. ${ }^{1}$

The further confirmations which Newton's Law of Universal Gravitation has received, from its sucoess in accounting for other physical phenomena, need not detain us; we have to look to the steps involved in ite eatablishment, and they can be safficiently seen in what has been detailed already. First, there was the iden that the movements of the planets were to be accounted for by reference to two forces seting on them-the impressed force, and the force of attraction; this was not due to Newton. Next, it was necesmary to determine or conjecture the way in which these two forces severally operated; 80 far as the impressed force went, that had also been in part alreedy done, and it was expreseed in the first lew of motion; the actual velocity of eech planet was ascertained by calculation from astronomieal obeervations, and the velocity due to the impressed force taken alone was determined by reference to the actual velocity and the valocity acquired by gravitation. But the velocity acquired by gravitation, or through the inflaence of the attractive force, had to be conjectured; and though the law of its variation had been ruggested before, unlese the amount of its effect between some given masees at some given dirtance were known, the law of ite variation left the matter quite indeterminate. The identification of the attractive foree with terrestrial gravity thus completed the necoseary date; and principles and facte were now before Newton, eufficient, if a method of calcalation were devised, to enable him to determine what should be the consequences of his hypothesis. The next step whe the process of calculation. But he hed to show, not barely what the consequences of his hypothesis would be, but that they would be the same as the obsorved facte: and moreover, that his wes the only hypothesis ${ }^{1}$, whose coneequences would be the mane as the observed facta. ${ }^{\text {a }}$ The comparison therefore of the facts with the theoretical remalte of his and of any other hypothesis was the step that succeeded the calculation; and having found that they agreed with his, and with no other, he reseoned thus-Assuming
${ }^{1}$ ie if it whe to ombody A ample ratio: of. pp. 485-486, 470, supra.
I It was powible to show that no other nits of attraction would give remulta conformable to the frets, because the problem was as mathematical one; and in mathematics it is easier than oleowhere to prove not only that if a is true, b is true, bat also the converna.

3c940:
$1 \mathbf{i}$
that the continuel deflexion of the planets from a rectilinear peth is due to an attractive form, their actual motions, if my statement of the law of attraction in true, woald be thres and thas; if it is false, they would be otherwise: but they are thro and thus, and therefore my otatement is true.

Now of the steps in this whole logical process, some are not processes of rearoming at all-the auggented referenoe of the remaltant motions to thoes two forces, the suggented identification of ove of the forces with terreetrial gravity, and the comparison of the theoretical reenlts with the obearved facta. Beasoning may have been employed in establinhing the first law of motion; but that reseoning liee ontride the prement appeal to it. The reseoning involved in determining the theoretical realtes of the action of the forcee amomed is deductive. But the final argament, in which the agreement of the frote with the reanlte of thin hypothesis and of no other is ahown to require the acoeptance of this hypothemis, is inductive. Hed the Law of Gravitation bean alreedy proved, we might have alid that Newton wee merely explaining certain empirical generalizations about the movementa of the planete; bed it been already proved, the dimgreement of its consequences with the carlier records of the perturbations of the moon would have led him not to lay aeide the theory, bat to doubt the obearvationg, or to asmume (as Adams and Leverrier afterwards did for the pertarbations of Uranus) the existence of some other body whove attraction might eccount for the discrepancy; bat inaemuch as it wea only now proved by ite exolusive suoceses in expleining the facta, he whe arguing inductively to the proof of it.

If we look for a moment at the simpler inductive argaments which eatablish the anuse of a phenomenon by appeal to 'grounde of elimination', we shall find in them too something of this double character, at once inductive and deductive. The facts appealed to as showing that a is the cause of a are themselves accounted for by that hypothesis. If, for example, facts do not allow us to doubt that manarial fever is conveyed by the bite of the Anopheles moequito, then too the power of the Anophelee mosquito to convey malarial fever eccounts for its appearing in persons bitten by that insect. It is imposerible but that, if certain facts are the ratio cognoncondi of a causal principle, that priaciple should be the ratio essendi of the facta. But in these simple arguments there is nothing correspond-
ing to the deduotive remeoning which works out the joint consequence, in particular circumstances, of the aotion of two or more causes, from a knowledge (or conjecture) of the effect which esch of these causes would produce singly. It is on escount of this operation that J. S. Mill gave to reasoning of this kind, even when its primary object wha the induotive entabliahment of a general principle, the name of the 'deductive mothod of induction'.

Sach reasoning can only be need where the joint effieot of several causes is caloulable from the laws of their separate effects. Where the joint or complex effect seams totally dimimilar to what any of the separate effecte would be, it cannot be calculated from them in anticipation; and we rely entirely on the indnotive method of elimination in order to show that such complex effect is to be attributed to the action of one particalar conjunction of cansea rather than another, without being able to show a priori that it is the eflect they would prodace. But into the invertigation of any complex effect of the other kind, in which the action of the eeveral cances can be traced as combining to produce it, some meacure of this deductive ressoning will slways enter. Moot obvioualy is this the case in regard to thoee complex effeote which exemplify what has been called a homogoneowe intermixtare $-i$. . Whare the complex phenomenon is quantitative, and there are many factors determining its quantity, some by way of inorease and come of decresse. The simpler indoctive methods are there quito inedequate : for there need be no two instanoes of the phenomenon in which its quantity is the amme, nor, if there were, need the combination of factors be the same; neither can we infer from the non-occurrence of the phenomenon, or ita presence only in an imperceptible degree, where the supposed canse is present, that what wo had been inclined

[^199]to secribe it to does not produce it ; since that cause might be present, but counteracted by another of contrary effect. Even the rule that canse and effect must vary concomitantly, and the role that no such portion of the effect must be attributed to one among the factors making op the cause of the whole, at is already accounted for by other factors, are not sufficient to ensure ruccess in such enquiries. It is necessary to be able to measure more or less precisely the complex effect, and to know with corresponding precision the amount of effect that the several supposed canses would produce alone, in order to prove that any particular one among them cannot be dispensed with, or rejected from being a part cause. And into this proof a deductive calculation will obviously enter. In the fiscal controversy, for example, initiated in Great Britain in 1903, it was alleged that the excese in the value of our imports over that of our exports was due to the crippling of our production by free-trade; but this conld only be proved by showing that the difference of value between exporta and importe wan unccoonnted for, unleen we were living on our capital; and that could not be shown unless the excess in value of imports were ascertained, which whe attributable to other causes known to assist in producing their total excess-value-such as the fuct that the valuation of our imports was swollen by the inclusion of the cont of carriage to our ports (while our exporte, being valued before transport, did not receive this addition) : and by the value of the goods that paid for the sarvice which the country performs as ocesn-carrier, although nothing appears in the total for exporta on that head: and by the value of the goods that represent payment for the use of British capital invested abroed, or pensions charged on the Government of India. The difficulty of determining the amount by which theee canses should make our imports exceed our exports in value rendered it exceedingly hard to prove, at least on this line of argament, that we conld not be paying out of the year's production for all that we imported in the year.

To sam ap-Explanation considered in iteelf is deductive: it consiste in showing that particular known facta, or laws, or general cansal connexions, follow from principles already eatablished, in the circomstances of the case; it establishes therefore nothing new, except as it makes us understand the reason for that which we had hitherto only known as a fact. Bot explanation also enters into
induction, eo far as the principlen, from which the facte, or lawe, or general causal connexions, are ahown to follow, were not previously established, but are only now confirmed in showing that the actaal fects, laws, or causal connexions would follow from them and not from any alternative principles. In such indaction there are four main steps distinguishable: (i) conceiving the several agents, or causes, at work; (ii) determining or conjecturing how or according to what law each of them soverally would act; (iii) reasoning from these premisses to the result which they should produce in common, as well as to the result which would follow on any rival hypothesis as to the agente at work, and the several laws of their operation; (iv) ahowing by comparison that the facts agree with the results dedaced from theee, and not with the resulte deduced from any rival premisees.

Many observations might still be made upon this type of argu-ment-one of the commonest and most important in the sciences. It might be ahown how it may be directed to establish either that a particular agent produces a certain kind of effect at all, or how much of that effect, according to its own variations, it produces : or that an agent known to produce an effeet of a certain kind is one of the causes contributing to produce that effect on a given occesion. The question may be, what canses can produce such an effect, or which of the causes that can produce it ara contributing to produce it now? We may wish to eatablish a general principle, or only some special fact as to the ciroumstances that are modifying the results of that priaciple in the caee before nas. It is poesible too that the lawe of the action of the several agents may some of them have been previoualy acoertained and eatablished, while others are only conjecturally formulated; or, if the question be as to the agents contribating to the remalt in a particular case or clase of cases, the lawe of the several actions of them all may have been established previoualy. But without dwalling on theee pointe, we may conclude the chapter with four conaiderations.

First; the inductive arguments of science display in every different degree that combination with deductive reaconing which hae been now analysed. Thus, though we may represent in symbols the induction whose logical form is a mere disjunotive argument, and contract it with this into which the deduction of a complea result from several premisess so prominently enters, yet in actual
practice the contract is not eo alrarp; in few indootive inventigations is the reaconing merely digjunctive; bat the amount of deductive removing that has to be performed before one is in a position to apply a dirjunction, and to any that this hypothecis is trae becanae the rest can be proved false, varies very greatly in different inveetigations.

Secondly, to abow that the facta agree with the consequences of our hypothesis is not to prove it true. To show that, is often called cerification; and to mistake verification for proof is to commit the falleoy of the conrequent ${ }^{1}$, the falleoy of thinking that, becuase, if the bypothesis were true, certain facts wrold follow, therefore, since those facts are found, the hypothesis is true. It is the same mistake se that of incomplete elimination, in the establishment of a simple consal relation : the same as resulta from overiooking what wes called the Plarality of Casees. 4 theory whose consequences conflict with the facte cannot be true; bat so long as there may be more theories than one giving the same consequences, the agreement of the ficets with one of them fornishee no ground for choosing between it and the others Neverthelese in practice we often have to be content with verifieation; or to take oar inability to find auy other equally eatiofactory theory esequivalent to there being none other. In sach mattars we must consider what is called the weight of the evidence for a theory that is not rigorously proved. Bat no one has ahown how weight of evidence can be mechanically eatimated; the wisent men, and beat acquainted with the matter in hand, are oftencent right.

Thirdly, there is no logical difference between the reasoning contained in explanation, and the inductive resconing that involves explanation, except in one point: that the latter infers the trath of some premises assumed in the explanation from ita succeses in explaining the actual facta and the impowibility of exphining them withont asenming it. Where this impowibility is not shown, and we content ourselvee with verification-that is, with ahowing that the facta consist with the escumption-there the logioal difference is still slighter; it amounts to this, that in explanation the premiesa are taken at previonaly known, and in the other ance comething in
the promisees is taken as not known previously to ita use in the explanation. ${ }^{1}$

Fourthly, we may answer here the second of the two queations raised at the end of 0 . xvii Demonatration is oxplanation from principles that are self-evident, or necesaarily true. If it be asid that in that case very little of what we believe is demonstrated, we must admit it. We can demonatrate little outride mathematice. But wo heve an ideal of demonstration, and it eeema to bo that; and it is not necessarily syllogietic, an Aristotle thought it to be.:
' J. B. Mill, to whoee work the sbove chaptor is not a little indebted (o. Logic, III. x-xiii), fails to mark sufficiently the difference between ahowing that the facta agree with a theory, and abowing that the theory is true. And he does not bring out clearly enough the relation between what he calla the Deductive Mothod of Induction (c. xi) and what he calla the Explanation of Lawe of Nature (o. xii). He neither notices how they differ, nor how closely they sgree, though he gives the amme inveatigution (the Newtonian theory of gravitation) an an example of both of them (xi. 2, xiii. 1). Moreover, in resolving into three ateps hie 'Dedactive Mothod of Induction', he leaves out the fint of the four mentioned on p. 485.

I Indeed, if ayllogism implies the application, to a particular case, of a general principle fnown independently, demonatration is never ayllogidio; for, with complete ingight, the neceenity which connecte the diferent olementa in a complex fict ahould be manifeot in the case before us, and the general principle or major premin is not brought in ab eztre, bat rather visible in and extricable from that caes (cf. p. 807. oupra). This much howuver Aristotle would probably have admitted; but most demonatration cannot even co° be put into the form of ogllogim, connecting one term with another through a third by the relation of anbjoot and attribate.

OF INDUCTION BY SDMPLE ENUMERATION AND THE ARGUMENT FROM ANALOGY

There are many reasonings which do not prove their concluaion. It is not merely that wo have to nse premisees of donbtful certainty; for thin, though it destroys the atrictly demonstrative character of our knowledge, does not invalidste the reasoning, so long as the conclusions are what must be drawn, if the promisses are true. We often draw, and act upon, conclusions, about which we cannot ssy even this much, that they must be true if the premisees are. And in mo doing, we often find ourselves right; nor, if we refused to do it, could the affairs of life be carried on. Descartes, when he set himself to examine all which he had hitherto believed, and to doubt everything which could be doubted, determined with himeelf that he would not let this demand for demonstration in thinge of the intellect prevent his following the most probeble opinion in practical matters. ${ }^{1}$ But it ie not only in practios that we have to hazard an mesent to conclucione whioh oar premiees do not strictly justify. Many branches of acience would not progress at all, unlees we did the same there. In the first plece, by committing ourselves to a conolasion, and working upon the amumption that it is true, we may be led to reacults that will help either to confirm or to overthrow it; whereas if we had meraly withheld our sesent from any conclasion, becanse the evidence was inconolusive, we might have remained indefinitaly long possessed only of that inconclusive evidence. 'Truth,' seid Becon, ' is more readily elicited from error than from confusion's ${ }^{2}$; and perhape we might add, than from indecision. Only we must in such ceses let our asent be provisional, and hold our opinion not as demonstrated, bat as in defanalt of a better. The advice of the politician, that a man should make war with another ase with one to whom he may be reconciled, and peace

[^200]${ }^{2}$ Noe. Org. II. 20.
as with one with whom he may become at variance, may without suspicion of cynicim be adapted to the assent or dissent with which we receive conclusions that are besed on insufficient evidence. But eecondly, the sciences differ very much in the amount of evidence which they can hope to obtain for their conclasions. A fairly rigorous science may be content to use provisionally principles which are known to be insufficiently proved (and that means really, not proved at all); bat some sciences hardly ever obtain rigorons proof of their positions, as for axample Anthropology; and yet mach at any rate of their teaohing is generally accepted as authoritative. Aristotle said that it was the basinees of education to teach a man to demand rigorous proof of anything acoording to the nature of the subject; for it is as foolish to ask demonstration of the orator, as to sccept plausibilities from the mathematician ${ }^{1}$; and be would have allowed that for this purpose education must include both a training in 'Analytica' and an acquaintance with the different kinds of subjeot-matter to which one's attitude should be differant. It is often said that a man whowe studies are too exclusively mathematical is at see when he comes to deal with matters that do not admit of demonstration; and that contrariwibe, if he is trained only in sciences where rigorous proof is impossible, be becomes incompetent to see what is required in matters of a stricter sort.

There are no logical criteria by which to judge the value of such reasonings, unless what is called the Theory of Probsbility may claim to be auch a critarion. But the Theory of Probability is primarily a branch of mathematics; many of the amumptions which underlie ite appliantions are open to suapicion on logical grounds; and ite use is at any rate confined to subjects that admit of quantitative treatment. The object of the present chapter however is to consider briefly two kinds of argament, which while being of this inconclusive charecter are very comman, and have attracted considemble attention from logical writers aocordingly.

Induotion by simple Bhameration consista in argaing that what is true of eeveral instances of a kind is true universally

[^201]of that tind. Simple enumeration meana mere enumerntion; and suoh an argument difers from ecientifio induotion in the abeence of any attempt to show that the conclucion drawn is the only conclarion which the facte in the premises allow, while it differs from induction by complete enumeration in that the concluaion is general, and refers to more than the instances in the premisees. It should however be noted here, that induction by complete enumeration, if the conclusion be underatood as a genninaly oniversal judgement, and not as an enamerative jodgement about all of a limited number of things, hee the character of indaction by simple enamernation. The name of empirical generalisation is almo given to suoh argumenta by simple enumeration.

Becon's atrictures upon this form of ressoning have heen already referred to. ${ }^{1}$ Regard it an a form of proof, and they are not undeserved. Yet it is atill in frequent ase, in defanlt of anything better. It has been inferred that all specifio characters in plants and animals are useful, or adaptive, becanse so many have bean found to be so. So many 'good species' have become 'bad species' (i. e. apeciee incapeble of any atrict delimitation) in the light of an increased knowledge of intermediste forms, that it has bean inferred that all speciea, if we knew their whole history, would do so.' The familiar generalization that we are all mortal, though not based solely on enumeration, draws nome of its force thence. Mont men's views of Germans, or Frenohmen, or foreigners genenally, reit upan their obeervation of a few individuala. The 'four general rulee of geography', that all rivern are in Themaly, all mountaina in Thrace, all oities in Asia Minor, and all iolands in the Aegrean Sen, are a caricature of this procedure, drawn from the experience of the achoolboy beginning Greek Hintory. The history of the theory of prime nambers furnichee one or two good examples. More than one formula has been found always to give prime numbers up to high values, and was asmumed to do so universally: $x^{2}+\varepsilon+41$ worked for every value of e till $40: 2^{3^{x}}+1$ worked for long, but it broke down ultimately. ${ }^{\mathbf{s}}$. It is needleen to multiply illustrations.

What is the acoumption which underlies argumenta of thin kind ? It is the old sasumption that there are aniversal connexions in

[^202]
XIIv] SIMPLE ENUMERATION AND ANALOGY

nature; and the conjunction of attributes which our instances present is taken as evidence of a connaxion. The arguments are weak, becanse the evidence for the connexion is insufficient. If abcd, inatances of the clame e, present the property y, it does not follow that y is connected with thoes features on account of which they are clacsed together as a. Yet a large number of instances furnishes some preamption. For some reason must exist, why all these instances erhibit the aame property. If it is not in virtue of their common character a, it must be in virtue of some other common feature. When the variety of circumatancee is great, under which the instances are found, and the differences many which they present along with their identity as a, it is harder to find any other common featuree than what are included in classing them as x. Therefore our confidence in the generalization increasen, although it may atill be mispleced. All men are mortal; for if men need not die except through the aocident of circumatances that are not involved in being man, is it not strange that no man has avoided falling in with these circumstances? There is force in the question. The number and variety of our obeervations on the point are such, that almost everything can be eliminated : almoot everything that has befallen a man, except what is involved in being man, has also not befallen other men : who therefore ought not to have died, if it were because of it that men die. Something involved in being man muat therofore curely be the cause of dying.

Induction by Simple Enumaration reate then on an implied elimination; bat the elimination is half-unconecious, and moetly incomplete; and therefore the conclusion is of very problematic value. But where it is felt that the instances do earve to eliminate a great deal, it is felt that the openings for error are correspondingly reduced in number, and the conclusion is received with greater confidence. General considerations of this kind, however, will not stand against definite opposing facte; therefore such an empirical generalization is at once overthrown by a contradictory instance. ${ }^{2}$ Neither will they overbear more epecial considerations drawn from aequaintance with the subject-matter to which the induction belongs. Pigmentation is known to be a highly varisble property in many epecies; therefore the overwhelming range of instances to show that all crows are bleok was felt to be insufficient to give
${ }^{2}$ Inetantia, Invreors, meant originally a contradictory instance.
the conclusion any high degree of value. Again, a difficulty in conceiving how two propertie could be caumally connected will incline us to attach less weight to the fact of their conjanotion. And contrariwise, where the connexion to which the conjunction points is one which means conformable with other parts of our knowledge, we are much more ready to generalize from the conjunction. Many general statements are made about the correlation of attribates in planta and animals, which reat on simple anumeration; bat the theory of dewoent suggesta at explanation of the constancy of such a conjunction; for what was correlated in a common ancestor might well be correlated universally in the descendanta. Wo are therefore readier to auppose that attribates found eeveral times accompanying one another in a species (such as deafness with white fur and blue eyes in tom-cats, or black colour with immunity to the evil effecta of eating the paint-root in pigs ${ }^{1}$) are correlated universally, even though we can see no direct connexion between them, than we abould be if mo way of explaining the constancy of the conjunction presented itmelf to us.

The argument from Analong (at least in the usual sense of the term) is of the aame inconclusive oharacter as Induction by Simple Enumeration; and like it, resta on the general belief in universal connexions, and takes a conjunction of attribatea as evidence of their connexion.

Analogy meant originally identity of relation. Four terms, when the first stands to the mecond as the third atands to fourth, were said to be analogons. If the relation is really the same in either cese, then what follows from the relation in one case follows from it in the other; provided that it really followe from the ralation and from nothing else. Whare the tarms are quantities, or are considered parely on their quantitative side, and the relations between them are aloo quantitative, there the reaconing is of course mathematical in character: analogy in mathematice being more commonly called proportion. And such reseoning is neceseary, like any other mathematical reasoning. If in reapect of weight $a: b:: c: d$, and if a weighs twice as much as b, then c must weigh twice as much as d. So soon however as we connect with the reletion $c: d$, on the ground of ite identity with the relation $a: b$, a rconsequence which is not known to depend entirely on that ralation,

[^203]our remeoning ceases to be demonstrative. Suppose that the distanoe by mil from London to Bristol bears the same relation to the distance from London to Plymouth as the distance from London to Darlington bears to the distance from London to Aberdeen: and that it costs half as much again to send a ton of timber from London to Plymouth as to Bristol; we canot infer that the rate from London to Aberdeen will be half as much again as it is to Darlington; for the rate need not depend entiraly on the relative distance, which is all that is alleged to be the same in the two cases.

There are many relations however which are not relations of quantity, and hold between terme on other grounds. Here too, four terms may stand in an analogy: and what follows from the relation of the first to the second may be inferred to follow from the relation of the third to the fourth. It might be said that the relation of bis pationts to a doctor is the same as that of his customers to a tradesman, and that therefore as a cuatomer is at liberty to deal at once with rival tradermen, 80 a man may put himself at once in the hands of several doctors. And if the relations were the mame, the argoment would be valid, and indeed in principle syllogistic; for the common relation would be a middle term connecting a certain attribute with a man's position towards his doctor. - Those who employ the services of others for pay are at liberty to employ as many in one service as they pay for': such might be the general principle elicited from oar practice in shopping, and proponed for application to our practice in the care of our bealth. The case of patient and doctor is 'eubsumed' under the principle supposed to be exhibited in the case of customer and tradesman. Even however if it were not possible to disentangle a general principle, and reason syllogistically from it, we might nee the analogy; thinking that there was an identity of reletiona, and that what is involved in the relation in the one cesee must be involved in it in the other.

Unfortunately however the identity of the relations may be donbted. Relations are not independent of their terms. Quantitative relations are no doabt independent of everything except the quantitative aspect of their terms, and are on that account noually atated as between quantities in the abotract. But with other relations it may be very difficult to abstract, from the concreto neture of the terms between which they hold, the precise features which involve
the relation. Hence we may say that two relations are similar, and yet doubt whetber they are similar in the way that would justify the inference. They may be partially the aame, bat the difference may just invalidate the coneequence ${ }^{1}$; and reaconing by analogy cannot then posese the character of necessity.

David Hume held that virtue and vioe are not attributes of any act or agent, but only feelings which an zot may arouse in a spectator; so that if nobody approved or dimapproved my actions, they could not be called either virtaons or vicious. And one of the argaments by which he endeavoured to surtain this opinion was as follown. A parricide, he mid, is in the same relation to his father as is to the parent tree a young oak, which, springing from an acorn dropped by the parent, grows ap and overtarns it; we may search ae we like, but we ahall find no vice in this event; therefore there can be none in the other, where the relations involved are just the same; so that it is not until we look beyond the ovent to the feelings with which other persons regard it, that we can find the groand for calling it ricions.' Doabtlees there is an analogy here; but the relations are not altogether the forme; for relation of a parent to a ohild is spiritual as well as physical, and in the parricide there is an attitude of the will and the affections which cannot be ascribed to the oak.

Many argumenta from Analogy, in the sense of this loose identity of relations, have become famous; and they are a favoarite portion of the orator's resources. How often have not the daties of a colony to the mother-country been deduced from thoee which a child owee to a parent; the very name of mother-country embodies the analogy. Yet it is by no means essy to find the terms which stand in the eame relation. The soil of Britain did not bear the soil of Australia ; and the present population of Aurtralia are not the descendants of the present popalation of Britain, bat of their ancestore. To whom then doee the Commonwealth owe this filial regard, and why? Doubtless the sentiment has value, and therefore some juatification; bat this argument from analogy will not quite give sccount of it. Alaxis de Tooqueville again said of colonies, that they were like fruit which drope off from the tree when it is ripe.

[^204]Here in another analogy, and two of the torms are the same as in the lest. The relation of a colony to the mother-country soggeata different comparisons to different minde, and very different consequences: which cannot all of them follow from it. We may take another inatance, where the relations are really oloser, and the argament therefore of more value. To grant that Nataral Selection may be able to do all that is claimed for it, and yet object to it on the ground that the facta which are accounted for by it may equally well be ascribed to intalligent design, is, it has been urged, as if a man were to admit that the Newtonian theory of the solar system works, and yet were to continue to rappose with Kepler that each planet is gaided on ite way by a presiding angel; if the latter therefore be irrational, so must the former be ${ }^{1}$ Or consider the following passege ${ }^{3}$:-'It has been objected to hedonistic systems that pleasure is a mere abstraction, that no one could experience plearure as such, bat only this or that apecies of plesare, and that therefore plearare is an imposaible criterion' [i. e. it is impossible to judge what is good by the amount of plesare which it affords]. ' It is true that we experience only particular plesasuable states which are partially heterogeneous with one another. But this is no reason why we should be anable to classify them by the amount of a particalar abstract element which is in all of them. No ship contains abstract wealth ae a cargo. Some have tea, some have batter, some have machinery. But we are quite justified in arranging thoee shipa, should we find it convenient, in an order determined by the extent to which thair concrete cargoes posesess the abstract attribate of being exchangeable for n number of sovereigns.' The force of this argument will depend on whether the particular concrete plensurable stateo do stand to the abstract element of pleasure in the aame ralation is the conorete cargoes of ships stand to the abstract element of wealth. Doubtless the relatious are partly the same, for each abetract alement is an attribate of its concrete subjecta. Bat these are mocomarable in terms of their attribute, by the fact of baing exchangeable for a definite number of sovereigns; and the queation is whether there is anything that renders the others similarly measurable in terms of

[^205]- MOTagesart, Stwdies in Elegalian Conmology, § 118.
pleasure. On the value of this argament doctors will probably disagree: and this again showe how argumenta from analogy are inconclusive.

There is however another sense in which the terms analogy and argwent from analogy are used. The analogy may be any resemblance between two things, and not merely a resemblance of the relations in which they respectively stand to two other things; and the argument from analogy an argument from eome degree of resemblance to a further resemblance, not an argument from the consequences of a relation in one case to its conseguences in another. Expresed symbolically the argument hitherto was of the following type : a is related to b as c is to d; from the relation of a to b such and such a consequence follows, therefore it follows also from the relation of c to d. The present argament will ran thus: a resembles b in certain respects $a ; a$ exhibits the character y, therefore b will exhibit the character y sleo. Argument of this type is exceedingly common.' 'Just as the flint and bone weapons of rade races resemble each other much more than they resemble the metal weapons and the artillery of advanced peoples, so,' sans Mr. Andrew Lang, 'the mental producta, the fairy tales, and mythe of rade races have everywhere a atrong family resemblance.' ${ }^{\prime}$ It is inferred here that mental producta, which resemble certain material producta in being the work of rude races, will reemble them in the further point of exhibiting the atrong family likenem that is known to characterize the latter. Or take this instance from Sir Henry Maine. He is diecuseing the various devices by which in different systems of law the lack of a con to perform for a man the funeral rites can be supplied. We are familiar with adoption. But adoption in England does not carry the legal consequences of legitimate sonship. The Hindu codes recognize adoption and various expediente besides ; and the son so obtained has the fall status of a real con, can perform satisfactorily the important ceremonies of the funeral rites, and succeed to property as the real son would succeed. One of their expedients is known as the Niyoga, - custom of which the Levinte marriage of tbe Jews is a particular case. The widow, or even the wife, of a childless man might bear

[^206]
xIIv] SIMPLE ENUMERATION AND ANALOGY

a son to him by some other man of the family, and the son became his son, and not the natoral finther's. How did Hindu thought reat content in so fictitions a relation? 'All ancient opinion,' says Maine ', 'religions or legal, is strongly influenced by analogiea, and the child born through the Niyoge is very like a real con. Like a real eon, he in born of the wife or the widow; and though be has not in him the blood of the husbend, he has in him the blood of the husbend's race. The blood of the individual cannot be continued, bat the blood of the household flows on. It seems to me very natural for an ancient authority on customary law to hold that under auch oircumstancee the family was properly continued, and for a priest or asoerdotal lawyer to suppose that the faneral rites woald be performed by the son of the widow or of the wife with a reasonable prospect of ensuring their object.' We may torn to the exacter aciences, and find this sort of argument from analogy employed. Before it was known that light travelled in waves, it was known that soand did so. Light and sound were both capeble of being reflected, and the direction of their reflection obeyed the same law, that the angle of reflection is equal to the angle of incidence. From these facts it was inferred by analogy that light, like sound, travelled in waves: as was afterwards ahown to be the case. Among the properties of gold was long enumerated fixity, i. e. that it wes incapable of volatilization. As one element after another wha succeseally volatilized, it might have been inferred by analogy that gold coald be volatilized too.

We may now compare this with the former type of argument from analogy; and afterwards consider their logical value, and their relation to induction by simple enumeration.

Since analogy properly involves four terms, the latter and looser but commoner sense of the axpression argment from analogy eeems at first sight difficalt to account for. Why should a resemblance which is not a resemblance of relations be called an anslogy at all ? Perhape the answer is that where the relation is no longer a quantitative one, it is apt to be regarded as a property of the subject that stands in the relation. The quantitative relation of one thing to another does not affect the intrinsic character of the thing; but other relations do. We should not regard it as constitating a reeemblance between a child and a young elephant that one weighed
${ }^{1}$ Earily Lavo and Cwatom, p. 107.
half a hundredweight, and the other half a ton; but that they both had mothers (though that is also a resemblance of relations) would seem to constitute a resemblance. Such a relation reats on and involves important oharscters in the thing related of a less parely relational character than quantitative predicaten are. And in this way the term analogy may well have come to be extended to reeemblences generally, even where the resemblance is not a recomblance of relationa. ${ }^{1}$

Bven in the atricter senve then, the argument from analogy does not commonly mean the mathematical argament from an identity of ratio: the relations aro only mimilar, and mast be conoeived to involve intringic attribates of the things related.' In considering the value of the argument therefore we may for the fatare ignore the distinction pointed out between the two types of inference to which the name is given, and may take the mecond (to which the first tends to approximate) as fundamental. The argameat from analogy is an argument from a certain degree of asoertained resamblance between one thing and another (or others) to a further reemblance; because and b are e, and a is $y, \therefore b$ is y. What is the logical value of thin argument?

It in plainly not proof. Ae Lotze has pointed out ${ }^{2}$, there is no proof by analogy. Many conclusions drawn in thin way are afterwarde verified; many are found to be false Arguments from analogy can oftan be found pointing to opposite concolarione.

[^207]The Parmenides of Plato, a dialogre of his later period, discumes various difficalties with regard to the relation between the univeral and the particular, which many scholars consider to be criticisms upon his own 'doctrine of ideas' as presented in his earlier writings. One of these is identical with an objection afterwards frequently urged by Aristotle against the Platonic doctrine as be underatood it. ${ }^{1}$ It has been suggested that the dialogue incorporates criticisms which Aristotle had originated as a young man of about 17, when - papil in the Academy. Are the points Plato's own, or are they borrowed from his pupil? On the one hand it may be said that when he wrote the Parmenides Plato was too old to revise his system, as this intarpretation of the dialogue conceives that be was doing; on the other, that at 17 Aristotle wa too young to develop criticiems es original and profound.

Bat Kant's chief works, embodying the syatem which has made bim famous, were written after he was 50 ; and Berkoley at the age of 20 whe entering in his Commonplece-book important and original criticiams of Looke. ${ }^{2}$ One analogy cupporta the attribation to Plato, the other that to Aristotle.

If it is not proof, has argument from analogy any value? Can we give any ralea by which to judge ite value in a given case? Here we must remember that the argument reats altogether on a belief that the conjunction we observe diwcovers to ua a connexion; the presence of both a and y in the subject a points to auch a connexion between them as mill justify our inferring from a to y in the subjeot b. If we definitely thought that \boldsymbol{a} and y were irrelevant to one another, it would be foolinh to expeot 6 to exhibit one because it exhibited the other. But though the argoment thus preeames a connexion between a and y, it makes no pretence of showing that y depends on wnther than on some other property c in a, not abared with a by b. There is no elimination. If however there were any implicit, though not formal, elimination : or again, if there were anything known to us which seemed to support the hypotheais of a connerion between and y : we ahould atteoh more weight to the argament. Hence if the escertained resemblance between a and 6

[^208]is very great, we may think the argument from analogy stronger. For there must be something in a to eccount for the presence of ${ }^{\boldsymbol{j}}$; and if y is not connected with e, we must look for that something in the remaining natare of a; but the more we inclade in x (be ascertained resemblance), the less there is that falls outaide it, and the fewer therefore the alternatives open to us, to account for the presence of y in a. Still it must be admitted that so long as we rely merely on this sort of consideration, it remains to the end as possible as not that y is unconnected with x, and therefore that y will not be found in. 6 . Of mach more weight is the consideration, that the connexion between a and y implied in the argument is one for which our previous knowledge prepares us. The fact that the angle of reflection is equal to the angle of incidence might well be supposed due (as indeed it is) to the propagation of sound in waves; and if so, we should expect the same fact in the case of light to be produced by the same cause.

It will be seen that the considerstions which must infinence us in determining what weight we are to attach to an argument from analogy are the same as those by which we mast estimate the value of an idduction by simple enumeration. Both point to a general principle, which if it were true would account for the facts from which we infer it; neither proves ite truth; and to try to prove it must be our next basiness. Mill rightly aays that, however atrong an analogy may be, any competent enquirar will consider it 'as a mere guide-post, pointing out the direction in which more rigorons investigations should be prosecated'. And the ame might be said of an empirical generalization. The neat sentences from the same pasange of Mill's Logic may well be quoted: ' It is in this last reapect that considerations of analogy have the higheat acientific value. The cases in which analogical evidence affords in iteclf any vary high degree of probability are, as we have observed, only those in which the resemblance is very close and extensive; but there is no analogy, however faint, which may not be of the atmost value in saggeating experiments or observations that may lead to more positive conclusions.' 1

How then does argument from analogy differ from induction by simple enumeration? In the latter, becaueo a number of instances of a clace x exbibit the attribute y, we infer that all a are y;
${ }^{1}$ III. xI .8 med.
in the former, because two particalars a and δ agree in certain respects x, we infer that y, which is exhibited by a, will be exhibited by 6 also. In the latter, from the limited extension of an attribute over a cless, we infer to its extension over the whole class; in the former, from a pertial agreement between two individagls in intension, we infer to a further agreement in intension. But the one passee gradually into the other; for the former may be called the application to a particular case of a general principle inferred in the latter from a larger number of instancee than in the former. This is very plain in an illustration which Aristotle gives of the 'Example' (his name for the argument from analogy). A man might have inferred that Dionysius of Syracuse designed to make himself tyrant, when he asked the people for a bodyguard; for Pisistratus at Athens asked for a bodyguard, and made himself tyrant when he got it ; and likewise Theagenes at Megara. Both these fall under the same general principle, that a man who aims at a tyranny aeks for a bodyguard. ${ }^{1}$ One of the instances of argument from analogy given above concerned the volatilization of gold; and it might perfeotly well be said that it would be contrary to all analogy for gold to be incapable of a gresous form. Bat we might equally well asy that our experionce of other elomenta warranted the empirical generalization that they could all be volatilized, and therefore gold must be capable of it. This affinity between the two processes of inference is however often concealed by the fact that the pointe of resemblance in two (or more) subjecte, which form the bacis of an inference to a further resamblance, have not given rise to any special denomination; there is no general name by which the sabjecte can be called on the atrength of the resemblance, and the reeemblance may even be one that we recognize bat cannot precisely deacribe. In the case of gold, we might pick out the fact of its being an element, as juatifying the expectation that it can be volatilized. In the case of Dionysius, his asking for a bodyguard is the circumatance that clesses him with Pisistratus and Theagenes, and excites our fear that he aims at a tyranny. But a weatherwise man might be unable to deecribe what it is in the appearance of the sky that makes him fear a great atorm, though
${ }^{1}$ Ehed. a ii. 1857b 25-88. To make the inference to Dionyrius necemary (it is of courno Diongains I who is meant), the principle would have to be, that a man who alts for a bodyguard aims at a tyranny; and that is really what the suppicious citisen of Byracose would have had in his mind.
he can may that it wise on juat such a night as this that some other storm broke ont. The general proposition (the indaction as some would call it), which medistea his inference from that past occasion to the present, cannot be formulated; and no he may appear to work without it, and the affity between such a process and induction by simple enumeration may bo unoberved. Yet it orists, and, at has been mid, the one process pasece imperceptibly into the other, se the number of inatances increases from which the conclusion is inferred ; though where we cannot formulate a general principle, we abould certainly speak of the argament rather as one from analogy.

It is of some importance to realise that a general principle is always involved in suah an argument, because it has been contended that all inference goes really from particulare to particulars. ${ }^{1}$ There may be paychological procemes in which a man's mind peres direct from a to b, and he predicatee of the latter what he was predicating of the former, withoat grounding it on anything recognized to belong to them in common; just as a man who pacees a letter-box in the wall may look round at it to see the time. Peychologists explain anch actione as due to the "Aseociation of Idena'. Bat this has nothing logical abont it, and is not inference. Any one mart admit when questioned, that unlen he cupposed b to share with a the conditiona on which the prevence of g depends, he coald not rationally infer it in b becanse be foond it in a; and a procese which cannot rationally be performed oan hardly be called a proceen of reasoning. But that rupposition is the rupposition of a general connexion; and therefore inferemos from partionlar to particular worke through an implicit aniveral pribciple.
${ }^{2}$ Mill, Logic, II. Iii. 8, and swpra, c. xiv, Pp. 278-287: Cf. also Bradiey's criticiam, Legic, Bk. II. PL. ii. c. ii.

of mathematical reasoning

Matirimarica is frequently and rightly called a doductive saiesce. Yet it has been mid to rest on generalizations from experience, and for this reeson to be fundamentally inductive. There are aleo certain particular procemes of reesoning in mathomatioe to whioh the name inductive is more particularly given.

One of these is just indaction by complete enameration, which does occar sometimee in mathematics. A proposition may be proved indepandently of a right-angled, an obtuse-angled, and an acutoaagled triangle, and therefore enunciated of the triangle univerally: or of the byperbola, the parabole, and the ellipeo, and therefore enuncisted of all conic erctions. The formula for the expansion of a binomial seriee is proved mparately to hold grod whea the exponent is a positive integer, negetive, and frectional; and only therefore aseerted to hold good universally. The pecaliar natore of our enbject-matter in mathematice onables no to see in esoh cese that no other alternatives are pomible within the genus than those? whiah we have considered; and therefore we can be sure that our indaction is 'perfect'. The nature of our anbjeot-matter farther asares us, that it can be by no socident that every opecies of the gonus exhibite the eame property; and therefore our conchusion is a genainely univernal jedgement about the genas, and not a mere anumerative judgement aboat its apeciea. We are are that a general ground existe, althoagh we have not found the proof by it. Thi kind of mathematical induotion neede no further comaideration.

The cace is different where some proposition is inferred to hold good univernally becanee it is proved to bold good in one or two instances. This wort of inference oocurs in geometry, when we prove aomething about a particular aquare, or circla, or triangle, and conolude that it is true of the equare, the circle, or the triangle; and again in algobra, when a formala for the
sammation or expansion of a saries, and such-like, being shown to hold good for certain values of \approx, is inferred to hold good for any value. The former kind of procedure is too familiar to need illnetration; of the latter, the simplest illustration is the proof of the formuls for the sum of the first $\#$ odd nambers-i.e. of the odd numbers, beginning with 1 , and taken continuously up to any term that may be chosen. The som is alwaye n^{2}; and this . is shown as followe. It is found by sddition that the som of the first three, four, or five odd numbers is 3^{2}, 4^{2}, or 5^{3}; and then proved that if the sum of the first $n-1$ odd numbers $=\overline{\pi-1}$, chen the sum of the first n odd numbers must $=n^{2}$. For the $n-1^{4}$ odd number is $\overline{2 n-8}$. Let

$$
1+8+5+7+\ldots+\overline{2 n-8}=\overline{n-1^{2}}=n^{2}-2 n+1 .
$$

Add to each side $\overline{2 \pi-1}$ (which is the next or $n^{* 1}$ odd number)
$\therefore 1+3+5+7+\ldots+\overline{2 n-8}+\overline{2 n-1}=n^{2}-2 n+1+2 n-1=n^{2}$.
If the formala holds for $n-1$ pleces therefore, it holds for n places : that is, it may always be inferred to hold for one place more than it has been already shown to hold for. But it was found by addition to hold (eay) for 5 placee; therefore it holds for 6 ; therefore again for 7, and so on ad infinitum; and therefore univerally.

It is instructive to compare this ressoning with the induction of the inductive sciences. In one respect it presents the same problem, viz. What is our warrant for generalization? Yet it cannot be said that the reasoning is of the same kind.

We asw that in the indactive aciences all generalization rested on the existence of universal connexione-whether we exprese that a the Law of Caneation, or the Uniformity of Nature, or in some other manner. But the particular problem of any inductive enquiry whe to determine what were the conditions with which a determinate phenomenon atw connected univerally; and that was only to be done by an exhaustive procese of chowing with what, apon the evidence of the facts, it whe not connected univerally, until there was only one alternative left anrejected, which we were therefore bound to scoept. Now it is by no such process of elimination as this, that we demonatrate the properties of a figure, or the sum, for any number of tarms, of a seriea. We do not conclude that the anglee of a triangle are equal to two right angles,
because we have tried and found that there is nothing else to which they can be equal; but we see, by means of drawing a line through the aper parallel to the base ${ }^{1}$, that the nature of space necessarily involves that equality. The geometrician sometimes appeals to the conclusion of a provious demonstration, without realizing to himeelf the reasons for the necessity of that conclasion; thus, for example, in proving that the angle in a semioircle is a right angle, he appeals to the fact that the three angles of the triangle in which it is contained are equal to two right angles, and to the fact that the angles at the base of an isoaceles triangle are equal to one another,
 and shows now only that the angle in the semicircle must therefore necessarily be equal to the other two angles in the triangle in which it is contained. So far as he thus appeala to the conclusion of a previons demonatration, and applies it to the figure before him, he syllogizes; bat when be realizee the necesity of that concluaion, he does not ayllogize, bat rees immediately that it is involved in the trath of other spece-reletiona; and this he finds out by help of draving the figure. It is felt that a raluetio ad abourdum is a defective proof in geometry just because we should be able to show that such and sach a proposition is true by direct reference to the conditions whioh necessitate it, and not indirectly by the refatation of the contradictory. Thas the reseoning proceeds directly from conditions to their consequences ${ }^{\prime}$, not a in induction from facts to the only principles with which they cannot be shown to be incompatible. And it proceeds by means of our insight (when we experiment in drawing lines) into the necessary implication of one fact with another in the oystem of apsece-relations. For the first resoon it is deductive; for the second, ita premisses are proper premisees, Dorat dpxal-geometrical trathe which explain other geometrical truths. It is the meme with any process of calculation
${ }^{1}$ Or, from the intersection of one cide with the bese, a line parallal to the other side.
${ }^{3}$ It is true that in mathematice difforent trathe about the syatem of spatial or quantitative rolations mutually condition one another; and therefore the order of demonatration is often indifferent, and condition and consequence may change pleces. 8till the reasoning is deductive, since our preminen displey to us the rational necesity of the concluaion, and do not feave it reating on a mere necesity of inference : cf. p. 401, n. 1, mpra.
in arithmetic or algebrn. There too we argue deductively; and there too our premimes are proper premimes, trathe aboat relationa of quantity which render neceseary other rolations of quantity. Nor is there any apecial difficalty about the 'mathematical indoction' employed in proving the formuls for the summation or expansion of a series, \&co. When we prove that a formale which holde for $=-1$ terms holde for m terme, n reprementa any number in just the mame way as the circle on a bleokboard repreenta any circle. Geometrical proofs rest on the intrition of epatial relations, and algebraic on the intuition of quantitative relations, and an far the two aciences differ. Bat that is not more sarprising than the fact that moral philosophy, in which our proofs reat on insight into relatione neither of quantity nor opece, difters both from geometry and from algobra.

Yet we may retorn to the queetion, What warrant have we for generalizing? Wo must grant that the reasoning by which I prove that the angle in this semicircle $A B C$ is a right angle, or that a formuls which holds for the som of the first $n-1$ odd numbers holds for the sam of the first odd numbers, is different from that by which I prove connexions of cause and effeot in the inductive aciences. Yet why do I conclude that the angle in any semicircle is a right angle, or that the formala for the sum of the odd numbers, which holds up to the term next to the n-1 up to any nert term, when I heve only proved it aboat thie eemicircle, and the aaries up to the next to the $n-1^{\text {W }}$ odd number?

Probebly moot people's natural impalse woald be rather to express aurprise at the queation than any sense of difficulty in the matter. What difference can it make, they would ask, what circie is taken? What difference can it make that in proving that what holds for so many pleces of odd numbers holds for one plece more, the plece you take is represented by $m-1$? Such counter-quections would be a very proper rejoinder. But it may be neefal to see what principlee they rest on, firmly grasped bat perhape not conscionsly formulated.

These principles are, the uniform construction of opeos, and the uniform constraction of the numerical series. It is because spece relations are unaffected by locality that what I have seen to be a property of this cirole muat be a property of any circle; becasase the difference between one odd number and the next is the same
at every point of the numerical series, that an inference seen to hold from the $n-1^{14}$ to the n^{41} plece holds for any value of n. If it were otberwise, I ahould have to try speces an I eample cheeses, with no more reason to believe that a property which I had demonatrated of the circle on my blackboard would oharacterize a circle on the page of this book, than there is to believe that a favoar found in a cheese bought at Bridgwater will chamoterise a cheese bought at Waterford. So aso I should have to try different regions of the nomerical meries

Bat sampling is not altogether an appropriate metaphor; for when I sample a cheese, I genaralize sbout the whole cheese from the piece which I taste; but here I should be unable to perform any generalization. I abould axamine a circle, or the odd nombers up to 157, to know whether that circle has a right angle subtended at its circomference by the diameter, or whether the sum of that series of numbere was 157. I should not however be able to take that circle as typical of other circles, nor that series of numbers as typical of other ceries. For I could have no more remon to tranofer my demonatration to a second circle, or a series one place further, than to all circles, and series up to every place.

In fact our belief in the uniformity of apace, and in the aniform formation of the numerical cerries, stande to mathematical reasoning as our belief in the uniformity of astare stands to indactive. Deny them, and in either asee no goneral proposition remains possible any longer. Nay more; no demonatration remains posesible even ubout a particular cese. As we could not even prove that the death of Cleopetre was censed by the poison of an aep, without aseaming that it depended on a cause with which such a hind of death is connected universally, but could only eay that she died after an anp had bitten ber; so we could not prove that the angle in any given semicircle was a right angle, bat only eay that this samicircle contained a square-looking angle. We rely throughout on aniversel connerions between qualitatively identical elements. An asp, if it is of the same netare, and bites with the anme vebemence a person of the same constitution, must always produce in him the same effect. And a circle, if it is the same figure, most have always the same property; else wo cannot oven in a single case assign a definite result to a definite cause, or a definite property to a definite rubject.

If there is any difficulty in seeing the parallelinm, it arises from the fact that a oircle seems obviounly the same figure always. Circles differ in size and curvature; and triangles have more differences than circles. But we can easily conaider the form of a circle, in abstraction from ite size; or the bare triangularity of a triangle, in abstraction from the proportions of its sides or its angles. And when we have in our demonstration proved that some property follows upon the mere form of a circle, and the mere three-sided rectilinearity of a triangle, without taking anything else aboat either figure into account, we then know that it must be true of all circien, or all trianglea. In the indactive sciences our difficulty lies in determining on what conditions, amidst the complexity of the concrete case before us, a particular result depends, and what precisely the result in. It is a difficalty very largely of analysia No one who had proved that x depended precisely on a in the case before him would hesitate to generalize any more than does a geometrician. Indeed he would feel that he was working with general terms all the time, and proving an universal connexion rather than a particular one. But so long as his x and a are not clear-cat and atripped of all irrelevant matter, he cannot trust a generalization. In mathematics our terms are defined and precise from the ontset ${ }^{1}$; our proof abows exactly on what conditions a consequence depends; and we can recognize thoee conditions elsewhere wherever they occur.

We may sum up this part of our discussion as follows. Mathematical reasoning postulate in space and in number a syatem exhibiting throughout fixed universal principles, as inductive reasoning postulates it in the course of nature. On that rests the generality of any conclusion in either case. But the nature of the reasoning by which mathematics connects spatial or quantitative conditions with their consequencen is quite different from that by which the physical sciences, so far as they are inductive, connect phyaical condition and consequence. The former works by direct insight into the apecial nature of its doubtleas highly abetract

[^209]subject-matter; the latter has no such insight, bat looks for tarms that, in fuce of the facte, will alone eatisfy the general conditions of a causal connexion. In the former, generalization is annoticed because it is all-pervading; for the relevant conditions are distinguished from the first. In the latter, generalization comes at the end, and attracta attention as the result of a long effort; for all oar taak is to distinguiah the relevant from the irrelevant conditions.

There remains one question, which was referred to at the outset of the chapter. The principles of mathematics have been alleged to be generalizations from experience, and the acience on that account at bottom inductive. ${ }^{1}$ It is indeed difficalt to see why the same should not as well be said of the inferences in mathematics.' Their demonstrative force ariese from the fact that the nature of apace or quantity allows us to see immediately the consequences involved in certain conditions. But any one who requires repented experience to convince him of the truth of a geometrical priaciple (such as that two straight lines cannot enclose a space) may just as well require repeated experience to convince him of the truth of a geometrical deduction; we have to do with the matusl implication of apatial conditions in both cases. And so it is also in the seience of pure quantity. The multiplication table up to 12×12 might be eaid to contain principles, and the multiplication of 266×566 to apply them; bat whatever reason there is to doubt that $6 \times 6=86$, there will be the same reason to doubt whether it follows that $60 \times 60=$ 3600. However, it will be sufficient if we confine ourselves to the consideration of the alleged indactive charscter of the process by which we ascertain mathematical principles, without attempting to determine how much would have to be regarded as principles, and how mach as valid consequence.

What is really meant by the allegation is, that whereas every mathematical principle, such as the axiom of parallels, or $2+2=4$, is aniveral, our reason for accepting it as universally true lies in the fact that we have always found it to hold good in experience. Two apples and two apples make four apples; it is the same with cows or sovereigns, window-panes or witerpota. And whenever we have seen a atraight line falling on two other straight lines and making the alternate opposite angles mesarably equal, we have found-if

[^210]we have tried-that however far we produced the two other atraight lines, so long as they continued apparantly atraight, they remained at the eame meerorable dirtance from one another. All experience confirms these principlen, and none is contrary to them; me accopt them an empirical generalizations, pomeming, on account of the extent and variety of the circumstances under which they have been found to bold good, the mane degree of cortainty me if they had been proved by a rigoroas elimination of all other hypotheeses

It is really gafficient anower to this view, to recur to what was mid upon a similar attempt to treat the Law of Causation as empirically established. If the Law of Causation is trae, the factes of our experience help us to determine what are the particalar causel connexions in natare; if we start by doubting it, the facte will never bring on any nearer the proof of it. Similarly, if we start by doubting whether spatial or numerical relations are constant, the fincts will never begin to prove it. Grant that the sum of $2+2$ is always the same, and it is worth while to see what it is ; and whatever countable things we take to reckon with will make no difference. Bat quention whether it is always the same, and proof that it is mo becomea impomible. For you have no ground for supposing that if $2+2$ could sometimes make 5 , cases of ita occorrence would have occurred in your experienoe. Everything becomes problematical; the frequency of any particular aum of $2+2$ is quite indeterminate, if the amm is indeterminate; and your experience may assure you that you have never found them making anything elve than 4, but cannot aesure you that you are never likely to do so. And so it is with geometrical principles also. If geometrical roletions are not neceseary and universal, wo have nothing bat a conjunotion of facts empirically mecertained. In each place and time the conjunction may be different; there is no reseon to suppose that what occurs here and now convays any inatruction about the occurrences at other times and pleces. If each place and time is loose and independent, the next may elwayo contradict even the oniform reanits of previous experience.

Other lines of refutation are also possible. It might be pointed out that in point of fact we do not look for confirmation of our principles to repented experience; bat we interpret axperience in the light of our principles. Two drope of quicksilver + two drope of quickrilver will make one drop of quickailver; but we insist that
the four drops are there, in a new figure. The anglea between the end-lines and the side-lines of a tennis-court may seem each to be a right angle, and the sides to be drawn atraight; bat if we find that one end-line is ahorter than the other, we say that we know that the angles cannot be true. It may be eaid that by this time our principles are well established, and facts in apparent conflict with them are therefore reinterpreted so as to be consistent with them. But fects in apparent conflict must heve been frequent from the beginning. Again, it is hard to see what meaning can really be attached to the statament that $2+2$ might conceivably make δ, or that lines making equal anglea with a third straight line might conceivably remain atraight and yet converge; for auch athing cannot be represented to thought as possible.

It is of course true that in the spplication of mathematical reseoning to what is concrete, our conclusions will only be true if our premisese were to. If a wheel which I asame to be circalar is not circalar, conclusions based on the ammmption will prove false. If I am wrong in my linear measurement of a floor, I shall be wrong as to the number of equare feet of floor-aloth required to cover it. But that doee not shake the certainty and oniverality of mathematics; indeed nothing else would coneist therewith.

It is also true that withont experience of connting numerable objects, and of construoting figures in apece, I should be nuable to apprehend or naderatand the trath of mathematical principles. But this does not make their truth empirical, or my mode of aceartrining it inductive. For theee priaciplee are seen to be intrinsically neceasary as soon as they are underatood; wherees inductive, conclusions are never seen to be intrinsically neceasary, but only to be unavoidable. Nor does further experience add anything to our amarance, when wo have once made the construction or the calculation in which their truth becomes manifest to us; whereas further experience of the ame conjunction amidst variation of circumatance in preciealy what does add to our assurance of the trath of an empirical generalization ${ }^{2}$.

We must conclude that in mathomatica thare is (or at leest should be ${ }^{\text {a }}$) no generalization from experience. To suppose mathematical principles to be rach generalizations is like supposing the Law of Cansation to be e0. Their oniveravity is the conntarpart to the reign
of law in physical nature. Bat the dedoctive charactar of mathematical ecience is due to the nature of the subject-matter, and our peculiar insight into the rational connexion of its parts. What is implied in our possession of this insight is a metaphysical question lying beyond our purview.
[The nature of mathematical certainty is a queation of firreaching metaphysical importance; and J. S. Mill, in his Auto biography (loc. cit.), frankly acknowledges that the chief etrength of the opposition to the trath of the Empirical Philosophy had always seemed to lie here. It was on this acoount that he sought to show that mathematical principles in their turn were generalizetions from experience. He beld the same with regard to logical principles. It is logically important to see that there can be no knowledge unless there are truths not empirical-i. e. not open questions, for a decision on which we must go to the tribunal of sense-perception or eventa. And no one will understand the structure of knowledge, who does not see that mathematical principles are trathe of this kind. But it may be asked what their relation is to logical principles. There sre some who have represented logic as at bottom a branch of mathematica; and others seem inclined to suppose that mathematica can be reduced to formal logic. A non-mathemstician is not well fitted to discuss these matters in print; and the discussion belonga in any case to a more advanced stage of logical science than this book pretends to attain. But I ought perhaps to say that I do not anderstand how either theory can be trae.]

CHAPTER XXVI

OF THE METHODOLOGY OF THE SCIBNCES

Wa have seen that inferencee cannot all be reduced to a small number of fixed types. They are not all syllogistic, not even all that are deductive. Their form is not altogether independent of their matter. All inference, according to Mr. F. H. Bradley, is a constraction and an intaition. ${ }^{1}$ The patting together of the premisses is the construction, bat it is the terms which determine how it can be effected. The percoption of something new to us in the whole which we have constructed is the intaition; eod if we do not see its necessity, there is no help for us. But within the anity of this definition, we may examine any particular type of inference which, for ite frequency or importance, seems to demand our apecial attention. Syllogism is one of these types; the disjanotive argument as applied to eatablish causal connexion is mother. The relation of aubject and predicate is one of the commonest which our thought uses, and therefore inferences besed on it are common. The causal relation is not less important, and the type of inference used in its establishment equally deserved our stady.

We found that this type of inference rested on the conception or definition of cause. ${ }^{3}$ We considered very generally what that conception involved, and how we could satisfy ourselves that we were right in bringing any particular facte under the conception. We noticed some of the difficulties which the complexity of natare places in our way; and some of the cantions which we must constantly bear in mind in interpreting facts in aocordance with the conception. We found that general trathe present themselves to the mind at firat in the form of conjecture or hypotheris, and that

[^211]often there is no means of teating such hypothesis exoept by first deducing-it may be by very elaborate reaconings-the consequences that should follow in specifed circumstances if it were true and if it were not. But all these matters were discussed and illustrated in a very general way.

Now different enquiries have their own peculiar difficulties, ariaing out of the nature of their subject-matter, and of the problem which they set. And any rulea for dealing with these peculiar difficulties will constitute rules of method, instracting us how to set about the task of singling out the laws or causal connarions from amidat the particular tangle in which the facts are presented in such science. The consideration of such rules, as distinct from the use of them, is Methodology; and eo far an herein we consider bow cartain general logical requirements are to be satiafied in a particular case, it is sometimes called Applised Lagic. ${ }^{1}$

To this subject belongs Mill's discusaion of the proper method of studying the moral or social sciences ${ }^{2}$. He pointe out how methode of enquiry appropriate to certain ahemical investigations (to which he therefore gives the name of the Chemical Method) are inapplicable in dealing with the aciences of human natore. The chemist, unable in a great degree to predict from his knowledge of the properties of elemente the propertiee which will belong to their componada, has to proceed by experiment conducted with every precaution to secure a precise knowledge of the conditions; and thus discovers the effect of a new condition or ingredient upon a whole of a certain kind. But we cantiot experiment with society out of a merely speoulative cariosity; the practical intereste involved are too great; and were that not oo, the thing is impossible. Our material is not under control; it would be mort instractive to prevent the use of alcohol in England for a generation, and watch the difference in the amount of panperim and crime; but there is no means of performing the experiment, for to pass a law is not to enforce it. Nor can we over know precisely into what conditione we introduce the factor whose effects we wish to study; nor can we maintain those conditions unchanged in all bat what is due to the influence of that fector during the course of

[^212]our experiment. For these and other reacons, it in hopeless to expect much light to be thrown upon the laws of eocial phenomens, merely by watching what follows in different cases upon the adoption of the ame policy, or by comparing the results of different policies. There are so many factors which modify one another; each effect depends on mony conditions, and each condition by its presence or absence makes a difference to so many effects by us regarded as distinct, that it is useleas to suppose the effect of any particular social experiment will stand out aharp and recognizable amidat ite surroundinge, or that we could aay-Here is nomething which could not have occurred bat for the measure we took.

We must have recourse then to deduction. From what we know of the lawe of human natore, we must attempt to determine the effect which a measure must produce, or the conditions out of which a given atate of acciety muat have arisen. But again the great complexity of the subject imposes cartain reatrictions upon ne. We must not expect to be able to trace any pervading featore of society to a single motive, as political obedience to fear, or good government to a system by which the ruler's private interest is engaged in governing well. And Mill layestress on one feature in partioular of the method by which the course of human history is to be explained. Insteed of working out first the theoretical consequences of certain general principles, and then checking ourselvee by comparing our reeult with the feote, he holde that we ohould endeevour first to aceertain empirically the eubordinate principles that manifeet thamselves in history, and cheok our formulation of them by considaring whether they are consintent with the more ultimate laws of human nature and conduct from which in the leat reeort they must be derivable. For the fecte of overy period are so diverse and manifold, that the former procedure would probably be a wate of time. We may know the laws of human nature, bat until we know the circumstances of a given state of society, we cannot tell what result these lawe will produce. We never know them afficiently for it to be worth our while to attempt to develop human history a priori, as the astronomer might attempt to develop a priori the course of a comet or of the tides. We muat be content to confirm such generalizations as we can frame a pasteriori by ahowing that thoy prevent nothing surprising
when they have happened, although we might have been unable to predict them. ${ }^{\text {l }}$

In the chapter on Non-reciprocating Cansal Reletions, questions of methodology were really to some extent disorseed. For we were engaged in considering the difference between the evidence required to entablish a pare caueal relation, where nothing irrelevant enters into the statement either of the cause or of the effect, and a nonreciprocating relation ruch as is implied when we speak of a Plarality of Canses. Now mome sciences find it much harder than others to eliminate the irrelevant; and to them it is specially important to remember the sort of tests by which the non-reciprocating character of a relation may be detected.

In that chapter, two of the 'Rulee by which to jadge of Causen and Erects' which had been previously enancisted were reconsidered at some length, and it was ahown that, although nothing which failed to satisfy their conditions could be in the strict sense the canse of any phenomenon, yet if cance were understood in a looser nease, as non-reciprocating, it whe not mafe to make the same assertion. But of the precnations to be attended to in the applicetion of the other two Rulea little wee said.

These rules were, that nothing which variee when a phenomenon is constant, or is constant when it varies, or varies independently of it, is ite casues; and that nothing is 80 whose effect has already been taken socount of in other phenomena. Both these rules are expeoially useful where we are dealing with measurable effecte, the total amount of which is dependent on a large number of conditions; and the investigations which employ them have been called ' Methods of Quantitative Induction'.' It may be worth while to consider some of the difflialties whioh beset the use of them; and that will furniah an example of a methodological problem; for a science which deals with mesarable phenomena, in apite of the great advantage which their measurability bringe, generally meets also with some special difficulties, which it needs particuler precautionary mensures to surmount.

What is mesourable must so far be homogeneons. Sometimes

[^213]it is for all practical purposes entirely bomogeneous. A gas company supplies gee by metre; the ges is measured, and one cubio foot is prectically indistinguishable from any other. Sometimen the homoganeity is lees complete, bat there can be no menarement except ${ }^{\circ} \mathrm{o}$ far as it is found. It may be important for a genernl to know what percentage of men he is likely to lose by casualties other than in the field; these casualties may be of various kinds, and to the individual soldier it may make a great deal of difference whether he breaks down through dysentery or fatigue; but they are all alike in incapacitating men for service; and the general wante a meagure of the extent to which that ocours. A valuer aemeses the value of the personal property of a man deceased; it consists of pictares, plate, furniture, hormea, atocke and aharea, booke, and all kinds of miscellaneons articles; bat mo far as these aro all exchangeable for money they have a common property whioh can be measured in terms of money.

Now contribations may be made from many sources to any homegeneous quantity, but when you are merely told what the quantity is, there is nothing to ahow of how many parcels, 00 to say, it is made up. The total quantity is a sort of unity. Had one parcel been greater, the total would have been grester; should one parcel fluctuste in amount, the total fluctusten; but there is nothing to show which paroel is fluctanting and which is constant, and the varistion seems to belong to the whole.

It follows that where an effect is quantitative, and there are a namber of contributory factore which, one wny or the other, influence its amount, fluctuations in these do not neoemarily stand out in the reanlt. There is no doabt that overcrowding affecte the death-rate; yot the death-rate in a town may rise while overcrowding has diminished, if other causes operate to incresse it farter than the improvement in housing operntes to diminish it.

Hence a hacty application of the rale that nothing is the canse of a varying phenomenon which does not vary proportionately with it may lead us into grave mistakes. Wo might suppose, for instance, in the last example, that overcrowding had no influence on the death-rate, becanse the death-rate meemed to rise and fall independently. Doubtleas it is only meeming; and if the other contributory factors could be kept constant, we should find the rise and fall proportionate. But we cannot keep them constant.

And even if we conld, we should be expoeed to other errors of interpretation. The death-rate, many so are the causes which contribute to it, is yet mensured as a whole, and treated as one phenomenon. If all the canses which contribute to it were constant except one, and that one fluctanted, the whole resalt might be attributed to the one circomstance which exbibited proportional fluctantions with it. In this particular matter, indeed, we know too mach to fall into such an error; we know that overcrowding is not the only canse of death. But where our previons knowledge is leas, it is very easy to attribate the whole of a varying effect to the factor which varies in proportion, instead of only attributing the the increase or decrease beyond a fixed amount. The influence of education upon character is great; and that in shown by the effects of giving and withbolding it. But we cannot thence infer that it is all-powerful, or that the whole difference between the criminal and the good citizen and father is due to comparative defecte in the criminal's upbringing. ${ }^{1}$

It is clear, then, in the case of a fluctanting effect whioh is the complex reault of several causes, that though there must no doubt be a proportionate Alactuation (or constancy) in the canse, yet it is unsufe to reject from being a cause either a factor which fluctuntea when the effect is constant, or ose which is constant when the effect fluctantea. For we see the effect $n \boldsymbol{A}$ whole; and the whole need exhibit no fluctantions proportionate to those of any one part. The rule of elimination is not falee; and if the separate effects of each factor were not loot and undistinguished in the total, we should observe the facts conforming to it. But this not being so, the rale is unmfe.

The beat remedy lies in determining the precise amount of effect which each factor can prondues; and as each factor may perhaps be liable to fluctuation, what we need is a principle or law conneoting each degree of its activity with a correoponding quantity of the effect. This is done, for example, in the Law of Gravitation And could we thus calculate the smount of effect which the other causes at work, at the strength at which they were severilly present, were capable of producing, we might then aafely attributs any difference

[^214]
x $x v 1$] OF THE METHODOLOGY OF THE SCIENCES 519

beyond this to some circumatance that finctusted proportionately with it.

But in auch a procedure we should no longer be appealing merely to the principle that the cause of a varying phenomenon must be something that varies in proportion. We should be invoking aleo the fourth of our grounde of elimination, that it can be nothing whose effect is already accounted for. Only because we have determined the amount of effect which the other feotors can produce are we entitled to ay that the reeidue is in no part due to them. And unless we know with fair aceuracy what amount of effect may be justly arigned to other fectors present, we cannot apon the atrength of this principle attribute any part to some partioular furtber factor a. The application of this rale therefore is involved in the same difficulties as that of the former, through the fact that the effecte of many diferent casese are compounded and loet in one total amount.

Moreover, so long as all these causes are freely varying, and making their eeperate effeote in one total, the determination of the law of any single cause, much as it world help us to diecover the others, is the very thing that is so difficult. Hence the neceemity of experimenting with each surpected cause singly. It may be impossible to exclude the influence of any others ; we must endeavour to keep it constant; or we may employ what is called a controlling experiment at the same time. We may eee what happens both when a certain factor is introduced, and when it is not, under circumstances which, though we cannot keep them constant, we have good reason to believe to be the mame in either case. A farmer, for erample, wiahes to know whether some new dressing is of any use to his graes. He cannot remove the other causes which promote or hinder the growth of gram, and aee how large a orop of hay this dreacing could produce alone; for alone it would produce none at all. Neither can he control those other causes, 20 as upon the same field to nee it one year and not the next, and maintain all other factors the mame. But he can select two plota, or series of plota, on which he has reason to believe that the other causes all operste equally, and uee the dreasing on one and not on the other.

But even eo, we have not got a great way towarde determining the law of a cause. To show through all that malks it that some part of an effect is due to a partienlar cause is not the ame as
showing how mach is due to it : still less as finding a mathematical expresion that connects definite fluctuations in the one with definite fluctuations in the other. There are many casee where this lant achievement is impossible, even though the phenomens we study be quantitative and to some degree measarable; indeed it is impossible except in dealing with the phytical properties of bodies. Eleewhere we mart be content with a vague much and little. In time of war, the risk of capture at ses is a great doterrent to neatral commerce; but we cannot any precisely how great. The history of times of plague shows that increased uncertainty of life relaxes the bonde of cuatom and morality; but it would be imposesible to give any mearare of the connexion between the two facta, though the mesarability of the facte, in the rense that as the death-rate rises the frequency of criminal or recklem acts increases, enablee us to establinh the connerion. The one fuot may be, in mathematical parlance, a function of the other; but it is not a function of the other alone; and we cannot so disentangle the many causer and their complex reenlt ae to give preciaion to the degree in which one affeots the other. Moreover, where the phonomena sre more parely quantitative, the law of veriation that connectie them is by no meane esey to establish ; for a formula which bolde good over a considerable range of variation may break down beyond thooe limita. The coefficient of expansion of a metal, which indicatee the rate at which its bulk increases with mocesesive increments of heat, no longer appliee when the metal vaporives. There are what have been called oritical points, at which the chango in an effect no longer obearvee the mane proportion es hitherto to the change in the cance. Great cantion must therefore be observed in formalating any law apon the evidence of concomitant variation between two phenomena, even where we are atisfied that wo have excluded any variation due to other censes, and can give a precise measure of the phenomena in question.

The canses whoee effects are merged in a total may not only vary independently of one another; some may be intermittent in their operation. And whether they are continuous or intermittent, they may be periodic; and one may have a longer period than another. There may again be causes which aro both intermittent and irregular in their action, recarring at no definite and periodic intervala Yet it is posible to cope with many of the difficulties which these
fecte present by taking averages. No one would expect the rainfall of one year to agree closely with that of another in the mame locality; the circumstances affecting it are too numeroas and inconstanh. But we have no reason to expect that the average annual rainfall over a considerable period of years should not agree closely for different periods; for though in one year there may be more circumatances that are favourable to rain than in another, in the next it may be the other way. If, then, the average rainfall for one considerable period of years were grestor than for another, we should look for some definite reason for the difference: which we might find perhape in a difference in the amount of forest standing in the district at the different dates; for the intermittent and irregular causes of whose operation we are aware would have roughly balanced in the two periods, though not perhaps in any two single years. Another method is to plot curves. A base line for exmmple is taken, and perpendiculars drawn to it at equal intervals for the succeaive yearn. On each of thees a point is taken whose height above the base is greater or less in proportion to the number of inches of rainfall in that year; and a line is drawn through thoee pointe. The line will rise and fall irregularly; bat it is possible that in apite of these intermediste fluctastions there may be long-pariod flactuations which atand clearly out; what may be called the creata and troughe of the ourve may be at fairly equal intervals, though its course is not uniform from trough to crest This would indicate the action of some cause having a similar period; and if we discovered any fector with a correaponding period of fluctaation, there would be a strong presumption that it was the canse.

The profitable use of atatistice depende very largely on methods like these; but the devices for bringing out their teaching are often much more elaborate than has been indicated. They belong, however, to the detail of particular sciences rather than to the general principles of logical metbod. Enough perhap has been eaid to indicate the misinterpretations of causal relation to which we might be led, in the case of quantitative phenomena that vary in their amonnt, by too hastily applying rules true in themeelves to any unanalysed total effect : as well as the difficultiea that beat us in dieontangling the component parte and fluctuationa,

A few further and miscellaneous examples of the way in whioh
precepts for the better prosecation of a particalar ecience may be drawn from general logical principles will earve to conclude this chapter. It must not be supposed that the subject is at all adequately treated here; it is only illastrated.

What is called the Aistorical or comparatine method has in the last few generations revolationized many branches of enquiry. It is bat an application of the general principle of varying the circumstances in order the better to diecover the cause of a phenomenon. But of old, enquirers into matters of historic growth, such as language, or myth, or religion, or legal ideas, were content to attempt an explanation of the facts of nome particular age or country by obeerrations carried on within that age or country alone, or if beyond it, only in adjecent ages or conntries of the same type. The historio method looks farther afield. It compares the institutions of widely different ages, or of peoples who though contemporaneons stand at widely difierent levele of civilization and of thought. In the light of such a comparieon, fucts may take on quite a new appearance. Legal or other customs for which a later age had found a reason in come supposed meaning or atility which they now possesed are meen to have had a very different origin, in conditiona no longer eristing, and ideas no longer entertained. Folk-lore is fall of such surprises. The custom of throwing rice after a married couple as they drive awny is cometimes explained by saying that rice is a symbol of fertility ; Dr. Freser, comparing a number of other facte, thinke that the rice was originally intended to lure back the spirit of the bride or bridegroom to ita body; it wae rappoed that at eritical timee-and everything connected with marriage whe critical-the apirit left the body, in the form of a bird; the rice would attract it, and if it hovered about the body it would be more likely to re-enter. Whether this be the true explanation of the castom or not, only the comparative method could have suggested it. It is the same with myth; the account of the origin of Greek and Roman mythology popularized by Max Müller represented it as, in the language of Dr. Andrew Lang, a disease of langaage, the pearl in the oyster. ${ }^{1}$ Names originally designating the attributes of earth or san or moon were confused with words of similar sound bat different meaning, and out of these other meanings mythe arose. Apollo

[^215]
[] Ixv] OF THE METHODOLOGY OF THE SCIENCES

 ignomnt en to the tor - may think the hypothesis of interaction the most convenient avamption to make, with a view of increasing and aystematizing his knowledge of the lawe which determine the development of the individual mind; or instead of the hypothesis of intaraction (which conceives mind and body as producing changea in one another) he may prefer the hypothenis of paralleliam, eccording to which every mental ohange has a correoponding bodily change, and vice versa, bat the two series prooeed each aninfluenced by the eventa of the other. Either hypothesis, if not regarded as trae, but only as facilitating enquiry, would be a methodological acamption. Similarly, if he believee in the freedom of the will, the paychologist may still, an a methodological assumption, socept the doctrine ofdeterminism ; because no far ac actions have not any cause sofficiently accounting for them in the pre-existing state of the agent, but spring from the activity of a will acting according to no fixed laws, it is hopelese to try to explain their oecurrence. In his attempts to do this therefore he will semume what is necessary to the pomibility of doing it, oven though he may believe that it cannot be altogetber done.
Lactly, general logical considerations may indicate the weak pleces in a particular acience at a given time, and thus show what line of enquiry is logically of most importance to the acience in quertion. The theory of Natural Selection aesumed the existance of variations, that is, divergences from the parent type in oflspring; and it assumed these variations to be accidental and non-adaptive. It concentrated itself at first on the task of showing how great a degree of adaptation between an organiem and ite environment could be brought aboat, through the operation of the atruggle for existence among individuals varying alightly from type in all directions; and how by the accumulation of such small variations as happened to be favourable in eech generation a profound moditication of specifio type might altimately be produced. It was quite worth while to work this out even upon a beacs of aesumption as to certain of the fecta. But the preseure of criticiam has directed attention to the question whether variations are all of them non-adeptive; and one of the logical requisites of the theory of Natural Selection is a suitable collection of facte throwing light upon this point. The facta are not very easy to obtain or ertimate; but biologista are working at this problem with great assiduity. A stady of the contemporary atate of biology from a logical point of view woald heve to consider with come care the kind of facts required on anoh a point as this, and the sort of instance that would be cruciall, i, e. deoisive against one or other theory.
${ }^{1}$ From crux, a eign-port: as directing our choice between two (or more) theories: 0. Beoon, Nov. Org. II. 86. \mathbb{A} crucial instance, though it can disprove, can never prove a theory, except upon the aesumption that there is no other theory with whioh it agrees. And it is easier to imagine instances fatal to the view that all variation is non-adaptive than to the viow that edeptive variation sometimee ocourn.

CHAPTER XXVII

APPENDIX ON FALLACIES

A pallacy is an argument which appears to be conclusive when it is not; and the chief use of studying fallscies must be that we may learn to avoid them Regarding Logic as a acience, we might therefore justly say that we are not called upon to discuss them. The only way in which their study can help us to understand how our thought works is by the force of contrast. Show a man an argament which he recognizes to be unsound, nhow him where the unsoundness lies, and he may very likely realize more clearly, so far as they can be formally prescribed, what are the conditions of valid reasoning. On this account as we wentalong we contrasted examples of invalid with examples of valid inference. What more then is wanted i for the case is not as it is, for instance, with peychology. To the prychologist few things are more instructive then the atudy of marked abnormalities of mental life: just as to the physiologiat diseases reveal much which cannot be seen in health. For paychology is an empirical science, $s 0$ far as it is a acience at all : it aims at discovering the principles in eccordance with which the various manifestations of consciousness develop in the life of the individual; what these are it is to a large extent unsble to anticipate, although the metaphysician may have his views as to the conditions under which alone their action-whatever they may be-is possible. Now insanity is just an much a fact as any normal mental development; it must equally admit of explanation; and doubtless the same principles, in sccordence with which this development proceeds under certain conditions normally and to a sane reault, are exemplified in the mental disturbances which other conditions evoke. They are exemplified too in a more prominent way; so that such cases furnish what Bacon called a glaring inelance ${ }^{1}$ to assist us towards their discovery. But it would be absurd to eay that the principles of rational thought are

[^216]equally exemplified in fallecy as in sound thinking; and it would be absurd to hope to discover, in the procedure of a fallecious mind, the nature of true thinking. We have aid once and again that Logic analyses the operations of thought which the mind has already performed about other matters; but it must not be cupposed that it is on that account, any more thian mathematics, an empirical science. The mathematician can only recognize the necesary relations of number or speoe by the help of some quantities or figures in which he finds them; yet he recognizee their necessity to be aboolute and universal, and the fact that his nonmathematical friends make mistakes in their mathematical thinking is not taken by him as evidence that there are reelly two ways of thinking about the matter; he merely says that on such subjects they cannot really think. So also with Logic. Only in some thought in which they are found can the necessary relations involved in thinking be recognized; bat their necessity too is recognized to be absolate, and we say that those who think differently are incapable of thinking about how they think. If any one is inclined to hold otherwise, and to suppose that the laws of our thinking are paychological laws, exemplified no lees in fallecy than in its opposite, let him reflect that even in doing 20 be is bound to asame the contrary. For he who in that mind sets out to ascertain what the principles of thought, a a matter of empirical fact, are, will be unable by rights to know that the thought is valid by which he conducts that inveatigation. How then could he have any confidence in ite results? Yet the fact that he intends to truat them implies that he agoumes the principlee of thought, in sccordance with which he conducts the invertigation, to be valid, whatever prinoiples the inveatigation may report in favour of; and berein he takee for granted that he can recognize immediately what rational thought is, without reference to empirical facter revealed by peyohology.

Nevertheless the insertion of a chapter on Fallaciee may be defended. It has tradition in its farour; and without it, the nomencletare of falleciee-s nomenclature by no means fallen out of common use-would remain unexplained. There are practical uses in it also; and it would be ridiculons to say that because Logic is a acience we may not turn the atudy of it to advantage in practice. Familiarity with some of the commonest types of fallecy in no security that we shall nover fall into them oursalves; atill less are
we bound to fall into them unless we have aequired that familiarity. But it may belp us to avoid them, by helping us more readily to perceive them. The overtones which a man has never noticed till thay were pointed out to him he may aftarwards detect easily for bimself. A favour in a dish, a line in a picture, whose presence had gone unobeerved, a man may be unable to ignore, if it has been singled out and presented to him in isolation. So it may be with a fallacy. There are many whose parception of the unsoundnese of an argument in not unaffected by their belief in the trath or falaity of ite concluaion : they will detect it where they think that what it proves is falee; but let it be true-still more, let the sapposed trath be precions to them, or familiar-and the ame form of argument in ites support may peas unchallenged. Yet if we have accultomed ourselves to the look, or type, of the falleoy, we are lese likely to be the victims of auch an imposition. It is true that, in the words of Archbiahop Whately ', 'After all, indeed, in the practical detection of each individual Fallecy, mooh mast depend on natural and acquired acutenesa ; nor can any rules be given, the mere learning of which will enable us to apply them with mechenical certainty and readiness: but still we shall find that to take correct general view of the aubject, and to be familiarized with scientific discusaions of it, will tend, above all thinge, to ongender suel a habit of and, as will beat fit us for practice.' And, as Aristotle intimates ', a man who may be able to detect a fallecy well enough, if you give him time, by the light of nature, may be pleced at a practical dieadvantage by not being able to do it quickly enough: here the agatematic atudy of fallacies will help him. Nor is it only in argaing with others that he may reap some benefit from the study ; it will acerae to him also in the condact of solitary thinking. ${ }^{\text {s }}$ It wes however chiefly with reference to the condact of debate that Aristotle discussed the sabject. It was from this point of view that he obeerved, that a man might be arapected of incompetance, who only found fault with an opponent's argument, and could not ahow in what the fanlt consisted. It may be added, that eo far as fallaciee are referable to recognized types, it is a great abridgement of criticiam to be able to name the typea, and refer a particular falleoy to one of them.

[^217]These are practical conaiderations; and it woald probably be found that importance has been attached to the doctrine of fallacies chielly by thnee who have viewed Logic es an instrument for ressoning. But an uee may be found in the doctrine, of a more theoretical kind. It is intallectually anmatiafactory to eee that an argament is faulty, and not to eee precisely why. We desire for ourselves, no lese than we owe to our opponent, an analyria of the error. Otherwise, and if we ean only see it, and not see through it, the mind, as Aristotle expresses it, is bound, and unsble to proceed. ${ }^{1}$ It is probable that some of the fallacies of which he finde the solution in different ambiguities of langrange did once constitate a more serious entanglement than they do to-day. Thie is partly becanse, as others have pointed out, such falleciee generally dimppear by tranalation into a foreign tongue; and peoples more familiar than the Greeke were with a diversity of tongues have a great advantage in detecting ouch. It is partly aloo because an analysien now in his day is common property in ours; and many of its resulte are so incorporated into the currency of common thought and apeech, that a man whose attention is called to them feels as if he was taught only what he already knew.

If however we are satisfied that Logic should treat of fallacies, it is very difficult to be antisfied with any treatment of them. Truth may have its norms, but error is infinite in ite aberrations, and they cannot be digented in any clessification.' The same inconclusive argament may often be referred at will to this or that head of fallacies. 'Since, in any Argument,' aays Whately, 'one Premies is usually suppressed, it frequently happens, in the case of a Fallacy, that the hearers are left to the alternative of supplying cither a Premise which is not truc, or else, one which dose not prove the Conclusion. E.g. if a man expatiatea on the diatreas of the country, and thence argues that the government is tyrannical, we must suppose him to assume either that "every diatressed country is under a tyranny", which is a manifest falsehood, or, merely that "every country under a tyranny is distresed", which, however trae, provee nothing, the Middle-Term being undistribated.'s The assumption

[^218]of a falee premiss is not indeed perbspe to be called a fallacy, as we shall see presently; it is at any rate different in its nature from inconclusive argumentation. But the choice may equally well lie between two modes of inconclasive argumentation, when we have to cleasify a fallacy; a man who attempts to refute by an enumeration of atriking instances the proposition that some apecific characters in plants and animala are not adaptive might either be charged with illicit process of the minor term, in drawing an univeral conclusion where his premisees only entitle him to a particular one, or with what is called Ignoratio Elencki, in supposing that a par: ticular affirmative refutes a perticalar negative. ${ }^{1}$ And not only is it impossible to make anch a cleasification of fallecies as will never leave it in doubt to which clasa a particular example is to be referred; if that were all, it might be aaid that the types were distinct, and the olassification ao far a good one, although individuals could not be assigned to their typee unambiguonaly: but it may be doubted as well, if the types of error can be exhaustively detailed; and the clasesification completed.

The reason for this is twofold. In the first place, there may be argamente so foolish and inconsequent, that they cannot even be said to simulate cogency; these cannot be positively characterized, but must be lomped together by the mere negative mark of inconclusiveness. And eecondly, there are many fallacies, the detection of which requires not general logical training, bat acquaintance with a particular scientific subject-matter. The latter point is of some importance, as connecting with what has been already said about demonstration.

We have seen that the syllogism cannot sustain the claim once made in its behalf, of being the type of all valid inference; but that there are deductive reasoning -to say nothing of hypothetical and disjunctive argument-whose validity lies in no conformity to a scheme exhibitable in the abstract, or symbolically, bat rests for its apprebension upon acquaintance with the nature of the specisl subject-matter with which they deal. The readiest illustration of this, but by no means the only one, is furnished by geometry. Now what is true of valid is equally true of invalid reasonings. There are many which are not of a sort that can occur in reasoning
 moxoppias IXous, and xxiiii. $182^{\mathrm{b}} 10$.
on every aubject-matter, but are bound ap with misconceptiona of the opecial rubject-matter in which they occur. This too may be readily illuatrated from geometry. 'Lewis Carroll' devieed a proof that 'a right angle is sometimes equal to an obtase angle'. The demonstration was in all other reapecte unimpeachable, bat vitiated by one-of conrse intentional-orror in the constraction of the figure, in which a line was drawn to one side of a point which must in fact fall on the other. ${ }^{1}$ Just as a knowledge of geometry can alone show where this line murt fall, 0 a knowledge of geometry can alone expose the inconsequence of the false demonstration. And similar inconsequences ocour in every partioular acience, whioh only an understanding of that seience can show to be inconsequences. Thus if it were argued that because a and b wers halvee of the eame thing, therefore they were halvee of one another, and since $a=4, b$ must $=2$, it ie only a perception of the nature of quantity that reveala (doobtless in this cace to the lenat mathematical of us) the invalidity of the first step in the argument. It is lesa obvious that among a people who acknowledge kinship only through the female, a man would inherit not from his father bat from bis brother or maternal ancle. Yet a little refiee tion shows this to be the case, and ahowe therefore the fallecy of

[^219]arguing, where female kinahip provaile, that because Δ is in posemaion of a property, his son will posems it after him. Here the detection of the fallecy rests upon our perception of the system of relationships uniting the members of a society which take mocount only of union by descent through the female line.

Aristotle, who noticed that every soienco alforded ite own apecial opportunities for erroneora inference, gave to those that involved mistakes in geometry the name of ψ euboypdфpرa, or false conatruction. ${ }^{1}$ As an example be gives Hippocrates' method of squaring the circle by lunules. A lanule is a figare encloved between aros of two circles concave in the same direction. Hippoorates found a rectilinear area equal to a lunule whose upper are was a semicircle, and ite lower are the fourth part of the circonaference of another circle ; he then found another rectilinear ares equal to the sum of (a) three equal and similar lanulea whose onter arca were semicircles, and their inner arcs the rixdh part of the circomference of another circle, and (b) a semicircle of the same diameter as the threo lunales (ie. of diameter equal to the chord of the arcs enclocing them); and he supposed that by subtrscting from this rectilinear ares an ares equal to the three lonules, he could obtain in the remainder a rectilinear ares equal to the semicircle. He overlooked the fact that because you can find a reotilinear ares equal to a lonule of the former sort, whose inner are is a quedrant, it does not follow that you can find one equal to a lunule of the latter sort, whoee inner arc is a sertant; and in fact a rectilinear ares equal to these three lunules cannot be obtained.:

Now it will indeed be seen that, in this or any other case of erroneons reasoning dependent on misconceiving the consequences whioh follow from given conditions in a special anbject-matter, the error can be expressed in a false proposition. It is false that because a rectilinear area can be found equal to one of theee lanalea, it can be found equal to the other: it is false that things which are halves of the came thing are halves of another: it is false that, if we take account only of kinship through the female line, a man will be in the same line of deecent with his father. But we cannot see that any of these propositions is falee, unless we underatand

[^220] ym 2
something of the reepeotive subject-matter. They are at it were false 'epecial principlen', or Duar dpxad. It is not dexirable to call every felve proposition a fallacy, as e.g. that sacket eat dunt, or that South America is an island; nor can we extend the name to every valid argament that uses a felme promina. If the falsity of the premiss can only be ascertained empirically, there is error, bat not fallecy. If however the falcity of the premien is to be escertained by thinking out the consequences of oertain relations, or conceptions, in the circumetances of a given cane, then we are gailty of fallscy, or defect of reseoning, in overlooking it; and that is what frequently occurs in the matter of any particular acience.

There are indeed genernl heads, ander which many such fallecies can be brought. In particolar, they very often arise from overlooking some of the special circomstances of the case: from sesuming that what is true ander certain conditions will still be true when those conditions are in some way modified. Thas, if two things a and l are equal to the same thing, they are equal to one another; from which we may conclude, that if they bear any arme quantitative relation to a third thing, they bear that relation to each other; and then it would follow that if they were halves of the same thing they would be halves of one another. But in fact, it is only when their same relation to a third is one of equality, not merely when their relation to it is the same, that they bear to ooe another the relation borne to it. We shall meet with this type of fallacy by and by under the name of Becuadum Quid. That heading embraces a great range of examples. But though we can detect in them a common character, it is only by understanding something of the special matter of the argament, that we can wee that the fallacy is being committed in a given case. The type, if one may eay eo, is fluid; the instances are not so far of one form, that we can reparate their common form from the variety of their matter, and exhibit it aymbolically; nor, though the type admita of all this diversity, can we subdivide it, and carry our classification down to infimae species. We recognize that its character differs in different cases ; bat the differences cannot be formulated.

Oar tank then is one which does not admit of fally aatiafactory performance. Still no doubt it can be better and worse done. What clarvification of fallacies are we to adopt ?

The earliest, and for long the accepted, classification is that of Aristotle, given in the laat book of his Topict, called the Sophistici Elenchi. It is not free from defecta; and others, some of which will be roferred to, have been propoanded. But the subject is emphatically one upon which some consensus is desirable. If it is nseful to have a nomenclature of fallacies, it is useful to have a standard nomenclature. And it is remarkable how, even in rival classilications, many of the Aristotelian apecies of fallacy still hold their own. Later writers have given new meaninge to the Aristotelian names in certain casee; or bave invented names for special forms of some of the Aristotelian fallacies; or have included in their list what are not forms of arroneons argument, but sources of error of a different kind ${ }^{1}$; yet it is surprising how little there is which cannot be brought within Aristotle's list. And if we consider not the enumeration of types of fallacy, but their claseification, it will appear, I think, that there is no such merit in any alternstive achome as justifies us in sacrificing the advantage of keeping to the standard and traditional scheme of Ariatotle.

Aristotie divided fallacies into two main groupe-fallaeiea in

[^221] and fallecies extra diotionem, or Ifor ris $\lambda \& \xi_{\text {ews, }}$ which do not bave their source in such ambiguity. Although one of his apecies of fallacies extra dictionem-the fallacy of Many Queations-might perhaps be referred more naturally to the other groap, yet the division, being dichotomous, is sound. It suffers, however, like all ach divisions, from the defect of not positively characterizing one member. ${ }^{1}$ Later writers, willing to remedy this defect, called the fallacies extra dietionem fallacies is re, or material fallacies. But this introduces a crose-division. For it cannot be said that fallecies in diectione are independent of the res or matter of the argament. On the contrary, inamach as they arise throagh giving different meanings to the same words either in the two premisees, or in premise and conclusion, they disappear if we abotract from the mattor of the argoment and look only to the form in which it is cast. The proper antithesia to metter is form ; a fallacy not in the matter mast be in the form : i. e. it must be independent of what the terma are, and mast therefore persist, if symbols be sabatituted for the terms, and whatever term be subatitated for the symbols. This cannot be said of the fallacies in dictione.

It is true that Whately gives a somewhat different interpretation to the exprescion material fallacy. He divides fallacies into logioal and matarial. By the former title he means fallacies where the error lies in the fact that the premisees do not prove the conclusion; by the latter, those in which the premisses prove the conclusion, bat either the premises are falee, or such at least as we are not entitled to anome, or alee the conclusion proved is not that which we profesa or are required to establish. He then cubdivides logical fallacies into two groups, according as their defect of proof can be seen in the mere form of the argament (e.g. in the cuse of undistribated middle) or only if we attend to the ambiguity of the terms employed; the former group he calls paroly logical, and the latter semi-logical. Though the nomenclature here is unfortunate (for according to his own definition of a logical falleoy, thoee which lie in ambiguity of language are altogether and not only half logical), yet the division is sound. It includee however arguments which have no fault except that their premisses are false; and it is true that in

[^222]this he follows the words of Aristotle ${ }^{1}$; but in the body of his treative Aristotle proceeds as if he had not included them. And the practice of Aristotle appears preferable in this reapect; for false premisees are certainly incapable of any claseification, and the consideration of one does not holp us to detect another. That, if the premises are falso, the conclasion is not bound to be true, every one should certainly realize; and it is good advice to a dispatant to consider well the truth of the premisess he is asked to grant, or to i solitary thinker to consider well the truth of what be proposes to sesume and build upon. Nevertheless there seems to be a real difference between a plansible but inconclusive argument, which we can see through by clearer and more sttentive thinking, and a false propasition (whether or not plausible), which cannot be exploded by any more attentive consideration of itself, though it may by reasonings that are within our power. For this reason the extension of the term fallacy to cover 'any fulse assumption employed as a premise'seems undesirable; the only eort of false proposition to whioh it ought to be applied is false canous of recooning. If this correction is made, Whately is left with ouly two kinds of material fallacy (Petitio Primeipii and lgmonatio Elenehi), both of which are in Aristotle's list of fallacies extra dietionom; and there is no particular advantage in that regrouping of the species enumerated in both lists, whiah the adoption of Whately's principle of division carries with it. Whately certainly enamerates ander the head of purely logical fallacies those breaches of syllogistic rule with which we long ago became familiar by the names of andiotribzted middle, quaternio terminormm, and illicit process of the major or minor term; and Aristotle makes no mention of these. But that is not becanse his cleasification providea no place for them; they are clearly falbecies catra dictionem. They were omitted because they did not, in

[^223]Aristotle's view, simulate cogeney; no one who could not deteet these ought to undertake a diaputation ; and even a sophist, aiming only at appearing to confute his adversary and not at trath, would hardly dare to employ sach methods as theee. And so it ween with the writers who for many centuries reproduced-often with inoreasing divergence-the Aristotelian doctrine. 'The pure syllogiem and its ralee were to them an familiar an the alphabet. The iden of an abeolute and glaring offence againat the atructure of the ayl logism being aupported one moment after it wes challenged, would no more enggeat iteelf to a writer on logic than it would now ocear to a writer on astronomy that an accidental orror (which might happen to any one) of affixing four ciphers instead of five when maltiplying by a hundred thousand would be maintained after exposure.' ${ }^{1}$ A sophiem, or sophistical confatation, so Aristotle called a fallacy (for he had in mind throaghont the conduct of a dieputation, and the methode by which one might attempt to confute a theris maintained by an opponent: though these are of course equally methode of establishing a conclusion that confates it), must be at least фatodpevos $\sigma v \lambda \lambda \sigma \gamma \sigma \mu \sigma_{s}$, apparently conclasive; these he wished in his treatise to enable the learner to expose ${ }^{2}$; bat a plain breach of syllogistic rule had not any appearance of conclusiveness, and enough had already been said in the Prior 4nalycics to enable any one to expose that.

We may therefore abide by the Aristotelian division into fallcies in dictione and extra dietionom. In eech member of the division be enumerates a variety of types. The lista areas follows ${ }^{3}$:-
${ }^{1}$ de Morgen, Formal Logic, p. 240.

? Whately, as was observed above, regronps the fallecies bere envmerated to suit his division. It is of courso insdmisaible to adopt the nomenclatare of his division, and retain Aristotle's grouping, as is done by Jevons in him Elementary Lesone, XX and XXI. He treate as purely logical fallecioe the four breaches of ayllogistic rule above mentioned ; an semi-logical, Aristotle's aix fallacies in dietione; and as material, Aristotle's meven fallacien entro diationem. He does not therefore anderstand the distinction between logical and material as Whately does. 'The logical fallacies,' he asya, 'art those which occur in the mere form of the statement. . . . The material fallacies, on the contrery, arise outaide of the mere verbal sdatement, or as it is said, extrs dictionem ' (p. 170). This is not of conrse what those words meanh. But clearly Jevons meana by a logical fallacy one which can be detected in the form without consideration of the matter; it ahonld therefore be capable of illostration in aymbols, es his 'purely logical' fallsoiee are. A material fallecy, on the contrary, neede that wo ahould understand
a. Fallacies in dictione, or mapd rìy $\lambda\langle\xi u v$.

8. Composition, or mapd तोे oípeeov.
4. Division, or mapd rìy draipeow.
5. Accent, or mapd rगे̀ тробүठlav.
6. Figare of speech, or mapd rd $\sigma \chi \hat{\eta} \mu a \operatorname{ris} \lambda d \xi e \omega s$.
b. Pallacies catra dictionem, or $1 \xi \omega$ नि̂s $\lambda(\xi e \omega s$.

1. Accident, or парdे $\tau \delta \sigma u \mu \beta e \beta \eta \kappa o ́ s$.
 кuples.
2. Ignoratio Elenchi, or mapà rì̀ toû $\langle\lambda d$ ryov ayzolay.
3. Petitio Prineipii, Begging the Queation, or mapd ro iv

4. Non Causa pro Cazsa, False Cause, or mapd rd μ मे alicoy is altion.
5. Consequent, or тарà тд dгбцеуоу.
6. Many Questions, or парà rò rd̀ déo dperípara tv roteîv.
the terms for ite detection. From this point of view, it is nonsense to qpeak of 'remi-logical' fallacies; a fallacy oither can be dotected in aymbole or not : it muat either be 'logical' or not, and cannot be 'semi-logical'. The fallecies in diatione, which he moke an 'semi-logical', he ought undoabtedly to have ranked an 'material'. On the other band, nome or thove which be ranked as 'matorial'-the fallacy of the Consequent certainly (which however be micunderotanda) and one type of Petitio Primcipii-can be exbibited in asmbola, and ought to have been enumernted among the 'purely logioal'. The fect is that, if the distinotione of logionl and material, and in dictione and extra dictionem, are to be combined in one clasaification, they cannot be identified, as Jevons identifiea them. We may oither utart with the diatinction of fallacies into logical and material, according an they lie in the mere abotrict form of the argament, snd can be exhibited in symbola, or not: and then divide the latter into in dictione and extro dictionsm, according an they arive through ambiguity of langrages, or not; but of courne thore fallacies ertre dietionem which are logical in this serse mart be removed from Aristotle's list of fallacies artra dictionom, if that title is mede to indicate a subdivicion of moterial. Or elee we may begin by dividing them into fallacies in dictione and extra dictionem, and treat logical and material as aubdivisions of extra dictioncm. In the former case, what Jetona calla memi-logical (= Arintotle'! fallacies in didtiona) will enter by this name ana aubdivision of material; in the latter, what he callo purrdy lagical will enter as a aubdivision of artra diationem. Cf the remarka in Mr. St. George Btocki Deductive Logie, c. $\times \times x$, who pointe all this out very clearly in discuming falleciea. It may be added that there may be in algobra fallacious arguments which ane aymbols, but are not on that account logical in the above senne, becanse the aymbole are not logical aymbole, otanding for any term, bat apecifically asmbole of quantity.

The fallacies in dielione are so many different forme of error that may arise through the double meaninga of language. They differ according to the character of the ambiguity; and it may be any of the three terme which is ambiguous ${ }^{1}$. Obvioualy such arguments are invalid; and if the different meaninge were expressed by different terms in each case, we should have a plain quaternio terminorum, which would impose on nobody. As it is, the sbifting of the meaning may sometimes pass unobeerved; or the identity of the language seem to afford some proof of identity of meaning; and even where it is obvious that we are tricked by the argament, we may wish to be able to show how.

1. Equircoation is the simplest form of ambigaity, where a single word is used in divers senses. 'The siok man is well; for men who have recovered are well, and the sick man has recovered's; here the equivocation is in the minor term, and arises from the fact that the expression 'the eick man' may mean either 'the man who is eick' or 'the man who was sick'. The following is an old example: ' Finis rei est illius perfectio: mors est finis vitae: ergo mors est perfectio vitae'; the equivocation in this case lies in the middle term. Trivisl and panning examplea of this fallacy, as of all those that depend on ambiguity of langaage, will occur to any one; but in many cases it is serious and elasive. 'It is the basinese of the State to enforce all righte : a judicions charity is right: therefore it is the business of the State to enforce a judicions charity.' 'A mistake in point of law,' saye Blackstone, 'which every person of discretion not only may, but is bound and presamad to know, is in criminal cases no sort of defence' ${ }^{3}$; the State most perhaps presume a knowledge of the law, and co far we are bound to know it, in the sense of being required ander penalty; bat a criminal action done in ignorance of the law that a man is legaly bound to know is often considered morally discreditable, s if the knowledge of the law on the matter were a plain moral duty. Hor far that is $s 0$ in a particular case may be a very doubtful question; the maxim quoted tende to confuse the moral with the legal obligation. In a long and closely reasoned argument, where important terms have been defined at the outset, it may still be very difficalt

[^224]to hold them throughout to the precise meaning set forth in the definition; and 00 far as this is not done, the fallacy of Equivocation arises. Locke in his E'seay ${ }^{1}$ defines 'ides' as 'whateoever the mind perceives is itself, or is the immediate object of perception, thought, or understanding'; bat in the course of it he is at times s victim to the ordinary associations of the word in English, which contrasts ' my idese' with the 'realities'.
2. Amphiboly ${ }^{2}$ is ambiguity in a phrase, in which the worde are used anivocally throughoat, but the meaning of the phrase as a whole changea through change of the construction in which the words are taken. A traditional example in Latin is 'Quod tangitur a Socrate, illud sentit : lapis tangitar a Socrate : ergo lapis sentit'; in the major premise, illud is the object of sentit; the conclusion is drawn as if it had been the subject. So we might say in English : ' Polyphemus what he beet loves doth devour : the ram that leads the flock he loves the beat : therefore the ram devours him'. Lawyers are well aware of the importance of avoiding ambiguity in the constraction of a legal document (though ander that head they would include the ambigaities which Aristotle assigned to Division and Composition, as well as Amphiboly and Equivocation too). Whately oites a good example from the rabric at the beginning of the Form of Service formerly ordered for use on Jan. 80, the anniveraary of the execution of King Charles I: 'If this day shall happen to be Sunday, this Form of Prayer shall be used and the Fast kept the next Day following'; is the form of prayer to be nsed on Sunday and the Fast kept on Monday, or are both to be deferred? Another famons and deliberate example is in the oracle which Ennins said was delivered by Apollo to Pyrrhos- Aio te, Aeacids, Romanos vincere posse.'s Ambiguons words and constructions are atill not unfrequently used to deceive by those

- That palter with us in a doable sense; That keep the word of promise to our ear, And break it to our hope.'
${ }^{1}$ Bk. II., c. viii \& 8.
 as diatinct from δ parvpia, when the ambiguity is in at 8 ropo (Soph. El. vii 1690 22). Hence aroee the componad d $\mu \phi$ 人 into Amphibology, as eldenoiarpeia became corrapted into Idolatry. There neemn to be no reason for not aaying Amphiboly in Engligh; Amphibolia is frequent in Latin (e.g. Crackenthorpe, Aldrich).
${ }^{1}$ Cf. Cic. de Divinatione, ii. 58. Ciocro reasonably obeervee that Apollo

3 and 4. Comporition and Diviaion are the converse one of the other. They consist in taking together in the conclusion (or one premiss) either words, or objecta of thought, which in the premiss (or the other premisa) were not taken together, or vice vers. Plato in the Republic ${ }^{1}$ argues, from the fact that a man can refuse the thing that he desires, that there must be a principle of reason as well as of appetite in the sonl. For, he mayn, it is impossible to be contrarily affected at the eame moment towarda the eame object in the came part of oneself (one cannot for example at once loathe and long for the asme object); yet a man who is thiraty and refusea to drink is contrarily affected at the same moment towards the same object; he does not therefore refues drink on mocount of the oharacter of his appetitee, but becanse of his reaeon; he reckons that to indulge his appetite would interfere with the parauit of some other end whioh he prefers. Now a sophist might attack this conclusion an follows: 'Are you now drinking? No. Can you now drink? Yee. Therefore when you are not doing a thing, yon still can do it? Yes But if you can do a thing when you are not doing it, you can desire a thing when not deeiring it? Yes. And so you can be contrarily affected in the same part of yourself (your appetitive nature) towards the same object at the same time.' ${ }^{2}$ The fallecy is one of composition. The admiseion is that a man can when not desiring a thing desire it, i.e. that when not desiring it, he is capable of doing so; this is used as if it meant that he can desire when inot desiring il, i. e. that he is capable of at once desiring and not desiring it; the words ' when not desiring it' are taken, or compounded, in one cuse with 'can' and in the other with 'desire'. If a man were to argue that three and two are five, and three and two are odd and even, therefore five is odd and even, and the same number may thus be both, he would be comraitting the same fallacy; when

[^225]it is and that three and two are odd and even, it is true only if 'odd and even' are not taken together, and predicated thus of three and two, but if 'odd' in separately referred to three, and 'even' to two; bat the conclusion is drawn as if they were taken together. On the other hand, the same argument furniches an example of the counter fallacy of taling separately in one premins words which were taken together in the other; for three and two together are five, but it is enparstaly that they are add and even, and separataly that in the conclusion each of them is declared to be both. And the reader will doubtlew have observed that the provions example illustrates no less the division from one another in the conclusion of worde that were combined in the premise than the combination in the conclusion of worde that in the premiss were divided.

It was said above that in these fallecies either worde or objeots of thought are taken in one plece in the argument together and in another eeparately. Of coarse the combination or seperation of certain words carries with it that we think differently in either case of the things signified. Bat sometimes the illicit combination or division made in thought is not reflected by taking words together or apart. If any one were, upon the strength of the text in Gen. i. 27-'So God created man in his own image, in the image of God created he him; male and female created he them'-to argue that man was originally created bimezual ${ }^{1}$, and that the present division into male and female wes the result of the Fall, and were to base on that a condemnation of marriage, he would be guilty of the fallacy of Composition; and quite as foolioh arguments hdve been drawn from the words of Scripture upon such subjects. Now here the fallacy lies in referring the words 'male' and 'female' together to esch person signified by 'them', instead of referring 'male' to one and 'female' to another. But the point is the same in the story of the showman who announced that children of both sexes were admitted free, and then charged admiasion to boys and girls alike on the ples that neither of them were children of both sexes. Yet in the latter case there are no words that are wrongly taken together; it is the sexes thought of, to which the showman pleaded that he had only promised to give free admission when

[^226]combined. Words like both and all, which may indicate equally a distribative and a collective reforence to the things signified by the sabetantives to which they belong, are specially adapted to facilitate this fallecy. ${ }^{1}$ Another and a doable example of the fallecy of Composition, in a basiness transection, is afforded by the tale of a railway enterprice in one of the Britich Ielands A compeny in said to have been formed to build a railway, and to have announced in its prospectus that a guarantee of $\mathbf{8 \%}$ on the share capital had been given by the Government, and a gaarantee of 2% by the local anthority; and later in the same document to have atated that a guarantee of 5% had been given by the Government and by the local anthority.
5. The fallecy of Acoent meant to Aristotle one arising through the ambigaity of a word that bas different meanings when differently accented. It wes perhape distinguished from Equivocation, becanse words differently accented are not strictly the same word. The Latin writers illustrate it in worde which have different meanings when their quantity is different; e.g. 'omne malum est fugiendum, pomum eat malum : ergo fugiendum'. The ambignity is of course one which is more likely to occur in what is written than in what is spoken. ${ }^{3}$ In Engliah, which does not distingaiah words by tonic accent, the name is generally given to argaments that turn on a wrong emphasis of some particular word in a mentence; in which if the emphasis were placed differently, the meaning might be very different. The worde of the Cstechism in the 'Daty towarde thy

[^227]Neighbour'-' to hart no body by word nor deed'-have by laying stress on body been wrested to inclade the injunction to be kind to animals. ${ }^{1}$
6. The fallacy of Figure of Epesoh arises throngh the ambiguous force of some verbal inflexion, which is wrongly alleged to imply in one case what it really implies in others. If a man were to argue from the use of anch an expresion as 'I am resolved what to do', that, becasae the pacsive signifiee not action bat being acted on, as in ' I am beaten', 'I am prived,' therefore a man's resolation is not his own free act, bat the result of something done to him, he would be grilty of this fallecy. Argumente from lingristio usage of that eort are by no means ancommon or necessarily ansound: as that the object of sight is not a visual sensation, becanse you ay that you feel a sensation, but no one would aay that be felt a colour. In this cuse there is no ambiguous inflexion, which is what was held to constitate the differentia of the fallecy now under consideration. But let a man may that important is a negativo notion, becanse imperturbable or impenilent is, and we have a case in point.' J. S. Mill in his Utilitarianion ${ }^{3}$ affords an excellent example of a man misled by this fallecy in a critical point of his argument. He is trying to prove that the chief good, or one thing desirable, is pleasure. 'The only proof,' he says, 'capeble of being given that an object is visible, is that people actually see it. The only proof that a sound is audible, is that people hear it : and so of the other sourcee of our experience. In like manner, I apprehend, the sole evidence it is possible to produce that anything is desirable, is that

[^228]people do actually deeire it.' Bat viribk, audible mean what an be seen or heard; whereas Mill is trying to prove that happinem ought to be desired, or is the thing worth desiring. Yet the terminetion -able or -ible must be taken to have the aame force in the word derinable as in awdible or vinible, if the argument is to bave any force at all; and the only thing shown is really that mea can denire happiness: which was never in queetion.

To distinguish the different nources of the ambiguity in the differeat fallecies enamerated above is not a matter of first-rate importance; but to be alive to the errors into which ambiguities of language may lead us is es. 'Verba plane vim faciunt intellectui, et omnis tarbant,' wrote Becon. ${ }^{1}$ Perhape the disturbance which theycaused wes in some respectes more serious of old than now. We do not suffer less from the subtle and unconscious shifting of the meaning of important termas in a sustained argument; but some of the more trivial and (as we should eay) obvious ambiguities may have been a more real puzzle in olden days. 'The genius of uncultivated nations,' says de Morgan ', 'leads them to place undue force in the rerbal meaning of engagements and admiasions, independently of the anderstanding with which they are made. Jecob kept the bleasing which he obtained by a trick, though it was intended for Ean: Lycurgus seems to have fairly bound the Spartana to follow his laws till he retarned, though he only intimated a short absence, and made it eternal : and the Hindoo god who begged for three step: of land in the shape of a dwarf, and took earth, sea and sky in that

[^229]of a giant, reems to have been held as clsiming no more than wee granted. The great atrees laid by Aristotle on so many forms of verbal deception may have arisen from a remaining tendency among disputante to be very serious about what we should now call pley upon worde.' Just ae many people tend to think that in conduct the claims of veracity are eatisfied or broken, according as the facte can or cannot, by some verbal quibble, be brought within the four comers of what they mid or promised, 00 with argament mon may think that there is something in it, thougb the conclusion tarne apon an ambigaity of lengrage. Not but what men are often aloo too ready to cerume that a controversy is meroly verbal when it is not.

In the enameration of the fallecies which he recognizes, Aristotle obviously had before him the practices of diopatante in his own day. ${ }^{1}$ One man, the 'respondent', andertook to defend a thesis; the other, the 'questioner', attempted to extract admiswions from the respondent which involved the contradiction of his thesis. But we find that a man might endeavour to disoredit his opponent by confuting him on a side issue; and that it was a recognized device to get him to admit something easier to atteok than his original thesis; though when Aristotle wrote, mon had learned to reply to the entrapping question by asking what it had to do with the original thesia.' Similarly we are told that answers in the form of a plain yes or no were less insisted on when be wrote than formerly; whereby a bountiful cource of unfair confatations was cat off. ${ }^{3}$ The questioner is adrised also not only to endeavour to involve the reopondent in a contradiction of his owa thesia, bat to bring out ita inconsistency with what is held by those whose authority he or othera may reapect, or by mankind at large, or by the majority of mankind, or by his own school. ${ }^{4}$ Nowaday formal diapatation has gone oat of fashion. Men atill harangue; and we underatand by a debate a eeriee of aet apeeches, in which a propoeal is attacked and defended. Many of the devicean which can be
${ }^{1}$. Minto, in the Ant chapter of his Logic, Inductive and Doductire, apeaiks as if Aristotle worked out his ayatem of logic an a whole chiefly with the conduct of dieputution in riew. He seems to me to heve very much over stated his case; bat so far as the treatise on Sophistical Confatatione is ooncerned, it is true.

- Soph. E7. xii. 172 ${ }^{\text {b }}$ 16-24.
'Ib. $175{ }^{\circ}$ 8-10. Cf. on the fallecy of Many Queations, p. 558, infira.
- 1b. xv. 174b 19-28.

```
soenery N IT
```

employed to produce the appearance of confuting an advermary are common to rhetoric and dialectio-to the harangue and to the interchange of queation and answer. But if we were more familiar with the latter mode of trying an isuce, we should perhape understand better the scope that exists for some of the sophistical confutations that Aristotle mentions. Such dispatation in seen chiefly to-day in courts of law, when counsel cross-eramines a witnew; and an unscrupulous connsel can still confuse a timid witness, and discredit him before the jary, by involving him in contradictions more apparent than real And there have been timee when matteras which to-day are submitted to the jadgement of the pablic by means of speeches to and fro, reported in the newspapers, were argued by chosen dispatanta sccording to fixed rales of debete before an andience whose verdict, an to which side pot the best of the discussion, whe of high practical importance. Not a few controversies of that eort were argued during the Reformation, at Leipaic or at Marbarg or at Zarich or eleewhere.

The fallacies is dictione have to nome extent become of lees importance through the decay of the habit of dirpatation. The mame cannot be anid of thowe earra dietionem. ${ }^{1}$ Theseare not anited by any common character, as the othere were by springing from ambignity in language.

1. The first in the list is the fallecy of Δ ooident. The following are some of the eramples referred by Aristotle to this head :- 'This dog is yours: this dog is a fether: therefore he is your father.' - Do you know Coriscus? Yes. Do you know the man approeching you with his face muffled? No. But he is Corisens, and yoo said you knew him.' 'Six is few : and thirty-six is six times six: therefore thirty-six is few.' His solation of the error involved scems to be this \mathbf{A} thing bas divers accidente, i. e. attributes which are not commensurate with it nor essential to it; what is predicable of the thing may or may not be predicable of ita accidentan and vice verse: Thus the dog is a father, and is yoars; bat it does not follow that the father is yours-that he is yours as a father, as be is yours as a dog. Coriscus is approeching with his face moffled; to be a man approaching with his face moffled is
${ }^{1}$ Ereept perhape 'Many Quentions' $;$ bat ef, infra, p. 557.

- Soph. 2. v. 166 80-82, xiv. 179° 87-81.
an aocident of Coriscus; and it does not follow that, becanse Coriscus is known, a man approaching with his face muffled is known to you. It is an accidental way of regarding thirty-six things, that they are six groups of six things; and though the groups are fow, the thirty-six are not therefore few. The defect of the solution offered is, that it does not enable na to distingaish between those cases in which what is predicated of a thing's accidents may be predicated of the thing itself, or vice verme, and those in which it may not. 'This dog is yours, and this dog is property (or, a spaniel) : therefore he is your property (or, your spaniel)' : why is this argament valid and the former one not? If you ay that the former is invalid because it equates rabject and scoident ${ }^{\text {b }}$ when they are incommensurate, why do you allow the latter, which doee so just as much? A torm and ite definition may be equated: they are commensarate, and wherever one oocurs in a judgement you may subetitate the other without detriment to its trath. Bat you cannot extend that rule to terms that have any lese close relation; in other casea, you may be led into error by suoh subetitution or you may not; the rule would not be infallible.

We learn from Aristotle himeelf that other solutions than what he formalated were offered for some of the fallecies referred by him to the head of Accident"; and as Poste anys", "the falleoy per socidens has beon generally misconderstoed.' It has been vary commonly expounded in a way that doee not really dirtinguieh it from the fallecy next to be considered, Socundwan Qwid. Indeed what has happened is that the notion of the former has been dropped, being somewhat ill defined, and the name of the latter, being somewhat clumsy; so that what to-day is commonly called Aecident is what the Aristotelian tradition called Secwadwiw Qwid. Bat becanse the tradition recognized them as two, a diatinction between the direct and the convorse form of the latter fallacy wie drawn, which is really quite unsubstantial.
2. The fallecy of Beoundum Caid, or-to give the formula in full-A dicto simpliciter ad dietum secssdum quid, from which the argament a dieto seewndwim quid ad dielwe simpliciter is sometimes

[^230]diatingaished as its converse, is one of the sabtleat and commosen sources of error. It concista in using a principle or proposition withoat regard to the circomstances which modify ite applicability in the case or hind of case before na. Water boile at a temperstore of 212° Fahrenheit; therefore boiling water will be hot enough to cook an egg hard in five minutee: but if we argre thus at an altitode of $\delta, 000$ feet, we shall be disappointed; for the height, through the difference in the prearare of the air, qualifies the trath of orr general principle. A proposition may be intended simpliciler ar without qualification; or it may be intended subjeot to qualificetions and reservations. In the latter alternative, we may proceed to apply it where the circumstances implied in our qualificatione are not present; in the former, where there are circumstances preesat which qualify ita applicability. ${ }^{1}$ In asying that a proposition maj be intended cimpliciter, it was not meant that it in intended as aboolutely univeral ; for the application of a principle true abeolutely universally cannot of iteolf lead to error, and a reapondent brought to admit a case inconcistent with a principle pat forward thos absolately woald be convicted of having put forward more than be could sustain. It whe meant that it is conceivel to hold tree normally, or in any circomstances that the speaker contemplates: the fallecy where there is an unfair confatation lies in extending is beyond those cireumatances. But it is not only in disputation that the fallecy occurs. We ace all of as at time guilty of it; we argue from principlen that hold good normally, without eve settling what conditione comatitute the normal, or aatiafying oarelves that they are present in the case about which we are argaing. Freedom in good, and therefore it is supposed that every commanity ohould have free institationa, though perhape there are come racou only fit for a very moderate degree of 'freedom'. A man sbouh be allowed to do what be will with his own; and that is oftea urged as a conclusive argoment against any interferenoe either with his diaposition of his proparty, or his edacation of his childree. Paris did nothing wrong in carrying off Helen, for her father left her free to choose her husbend; but the freedom allowed ber extended only to her first ohoice, like the authority of her fatber. ${ }^{1}$

[^231]There are trivial examples of this as of any other fallecy, as that if it be maintained that an Ethiopian is black, it is contradictory to asy he has white teeth ${ }^{2}$; ' Few men die over eighty : I am over eighty : therefore I shall probebly not die.' ${ }^{2}$ But there is no fallecy more insidious than that of treating'a statement which for many purpoeses is true as if it were true always and withont qualification. ${ }^{3}$
8. Ignoratio Dlenohi meane proving another conclusion than what is wanted. The name does not literally mean that, but 'ignorance of confatation'. Bat the basiness of any one undertating to confute a statement is to prove the contradictory; and if I prove anything else, I show that I do not know what confutation requires. Of conrse every fallacious confatation shows that I am ignorant of, or ignore, what is required.4 Bat other fallecies have other defects; in this, the argumentation may be perfectly sound, and the sole defect lie in the fact that the conclasion proved does not confute the thenis maintained. Or-since it makes no difference whether we regard a man as undertaking to confute one thesis or to sustain another contradictory to it-we may eay that the fallocy liea in proving what is not the precise conclusion which we are called upon to prove. Against a minister who propoess to pat a emall daty on corn to-day it is no sufficient answer to prove that the people are much more prosperous under free trade than in the days when corn stood at 60 or 80 shillings a quartar; againet a free-trader it is no enficient answer to prove that foreign nations injure be by their tariffis. Subterfuges of that kind are however so frequent a resource of the orator, that it is hardly necessary to illostrate them. Every reader of Plato's Apology will remember how Socratee refused to appeal to his judges with tears and entrenties, or to bring his wife and children into court to excito thoir commiseration; for his part

[^232]${ }^{4}$ Cr. Sopil ER vi. 1080 17 eq.
was to persuade them, if he could do it, of hin innocence and not of his sufferings. ${ }^{1}$

Such appeals as Socrates declined to make are sometimes called the argumendime ad mivericordiam, arguments addressed to show that a man is unfortunste and deserves pity, when it ought to be shown that he is innocent, or has the law on his side. Other favourite forms of irrelevant conclusion have aleo received special names The best known is the argumentum ad hominem, in which, being called apon to confute an allegation, I prove something instead about the person who maintains it. The politician who attacke an opponent's measures by ahowing that they are inconsistent with his former opinions commits this fallecy; it is the same if I condemn Home Rale for Ireland on the ground that Parnell was an adulterer. Bat the argumentum ad kominem need not be altogether irrelevant. A barrister who meeta the teatimony of a hostile witness by proving that the witnesa is a notorious thief, though he does lees well than if be conld disprove his evidence directly, may reneonably be considered to have shaken it; for a man's character bears on his credibility. And sometimee we may be content to prove againat those who attack we, not that our conduct is right, but that it acoords with the prisciples which they profess or act apon. Christsreplied to these who censared him for healing on the Sabbath, by aeking which of them, if his or or his ase had fallen into a ditch, would not pall it out on the Sabbath day. ${ }^{2}$ Their practice was sufficient to juatify him to them, whatever were the true theory of our daties on the Sabbath. And Arietotle answers the Platonists, who held all vice to be involuntary, by showing that they could not discriminate in that respect between vice and virtae; there whe no more reeson for calling one involuntary than the other; virtue, bowever, they called voluntary; and whatever be the trae atate of the case, their position at least wes not sustainable. ${ }^{3}$
4. The nature of Petitio Prinoipil is better expressed in the Engliah name, Begging the Queation. ${ }^{4}$ It consists in assuming

[^233]what is to be proved, in order to prove it. To do this within the complass of a single syllogism-assuming in the premisses the very thing to be proved, and not merely some thing which depends on that for its proof-is only possible by the use of synonyma. If I argue that C is A becanse B is \mathcal{A} and C is B, and if the middle term B is identical either with the major or the minor, then I uee the proposition to prove itself; for let B be the same as A : then, by sabstituting d for B in the minor premiss, I get ' C is A ' as a premiss; or let B be the amme as C : then by sabatituting C for B in the major premiss, I again get ' C is A ' as a premiss; and in either case therefore the conclusion is among the premisees. Thus let the syllogism be that to give to beggars is right, because charity is a virtue; so far as charity is taken to include giving to beggars, we have no business to assume that it is a virtue; for the question whether it in a virtue and the question whether it is right are the same question: to call it a virtue is to call it right. Here the major premise, that virtue is right, is a tantology, and the minor contains the petitio. On the other hand, if I defend legacy daties by saying that property passing by will ought to be taxed, I beg the question in the major; for a legacy duty is a tax on property paraing by will, and to say that auch property ahould be taxed is only to assert in other worde the justice of a legsoy duty. ${ }^{1}$

Hut the fallecy is generally committed less abruptly. The promisa

Abstract

hin thesis; let the thesis, for instance, be that the Pope cannot remit the tomporal punishment of ain in Purgatory: the opponent may not ank the reapondent to admit that he can. If by some verbal digguise he gete the reapondent to admit it, it is only a tophatical confatation; the reapondent did not see what he wus granting, and would have refuned to grant it if ho had seen-not because it led to the contradictory of his theeis, for aman is often fairly refuted by showing that be cannot reasonably deny something which does that: bat because it seas the contradictory of if. It is quite fivir to try to get a man to admit a general prixciple, and then to ahow that his theais is inconaintent with it, provided that the general principle does not really requirs the dieproof of his thecis in order to its own ertablienment. Hence the torm principiwn is a mirtranalation. The fallecy liee in begging for the adminaion not of a principle to be applied to the determination of the matter, but of the very matter, in queation. As occurring in a book or opeoch, where s man pats forward his own premiateen and hase not to got them by the admiasion of a respondent, it consiata in asaunsing among the promistes either the oonclusion itself which as ahow is mede of proving, or momething more or lem directly depending thereon. Cf. Mansel's Aldrich, App. E.

It is also posaible to beg the queation when the conclurion is negativa, bat then only in the major premise; and to beg it in other figures than the first (for detaile seo Porto, Soph. E1., App. A). Cf. almo supre, p. 588, n. 1.

funduly maumed is generally tut the conolusion itself differently expressed, bat something which oen only be proved by means of the conclusion; and argaing thas is often called arguing in a circle. If I argued that early Teutonic societies were originally beld together by kinship, because all aocieties were so held together originally ${ }^{2}$, I might be sceused of arguing in a oircle; for the major premiss, it might be said, is only arrived at by enomerntion; early Teatonic societies have to be examined in order to show that it is true. Of course to show that the generalizetion was not enumerative would be to rebut the socueation; bot, as we saw in discussing the view that all syllogism is petitio primeipii, every ayllogism whose major premise is an enamerative judgement is so. ${ }^{3}$ The oircle is fairly manifeat in such cases; but in othere it may often eacape the notice of ite euthor. 'There are certain people,' saya Dr. M'Taggart ', ' who look on all puniabment as essentially degrading. They do not, in their anoer moode, deny that there may be cases in which it is necemary. Bat they think, if any one requires panishment, be proves himself to be aninfluenced by moral motivea, and only to be governed by fear. . . . They look on all punishment as implying deep degradation in some one,-if it is justified, the offender must be little better then a brute; if it is not juatified, the bratality is in the person who inflicts it. This reasoning appears to travel in a circle. Panisbment, they cey, is degrading, therefore it can work no moral improvement. But this begs the queetion. For if punishment could work a moral improvement, it would not degrado bat elevate. The hamanitarian argument alternately prover that punishment can only intimidate becanse it is bratalizing, and that it is bratal. izing becanse it can only intimidate' Romanes flinds an example of petitio in an argument of Huxley's, addaced to show that all apecific characters are adaptive.4 'Every variety which is selected into a species is favoured and preserved in consequence of being, in some one or more reepects, better adapted to ite surroundings than its rivale. In other words, every species which exists, exists in

[^234]virtae of adaptation, and whatever accounts for that adaptation ecconats for the existence of the apecies.' Here the fallacy lies in substituting, for 'every variety which is selected', 'every species which exists'; the statement in the first clanse is true for every variety which is selected, since selection means the survival of those beat adapted to the conditions of life. Bat the question is whether every species which exists has originated by 'selection'. One more instance may be cited, from a work on the equaring of the circle, called The Nut to Crack, by Jamee Smith. ${ }^{1}$ Smith hald the ratio of aircumference to diameter to be 88, and proved it thus: ' I think you will not dare to dispate my right to this hypothesis, when I cen prove by means of it that every other value of π will lead to the gromest absardities; unless indeed you are propared to dispate the right of Euclid to adopt a falee line hypothetically, for the purpose of a reductio ad abrurdum demonatration, in pure geometry.' That is, he argued first that if 81 be the right ratio, all other ratios are wrong; and then, that because all other ration are wrong, of is the right ratio. And be conceived that he had established his conclasion by a redwetio ad abourdmon-by showing that the deaisl of his thesis led to absurdity. But the abourdity, in anch an argament, ought to be accortained independently, whereas here it reste apon the asoumption of the trath of what it is used to prove.
5. The fallecy of False Oanse is incident to the reductio ad abourdum. That argument disprovee a thesis by showing that the ascumption of its trath leads to absurd or impossible consequences, or proves one by showing the same for the assumption of its falsity." In False Casse, the thesin alleged to be discredited is not really reaponsible for the absurd or imposible consequencea, which would follow equally from the other premisses, whether that were affirmed or denied. 'It is ridiculous to suppose that the world can be flat; for a flat world wonld be infinite, and an infinite world could not be circumnavigated, as this has been.' Here the supposition inconsiatent with the fact of the circomnavigation of the world is not that the world is flat, bat that it is infinite; it might

[^235]be flat and atill circomnarigable, if it were finite; the thesis of its flatness is therofore unfairly discredited.

From a passage in the Prior Analytics it would seem that Aristotle regarded this fillscy as of frequent occurrence. ${ }^{1}$ Bat the fact that later writers have largely given a different meaning to the name suggests that it is not really a prominent type. It is often identified with the fallooy Poot hoc, ergo propter hoc: i e. ., rupposing that one event is due to another, merely becanse it occurred after it; as the countryman is said to have declared that the building of Tenterden Steeple wis the cause of Goodwin Sands, because the cands only appeared after the steeple was boilt. Such, as Becon truly sasys, is the origin of almost every superstition-of men's astrological fancies, and their fancies abont omens or dreams. The story which he quotes may well be repented in bis own words. 'Itaque recte reapondit ille, qui, cum suspenss tabuls in templo ei monstraretar eorum qui vota solverant, quod naufragii periculo elapai sint, atque interrogando premeretur, anne tom quidem deorum numen agnosceret, quesivit denuo, Δt ubi sust illi depiodi qui post vola mwncupata perierint?'"
Inferences of this kind are undoubtedly both frequent and fallecions; and Post hoc, propler hoc is a type or locw of fallecies in the mame sort of way as those enumerated by Aristotle. That is, it is a general or dialectical principlo-a principle applicable in divers aciences, and not exclusively appropriate in any: and it is a falso principle, the application of which is as likely to leed to arror an to trath. Nor is it peouliar to this fallsey, that it can be expresed as a falso principle. Equivocation proceeds on the false principle that a word is always used with the ame meaniog: Aocident, on the principle that whatever in predicated of a thing may be predicated of ita attribute, and vice veras: Secwadem Quid, on the principle that what is true with certain qualifications is also true without them. And the fact that these different types of fallacions inference severally depend on a false, or minleeding, principle is

[^236]what was meant by calling them loci of fallecy. ${ }^{1}$ Bat the locus Post hoc, propter hoc is not quite the same as that of Non casea pro casea : in other words, the type is a little different. In False Cawe we are dealing with the logical sequence of premisses and conclusion; the fallecy lies in connecting the conclusion with a particular premiss which might, so far as getting the conclusion is concerned, have been equally well included or omitted; and because the conclasion is false, we orroneously infer this premiss to be false also. In Post hoc, ergo propter hoc we are dealing with the temporal relation of canse and effect; the fallacy lies in connecting the effect with a particular event which might equally well have happened or not happened, so far as the effect in question is concerned; and we erroneonsly sappose that the effect, which did occur, occurred because of that event. But if any one likes to use the name False Cawes as equivalent to Post hoc, propter hoc, there is not much harm done; for the fallecy which Aristotle meant in not one that we have much occasion to speak of.
6. It is otherwise with the fallecy of the Consequent, which some modern writers have also misunderstood. ${ }^{2}$ For this is one of the very commoneat, and we have already had oocasion to notice it in discassing inductive reseoning. ${ }^{3}$ It consiste in eupposing that a condition and its consequent are convertible: that you may argue from the consequent to the condition, no lees than vice versan If a religion can elevate the sonl, it can arrvive persecution : heace it is argued that becanse it has survived persecution, such and suoh a religion must elevate the soul; or perhape (for we may follow Aristotle ${ }^{4}$ in inclading under the name both the forms of fallacy
${ }^{2}$ The Sophistici ElencM is the conclading book of Aristotlo's Topics.
: e. g. de Morgan, Formal Logic, p. 287 ; Jevona, Elementary Lepons, p. 181.
${ }^{3}$ P. 480, anpra.

 argument of Meliena ; for he thinke that if what is generated has a beginning, what is ungenerated has not; so that if the heaven is angenersted, it is also infinite. Bat this is not 80 ; for the eequence is the other why'); i.e. from ' A is B ' you cannot infer ' not-A is not- B ', bat only contrariwise, 'not- B is not-A.' It appear by the mame chapter that Aristotle would bring the illicit, viz. aimple, conversion of an neniveral affirmative judgement under the aame heading. This illurtrites the close parallolime between the med ponens and tollane in hypothetical, and Barbara and Cameatras in ayllogistic reaconing (of. pp. 812-815, supra). But that Aristotle did not identify them might perhaps boinforred from the fect that he does not include Undiatribated Middle and flicit Prooem of the Major in his lirt of mophintical confatationa,
to which hypothetical reasoning is lisble) that because it is incapable of elevating the soul, it will saccomb to persecation. Such fellecies are committed whenever a theory is amumed to be true for no better reason than that the facts exist, which should result if it were true-i.e. whenever verification is mistaken for proof ${ }^{1}$; and whenever the refutation of an argument adranced in support of a theory is supposed by itself to be fatal to the theory. If it can be ahown that no other theory accounts for the facta; or that no other argument can be adranced in sapport of the theory, then the matter is different; bat withont some reason to believe this, such inferences are worth nothing. Neverthelem, they are inferences which we are all very apt to make. ${ }^{\text {a }}$
7. There remains leatly the fallecy of Many Questions. This consists in putting queations in such a form that any aingle answer involves more than one admission. If one admisaion be true and another false, and the reapondent is presed for a aingle answer, he is exposed to the risk of confutation, whatever answer he makes. 'The execation of Mary Queen of Scote was brutal and sacrilegious-was it, or wae it not?' If it was brutal but not sacrilegions, what is a man to answer? He will be accused by eaying no of denying the bratality, by saying yee of affirming the sacrilege. Sometimes, instead of aubmitting two problems for decision together, the question appears to submit only one; bat that is one which would not arise excopt on the asomption of a certain answer to another: and so the reapondent again cannot answer it without committing himself to more than be intended, or on a matter which has not been definitely submitted to him. Of this sort is the famous enquiry, ' Have you left of beating your

[^237]mother ?', as well as any question that asks for the reason of what has not been admitted to be trae. It is often recounted how Charles II asked the members of the Royal Society why a live fish placed in a bowl already full of water did not canse it to overflow, whereas a dead fish did eo; and how they gave various ingenious ressons for a difference which did not exist. If one were to enquire why a protective syotom encourages the induatry of the country which adopts it, the fallacy would be the eame; there would perhaps be some dispute as to whether it is fallacious to ask how dowsers are mede aware by their feelinga of the presence of subterranean waters. It may be said that a reapondent is always able to give an anower which will save him from any misconotruction; to the question ' Have you left off beating your mother 1' the anawer 'no' might seem to be an admiesion of the practice; bat why should not s man reply 'I never began it '? To this it may be rejoined, first, that in the old dispatations, and in some aitantions, such as the witness-box, to-day, a man might be more or lese precluded from 'explaining himself', and required to give a 'plain answer' to a question which does not admit of it. With the use of the fallacy under this eort of daress may be compared the custom of 'tacking' in the American legislatare. The President of the United States can veto bills, and doea veto them freely; bat he can only veto a bill as a whole. It is therefore not uncommon for the legislature to tack on to a bill which the President feele bound to let pass a clanse containing a measure to which it is known that he objects; so that if he assents, be allows what he disapproves of, and if he diseents, he disallows what he epproves. ${ }^{1}$ But secondly, even where no unfair duress is employed, the practice of presupposing a certain answer to one question in the form of putting another throws the reapondent off his guard, and makes him apt to admit withoat considering it what, if it had been explicitly submitted to his consideration, he might have doubted or denied.

The fallacy therefore is not a trivial one; such questions are a real source of error, when we pat them to ourselves: of unfair confatation, when we put them to others. But it is doubtful whether it is a fallacy extra dictionem. For the ambiguity or unsvoidable falsehood which must in some cases attech to the answer is a consequence of the way in which the question is
${ }^{1}$ Bryce's American Commonseealih.
worded; and the same may be said of the soquiescence in false assumptions, into which in other cases we are entrapped.

The foregoing remarks have been directed to explain what are the types of fallecy which have been traditionally distinguished, and are atill many of them very commonly referred to by name. The types are not all equally distinct, frequent, or important; bat the original meaning of each name has been given as far as poesible, because nothing but misunderstanding can reeult when different writers employ such terminology each in his own meaning, and there did not for the most part seem sufficient reason to prefer any later interpretation for a standard. In a few casea later interpretations which have much to be asid for them have been given 28 well. No doubt Fallacy is a sabject on which successive generations to some extent need a new treatise: not because the principles change, bat because the fields change in which they are most prolific. Many saggeative illastrations of the dominion which fallecy holds in important mbjecte of contemporary thought may be found in the pagee of Whately, Mill, or de Morgan, to which reference bae alrendy several times been made.

INDEX

Δ beoimeto Infintid, 118-18.
Abetraction, ite pleoe in Induction, $46,471$.
Acoent, folleoy of, 642.
4coldont, as a Hioed of Prodicables, 61 eq.: mparable and inewperable 94-5: fallecy of, 588 n. 1, 546, 654 . Acoidental judgementa, 180.
Aldrioh. H., hle Logie eited, on def. of Modality, 188 : form of Barbars Celeront. 881 n. 8,889 n. 8.
Amphiboly, fillacy of, 589.
Amplative jadgoments, 185, 189.
Anelogy, argument from, $499 \mathrm{aq}$. : origin of modern sence of, 497, 498 n. 1: no proof by, 498 : how rolated to Induotion by Simplo Enumeration, 500-2: Invalvee a genaral prindiplo, 508.
Analyds in Induotion, 490-6, 456-7.
Analytio judgementa, 185-90.
Apolt, Profomor O., on Artatotlo's Catogoriea, alted, 89 n. 1.
Apodeiotio judgemente, 178-6, 182.
A posteriori reseoning, 400-8.
Appollatia, 140 n .1.
4 priort reasoning, 401.
Arbor Porphyriana, 115-17.
Arguing in a circle, B 59 .
Argamentam ad homivern, $688 \mathrm{n}$. 1, 850 : ed micerioordlam, 650.
Aristotle, his definition of a tarm, 18 n .2 : of a nama, 187 : of sylloglem, 294: on dرmprpa and owdorpa, 21: on Bropa dSpurrov, 80 : on the Categories, a. IIi paces: on Matter, 41: on the Predicable, o. iv pase. : on the forr olements, 86 : on Defnition, 114 -of. a. a. 'Doflnition': on rapderuac, 118 n. 1: on Modelity, 184 n. 1: on modal ayilogiame, 416 n .1 : on the Quantification of the Predicate, 800 n. 1 : on indireot concluadions (- the eo-alled fourth figuro) In ayllogiam, $984 \mathrm{n} .1,258-69,805$: not the author of the Diction de Omni, 274 n. 1, 289 : on Ineicis, 296: on hypothetical rosenniag and the ouluoprembe if Kreficen, 816 n .1 : on Entbymeme, $898 \mathrm{n}. \mathrm{1:} \mathrm{on} \mathrm{the} \mathrm{induetive} \mathrm{gyllogiem}$, 851-2: on Induction in the modern sonse, 868 : on the eatabliebment of
dexal, 859-68 : on Breue and rocoul dexal, 860 n. 1 : on mapiocrua (- argament from analogy), 486, 801 : on falleaiea, a. Ixvil paes: his divinion of falleoles, 689-4: bis logieal writinge, 288 n. I. 848: hin Topics, 801-8 : distinction of formal, material, inal and ofimalent causec, $\mathbf{4 5 1}$: theory of motion, 478 : domonetration alwaye ayllogietic, 487. Cf. aleo 82 n. 1, $69 \mathrm{nn} .1,2,61 \mathrm{n}$ 2, 68 n. 1, 66, 68 n. 8, 78,77 n. 1, 81 , $87 \mathrm{n} .1,98 \mathrm{n} .1,100,106,111,121$, 127,160 n. 1, 165 n. 1, 207 n. 1, 224,
 288 n. 2, 802 n. 1, 814 n. 2, 825 n. 8, $850 \mathrm{nn} .1-4,851 \mathrm{n} .1,865 \mathrm{n} .2,878 \mathrm{n} .1$, 407 n. 1,416 n. 1, 489, 648 n. 1. Assertorio judgemente, 169, 171-8. Asmoolation of ideac, 50 O.
Auementative jodgomenta, 185, 189. Augtn, J_{7} Jurigpridence, quoted, 688. Averroen on Fig. 4 of ayllogim, 268.

Beoon, Pranela, Lord Varalam,quoted, $248 \mathrm{n} .1,849,845,858,84-6,897,408$, $425,489,486$ n. 1, 481, 488 n. 2, 490, 504 n. 1, 605 n. 1,54 n. 1, 864.
Beln, Alarandor, aited, 189 n. 2, 975 n., EM n . 1.
Belfowr, Bt. Hon. 4. J., quoted, 469 n .1.
Barbers Oalarvat, history of, 24 n .1 : form of in Potros Hiapanue, ib. : is Aldriah, ta, 961 n. 8, 868.
Begeing the queation, 650.
Bothing, 58 n. 8, 821 n. 1.
Bomanquet, Prof. B., oited, 125 n. 1 , 188, 162 n. 1, 158 n. 1, 406 n. 1.
Bradioy, Mr. F. H., oited, 10 n. 1, 29 n. 1, 54 n. 1, 125 n. 1, $180 \mathrm{n} .1,182$ n. 1 , 188 n. 2, 157 n. 1, 158 n. 1, 166, 206 n. 1, 909 n. 1, 217 n. 9, 897, 229, 868 n. 1, 405 n. 1, 602 n. 1, 618 n. 1.

Bryen, Rt. Hon. J., 1 meriosm Commenmantic; efted, 057 n. 1.
Buridanus, Joannee, on romina consematien, 140 : on Modality, 184 n. 1.

Oateroramatio worde, 14.
Ostecories, Aristotle's doctrine of,
a. iil : Ite roletion to Kant'a, 48eq., 897. Caneaston, Law of, a Xix paen; in-
volvee uniformity, 871-2, 874-0, 878 : anpumed in physical wionoe, 871, 604 : with what right aseumed, 890 : emnnot be proved induotively, 880-90, 510: grounds of eltmiantion faraished by, 408 : lewe of, to be diseovered, 872
Cange, meaning of, 871, 878, 450-60: why inventigited, 48-9: nou-ruiproasting, a. zall: Ariatotlo's doctrime of, 451 m .1 : continuity of with efinet, 150 : apparont discontinutity in cortain cases, 465-4: composition of cavere, 488 n .1 : plurality of canaes, 408 sq ., 484. 516 : problem of, how rolated to duotrine of the Predionbles, 64-7.
Oertainty in celenoe, why hard to obtain, 467.
Ohange, implleseonething permanent, 450: continuity of, Ib.
Clase, meaning of Inoludon in a, 99-71. Olandfontion, 101 eq. : ite relation to
Logioal DIvision, 118-90.
Colleative judgaments, 156 : a torme, 3-7.
Collugation of faots, 488 eq.
Commongarnte termes, 88, 89-90.
Comparative Method, the, 598.
Compoettion of Censee, 488 n. 1: fillagy of 0,840 .
Oonoept, its natures, 16-18, 56-7 : alone definable, 67.
Conditlonal judgemont, 891 n. $1:$ a.
prineiplee in erienes, 881-6.
Confunotive jadgement and Inforence, 812.1.

Connotation and Denotation of terme,
181 eq. : no torms non-connotative,
182 : history of word amenctors, $140-2$.
Oonequent, falleor of, 488, 585.
Contrediotion, Law of, 860 n. 1.
Oontradiotory judgementis 905.
Contrapoeltion of propositions, 215-17.
Contracy judgements, 905 : terms, ib. D. 1 .

Converation of propoditione, 810 : simple 0., 810 : o. par aceldore, 911 : o., by negation, 816 : whether a prooves of inforence, 217-98.
Cook Wilson, Prof. J., oitel, if n. $\mathbf{2}$ Oopnis, netare of the, 145-68.
Oreokenthorpe, B., Lopion, cited, 84, 88 n. 2,901 n. 1,889 i. 2,84 n. 1.

Crualal Instance, 8\%4.

Deduntion, meaning of the word, 850 n. 1, 365: contrasted with Induolion, 808, 805.
Definition, 89, 72 eq. : nominal, 77 eq.: rules of, a, V.
Demongtration, 849, 197.
do Eorgan, A, Formel Zepic, ciled, 8 n. 1, $698 \mathrm{n} .9,888 \mathrm{n} .1,686$ n. 1, 844, $849 \mathrm{n} .8,555 \mathrm{n} .9,558$: Buden of Paradacie, 588 n. 1.
Denotestion of terms, 181 eq.
Derivative lewn, 881.
Deepertes, E , quoted, 488 n. 1.
Deedrastions, 19, 91.
Devolopment, the meaning of 78-4. Dialeotioal masoning, 859-61.
Diohctomy, 108 eq.
Diotam de Omni et INillo, 874 ib. D. 1, 295.

Difereatis, 60, 67 eq. : constitutive and dirialve, 116.
Dllemms, 8,0-7: destrootive d. may be simple, 88.4 .
Didunotive judgement, 166-8: d. reasoning, 817-21: in induction, 806, 898, 408.
Distalbution of terma, 198-7 : in eyllogiam, 247-64.
Diverithy of effeote, 465 eq.
Dividon, Logical, rales of, 101 eq. : stops with inimee aperiex, 116 : oroes-l. 104: Phyaleal D. ($=$ Partition), 117 : Metaphyrinal D., 117 : falleogy of D., 640.

Downem, G., Cominget, in Pur. Remit Diat, cilted, 857 n. B.

Mimination, its place in indection, 85, 458-8 : grounde of, 408.
Empedoales, 86.
Impirioel facts, 855: 2. geacrilleation, 690.

Enthymere, ats-6 : Arfatotellan mane of, 898 m .1 .
Enumeration, Simple, Indootica by, 499 eq.
Ennmerative judgemente, 156.
Eplohelrema, 895.
Eplayllogem, 885.
Equipollenoy of propositions, 814 n . 1 . Equiroostion, fillacy of, 582, 854.
Eevenos, 77 日q., 805 : in peometry, 89 sq. : mominal e., 77-8, 880.
Tesantial judgoments, 185. 190. Txeepetve judgemente, 190.
Exoluded Middle, Law of, 20 n. 1. Froluadme, Bacon's, 805.
Eroludve judgements, 100.
Experiment, importance of to induetive resconing, 489, 487: in some enquiries imposaible, 514.
Explanetion, a. Exili : not pondible from 'common prinoiplea', 466: of particular facta nnd of lawe, the same in kind, 466, 471: examplee of, 47284: se submamption, 476 : dedvetive and inductire reasoning in, 478 eq.

Brollontive judganenta, 185, 189.
Exponibilian 101.
Expoaltion or tebects, 206.
Extenation of tarme, 181 and a. vi pase
Falleotee, a mivil: reesone for disevaniog in a treatios on Lopic, 505-8: difleulty of oleodffing, 5e8-88: defnitlon of, 525, 895 : in dictione and arme dictionem, 684, 687-8: logical and mabrial, 884.
False Couns, falleoy of, B6S
Fiene of Bpeeoh, fallacy of, 548.
Figare of syllogiem, what, sst : Galenian, or fourth, f., 888, 587-61 determination of moods of inst f., 962-5 : do. of the mevaral f., and their rulea, 254-7, 982-8.
Form and Metver oontrated, 78-6: of thought, $449 ., 148 \mathrm{n} .1,166,918$ 288, 858-9: speoies at form, 78, 76,
Forms, Bacon's doetrine of, 884-5.
Fowler, T., his ane of symbole in reprementlog induotive argomenta, 408 n. 1.
Fry, Sir Edward, quoted, 887.
Fundamentum Difialonic, 78, 104
Gelenian figure of syllogiam, 285, 257-61.
Conus, 59, 67 mq : aboold be an unity ib. : diatioguithed from daen, 60-71: armmon, aballernion and propimumg., 102.

Geometry, dietinetion of definition and property in, 82 eq.: of. a.s. ' Machomntion'.
Grove, J., Exploratio Palloepphica; quoted, 55 n .1.

Eamition, Sir Willam, cited, 199 n. 9 , 245 n., 289 n., 895 n . $2,827 \mathrm{n} .2$.
Hegol, G. W. F., oited, 47, 988 n. 1.
Eiersaholl, Sir Juhn, aited, 867.
Hippoorstes, ble attempt to equare the oircle, 631.
Etetorion Mothod, the, 8 ge
Eintory and Solence contruted, 68, 918, 488, 479-8.
Hobbee, Thomes, his dof. of a name, 15 , 187: thought all inference syllogiem, 980 n. 1: Nominallem of, 978
Eume, David, olted, $867,876,406$ n. 1, 408, 404.
Hypothede, ite plece in indrotion, 428-89 : not to be rectriated by Logia 480.

Eypothettoal jodetment, 168-8: h reesoning, $800-11$, 881 n. $1:$ do., not redaible to ayllaglem, 812-17.

Idantity, Law of, 878.
yrmoratio mlanohi, fallecy of, 885,540 . Immediste inforonce, meaning of term, 509: procemen of, a 1 : how far really inforsnos, 217-28
Indifidakiton, Prinaiple of, 48, 67, 70-7, 117, 181
Induotion, a svili paen. : meaning of word, 850 : confuation in uee of, 887 : Porfeot L ($=\mathbf{L}$ by Complote Enumeration), 858, 888 : confanion in contrint of Porfect with Imporfeot 1, 467-8 : the L. of the ind roilivenciencep aesames univeral connexions in natare, 871 : deduetive reasoning oftan involved in, 478 eq. : in deeling with a complax effeot, 484-6: examples of, 40581, 488-8, 486-9, 449-6, 459-8 (of. 68 n. 1): I by Bimple Enumaration, $489 \mathrm{eq} .:$ its rolation to argument from Analogy, 500-9: ite oceurrence in mathomatick, $508:$ Mathomatieal I., $508-4$: Its relation to the I. of the Inductive soiences, $804-9$.
Induotive Methode, Kill's so-aslled, 894-9; their beale, 404 n. 1: I reseoning, preliminarlee neceseary to, 9. III.
Inforence, general niture of, 909 Bradleg's dof. of, 518 : Immediato 1, 210 eq. : veludity of any L. eelfovident, 21,816 n. 1: i. not all ayilogistio, 220, 978-8, $888:$ a prioni and a postriori f ., 400-8, 515 : 1. not from particulars to partioulars, 508. Infinite terma, 80, $112,180: 1$ judgementa, 168 n. 1, 191.
Ingtantla, original meaning of, 491 n. 1 : ©ruole, 644 n. 1 : oatonad 12,525 n. 1 : prorogativa, 806 n .9 : colltaria, 897 n. 2.
Intermistare of Imbota, homogeneont and beteropathlo, 488 n .1.

Jemes, Prof. W., Principles \& Pyphology oited, 888 n. 1, 688 n. 1.
Jovons, W. S., olted, 18 n. \&, 109 110,192 n. 2,214 n. 1, 856 n 1, 888 n. $1,870 \mathrm{n} .1 .898 \mathrm{n} .1,406 \mathrm{n} .1$, 467,690 n. 2,816 n. 2, B 66 n. 8.
Judgemant, the true unit of thought, 18: mature and forme of, a vil: properiy arpreseed by the indioative, 14: the copola in, $145 \mathrm{aq} .:$ logioal, gremmatioal and metaph yalcal aubjeot α, difitigulehed, 160 : dibinotion of j. socording to Quantity, 154-61: da quality, 161-8: do. Rolation, 168-8: da. Modality, 168-85: en amerative or colleotive, and universal j., distingralahed, 158: modal partioniare, 180:
infonite j, 168 n .1 : analytio and efrthetic, entential and cooidental, verbal and real 5 ., 185-90: orooptivenderaladvej., 190: exponiblej., 191:oppoaltion of $j .$, s05-8: converalon, permutation and contripooition of J., 910.88 : a J. does not apeort agreament or diagreement between itt terms, 248 n . .

Eant, In, his dootrine of Categorten, 47 eq.: on analytio and aynthetie Judgementa, 185-90: his eminon of syllogism, 288: on ohange, 450 : on Applled Logio, 514 n. 1.
Eopler, J., his hypothede of olliptie orblta, 485: the three lawt of, 480, 48.

Enowiedes 'of acqualatanoe' and 'hn. about', 85.
tembert of Auxerre, $\mathbf{2 8 8}$ n. 2.
trambert, J. H., Newes Orpanon, on Fig. 9 of ayllogism, 912 n .1.
Ians, Dr. Andrew, Ourlow and Myen, quoted, 496, 8 gin.
Inpleoe, P.S, Marquie de, quoted, 429.
I-voinder, A. L, nxygen-theory of, 487.
Iswe of natare, 868,890 : precautiona nepoerary in fornulating. $616 \mathrm{oq}$. : their oharacter, 984-5 : conditional, unconditional and derivative, 890-2.
Ireibdis, G. W. von, elted, 188 n. 1, 828 , 470.
'Temis Carroll' quoted, $988 \mathrm{n}, 1$, 580 n .1.
Irooke, John, quoted, $8,78,988$ n. 1, 248 n. 1, 290 , ib. n. 2, 298 n. 8,888 n. 1.
Lrogle, defined, a 1, of 169 : how far formal, 4-7, 148 n. 1, 165, 214: not an art, 8-9: false antitheais between L. of Consiatenay and L. of Trath, 280-1, 842: Deduotive and Induotive, wrougly oppoeed, 848 n .2 , 888-9: relation of progreng in, to progrens of soience, 848-7: Inductive L., hintory of, 866-7 t Appited L, 514

Lrotes, H., ofted, $888 \mathrm{n} .1,870 \mathrm{n} .1$, 887 n. 1, 404 n. 1,480 n. 2, 198 n. 8.
 Ceemology, quoted, 495, 858.
Talne, Bir Elenry, quoted, 472, 497, 652 n. 1.
Major term, why 0 called, $285-9: \mathrm{m}$ premies, how far eurriving in oomplete hnowledge, 807, 487 n .2
Lanel, H. IL, Prolegemana Legies, quoted, 165: ed. of Aldriah's Loyic, da, 974 n. 1, 885 2. 8, 883,886 n. 2, 880 n .4 .
Tany Queotions, falleoy of, 545 n. 3, $646 \mathrm{n}. \mathrm{1}, \mathrm{45}$.

Marahall, Prof, A., quoted, 474.
Kethematioc, reesoning of, Beb, a XXV : etmploye ayllogien when $\mathrm{f}, 807$: ite prinelplet not enterallsatione from experience, 500-12.
Yeperer, Artatotio's sonoeption of, 41: genus the matter of ite apeoice, 78 : not the prifectition miliotimationia, 76.

Meanaroment, importanes of in induetion, 464, B1Q.
Yellone, Dr. B. H., quoted, 110 n. 1.
Yethodology of solence, 499-8, e Exvi. Mioheol Prollus, 184 n .1 , 96 n
MiII, James, quoted, $20,141$.
MIII, John Stuart, 11: on sdjeetival termes, 25 : on Dofnition, 68 n. 1 : on Cause, 100, 870-9 : on Connotatioa and Deaotation, 181 aq : : on Modality. 18 n .1 : on 8yllogitm, $279 \mathrm{n}, 1$: on 'mata nota ', 285 n . I: on the eridence of mathernatical prinelplec, 856 n .1 , 809 n. 1, 812 : on Lawe of Nature, 880 n. 1, 471 : his attompt to prove the Uaiformity of Natare, 886 n . 1: hle 'InduotiveMethode', $894-9,460-8$: aro in reality one, 899 : their baid, $404 \mathrm{n}$. . : annon for 'Joint Mothod' defeotires 890 n. 1: his ' Deductive Method of Induetion ${ }^{\prime}, 477,488,487 \mathrm{n}$. $1:$ on Hypo thenis, 489: on Argament from 4 nelogy. 800 : on Colligation of Frota, 484 : on Plurality of Caucen, 465, 460-8: view that inforance is from particulare to particulare, 508: on the Lopic of the Moral Belonces, 342, $\mathbf{8 1 4 - 1 6 : \text { on }}$ Fallecies, 658 n. 1, 554 n. 2, 858 : UnItitariambem, quoted, 648. Cr. alno 917, 281, 842, 870, $407 \mathrm{n} .2,116$ n. 1, 421 n. 1, 447.
Minoe term, why wo called, 256-8.
Minto, W., Ingich Indmative and DoplueHire, elted, 149, 888 n. 1, 844, 545 m. 1 . Mired modee, 79 n .1.
Modellty, Kant'a eatofory of, 83 : m. of jadgromente, 168-80.
Modus ponenc, 808: tollena, 810 : ponendo tollone, 818 : how far valid, 819-90 : tollende ponera, 818.
Yood of ayllogiam, 289-40, 254-7: indirect, in Fig 1, 948-6.

Freonity in Jadgoment, 178 : in asusal roletions, $876-2$.
IFogesion, nature of, 161-8: converaton by, 218.
Frettleahip, R. L, Phacoophical Bemaine, cited, 125 n. 1, 187.
Frowion, Bir Ieme, hila history of grevi-
tation, 477 cq .
Findmallem, 90, 41, 56, 98, 878

Fots Iotee, prinoiple of, 286 .
Obveruton, = Permatalion, q.v. Ooosm, Willian of, on momina ammo
ration, 140-9: bis 'rasor', 470.
Oppodition of judgemente, 805-8.
Paronymoue terms, 118.
Per cooidena pridication (opp. to par m), 86.
Permutation of proponitions, 214:
whether inference, 290-8.
Per eo prediention (opp. to preacidens), 86.

Potitle Prinoipll, falleoy of, 880 ; of. 278, 885.
Petra Himpanus, 944 n. 1.
Petran Mantasnue, 881 n. 1.
Phemomenon, meaninge of, 894 n .1.
Philoponur, Joannea, quoted, 4 n. 1.
Phata, on the four elementa, 88 : on negation, 162 : on judgement, 170 n. 1: quoted aleo 127, 848, 490, 540 n. 2, 641 n. 1, 849.

Plurality of Carnes, 458 eq., 483, 516 : Mill on, 460-2
Podmore, F. Hintory of Modern Spirithaliem, quoted, 440 n .1.
Polnosif, Mons H., quoted, 884 n. 1, 885 a. 1.
Polyayllogim, 887.
Poor Int Commiacion, 1834, Report of, quoted, 418-91.
Porphyry, his llet of Predicables, 58 n. 2, 92-6: arbor Porphyriana, 116-17, 128 n. 1.
Port Boyal Irogio, quoted, 884 n. 1.
Poete, E, od. of Sophimitici Elomeh, quoted, 894 n. 2,581 n. 2, 847 nn. 2, 8, 851 m. 1, 854 n .1.
Post hoo, propter hoo, fallecy of, 884 Pranti, Carl, Geachielte der Logit, olted, 14 n. 9, 140, 184 n. 1,944 n. 1,988 nn. $1,8,890$ n. 1,961 n. 1,846 n. 2.
Predicables, dootrine of, a iv: Aristotolian and Porphyrian lista, 88, 98-6: Ite relation to the queetion of the meaning of " oanse", 64-7: Ariatotle's proof that bis list is exhanetive, 111.
Promites, what, 880, 298 : major and mineor, 899: major in Pis. 1, 890, 807, 487 n. 2.
Prerotative indamee, 868 n. 1.
Prinoipitun Individuationis, 76-7: of 67, 117, 181.
Prinodplet, 'common' and 'speedal" 889-61, 605, 889 : 'eommon' do no explain, 466.
Problematio jadgementa, 170-82
Proper namea, 19,8 : bave eonnote4lon, 185-9 ; indefmable, 188.

Property, 61 : ita relation to Definition, 77 ©q : fourfold division of, 90 . Proponition, moand and ertil allacomia, 167 n .1 : of. a. 2. 'Judremont'
Pranyllayim, 895,
Tpórepee eqiact and F .1 m$)$, 78, 834 n. 8 . Prendogrephome, 881.

Quality of jodgemente, 161-8.
Qanatifgation of the Predicate, 109804.

Guantity of judgomente, 164 .
Batio eopmoernall and r. merndi, 172, 291, $800,466,2$. 2.
Beallm, 41, 86, 98.
Bequoning, probable, 416, 488-9: of
Mathematics, BOE: ef. a a 'Inforonos.
Beduction of syllogims, a xill : un. anlled for, 990 9q., 800.
Ealation, diatinotion of jadgemente cocording to, 168-8.
Bitahis, D. G., Plato, quoted, 490 n. 2. Bomanee, J. G., Darein and ofter Darnoin, quoted, 418 sq., $418 \mathrm{n}, 1,4 \%$ n. 1, 462, 478 n. 2, 476 n. 1, 490 n. 2. 502 n. 4

Balisbury, Lord, quoted, 442 n. 2.
Berence and Hiufory contrasted, 68, 918, 482, 472-8.
Eandernon, T., Compendimin Artis Logione, cited, $14 \mathrm{n}, 2,814 \mathrm{n} .1$.
seoond Intentions, $8,17$.
Becondum quid, falleoy of, B88 n. 1, 547, 884.
shyremwood, Filliam, $94 \mathrm{n}, 1$.
Blewrart, Chr., Logic, ciled, 152 m. 8.
Alnguiar judremente, 184: for what parpoese ranked with univeral j., 192 . Bmilh, Adam, Walth of Notione, quoted, 117-18.
Sorites, 896-80: Goolenian 6, 897 n. 2.
Bpeales se Elead of Predicables, 92 : 2 infina and mbatirna, 98 n. 2, 102 : constituent a, 102.
Bpenerr, Herbert, 74, 860.
Bptrose, 169.
Beapper, R, on the Eummentar Logienter of Petrue Hispanus, wis in.
Blook, 8t. G., Dedwetive Logic, cited, 29 n. 2, 887 n .

Bubalitern jodgomente, 908 : a. moode, 208.

Ruboontreary judgementa, 805 .
Bubjeot, logioal, grammation and metaphyicel, 160.
Aubotapoes, firt and seoond, 40-8.
Subramption, 886, 807, 869 n. 8, 476, 48.

Buppoaitio of names, 14, 140: a moterialio, 14.
Byllogiera, Arintoclo's definition of, 295: problem of, 289: nomenelature of, 280-40: Aguren of, 288-5: moode of, 259-40: thair determination 2547: Fig. 1, moode of, 241-4: do., indireot, 245-6: rules of, 247-54 : reduetion of imperfoot moods of, c. $\mathbf{x i l l}, 890$ eq. : do., Indirect, 969 : oharged with prifio principii, 978 : Fis, 1 of moientilic, 888: propoeed principles of, a. xiv: Fig. 2, 200-5 : Fig. 8, $296-801,870$ n. 1: fourth or Galenian figure of. 257-61, 801-6 : in mathomatioe, when uned, 807: Aristotio's oulloprampt if trollocen, 817 n .: Inductive A , 861-9: Modal a, 616 n .1.
Bymbole in reprocenting Induotive reasoning, errors in use of, 406 n . t : inadequacy of, 449-50.
syncetegarematio worda, 14.
Bynthetio judgemente, 185-90.

Torm and word, diatinguiehed, 18 : derivation uf, 18 n .8 : mired $\mathrm{L}, 14$: how defined, $15-16$: abitract and oonorotat., 18, 21-8 : ainguiarund common or general, 18-19 : attributive, 94-6 : collective, 26-7 : abeolu to and rolative, 27-8 : pouitive, negative and privative, 28-94 : infinite and indefinite, 80,820 : univocal, equirocal and anelogous, 84 : commenearnte, 88 : intenalon and extomaion of $t, 121,0$. vi pase: connotation and denotation of, 181 sq. : mo t. non-connotative, 182 : abeolato and connotative, 140 : contrary, 205 n. 1 : contradietory, 1 b. : major, minor and middie, in ayllogiem, 282-8, 256-9.

Thorapeen, Arohblehop, LawedThemete, cited, 198 n. 9,206 n. 1, 823 n. 1.
Topios, what, 881 : t. of Canse, 396 : Ariatotlo's treatiee of that name, 858 68.

Tropdeleabers, F. A., alted, $47,825 \mathrm{n} .2$.
Unoonditional prinolplee in solence, 888-6.
Unifocerth of Nature, meaning of. 879-8: minot be proved indactively. 881-0, 469: imporyace of in inductive molences, 85-4, 407: of. also 4. e. 'Cansation'.

Uniferee of Dicocurse, 88 n. 1, 148 n. 1.
Voan, J_Enapirioal Lepic, quoted, 405 n .1 . Vertiontion of a theory, not proof, 486, 656.
Vernon, Dr. H. Y, Fariation in Animath and Ravic, quoted, 408-10.

Walleop, Dr. L. R, quoted, 478.
Wallie, J., Logic, oited, 216 n. 1, 2t2 n. $\%$. Watte, Iseea, Logic, cited, 99.961 n. 8 Weltom, Prof. J., Induative Logie, cited, 808 n. 1, 488 n. 1.
Whately, Arehbishop. Lopic, quoted. 140,975 n., 597, 888, 588 n. 1, 854-4 858.

Whewrell, W., quoted, 887 : on Colligetion of Facts. 158 -9.
Wolleston, W., Religion of Nabure isMneated, alted, 14 n .1.

Xenoarstes on Δ ristotle's Categoriee, 88 n .1.

Enberella, Cardinal, on Fig. 4 of agllogiem, 288-9: on Diatum do omev, 974 n .4 : on reduction of hypothetical remsoning to syllogiam, 818 n. 1.

[^0]: ${ }^{1}$ The queation of the pomibility of a breach of nataral law need not be considered here; eomething is maid of it in c. xix, infra.

[^1]: Jonnnes Philoponus cites it ad Ar. Anal. Powt. a. ix. 78s 15.
 Unlen indeed he is collecting statistice to the comparative frequency of different typee.

[^2]: ' The word logic is sometimes used not for the study of thought which hes been deacribed in this chapter, but for the thinking whioh it stadies: at when we mey that sonse one in a man of powerfol logic, or of great logical acomen. It is important to recognize that this is a different sense of the vord.

[^3]: ${ }^{1}$ It must not however be supposed either that Ethics can determine what ought to be done in every difficult case of conscionce, or that Logic determines exhanatively the forms of reasoning which the aciences mast employ. Cf. Bradley, Logic, pp. 247-249. The phrame nommation arience, which some writers have of 1ato applied to Logic, Ethics and Aeathetice, has perhaps been anggeated by the character in them to which this paragraph refers. But it is liable to create misanderstanding, as if it were the businese of these enquiries to prencribe rather than to ascertain the pronciples which our rational thinking, or action or apprecistion of beaty exhibits.

[^4]: ${ }^{1}$ Of course judgements with the same subject may have different predicaters, end those with different subjects may have the same predicate. 'Vengeance ir sweet.'

[^5]: ${ }^{1}$ This atatement needs modifying in the case of judgemente which dofine their sabject; bat in these also there in a diatinction between the aubject ae an anity, and the elemente comporing it.
 " "Opor andé eis dy dealúrres ì mṕrogus, Ar. Anal. Pri. a. i. 24b 16. "Term" is ternisume a tranalation of the Greek $\delta_{\text {por }}$. It is not quite eary to see why the parts into which the judgement can be broken up were called ópon. The statement that ' a term is 80 called becanse it forms one end of a proposition' (Jroons) is clearly wrong; for that is an accident of langrage, and of the proposition bos locutwe eat it is not true. It is possible that Aristotle symbolized the propocition in the form ' $\mathrm{B}-\mathrm{A}$ ' (Where we shoold write ' B is A '), and that the use of the word comes from the porition of the symbole. Bonits (Inder Aricr., s.o. opor, $530^{\circ} 21$) thinks it a metaphor from mathematice, whore if the ratio of two quantitiee was concidered, these ware called ipos, being ropresented by linet, which are the boundarioe of a plane ; in the judgement, there is a relation of aubject and predicate, which might therefore be called opot too. The word is, howevar, also used like $\delta \rho 1 \sigma \mu \sigma_{6}$, to mean defrition; and it may be that subject and predicate were called opor me the determinate objecte of our thought_in a purticular judgement, or an together compriaing what is propoynded, and limting tire jodgement in which they occur to ite own field.

[^6]: ${ }^{1}$ With the articles may be coupled worde like aome and any; not, and no in 'no man', are aloo syncategorematic; so is the copula is, as the sign of predication, though not when it means 'erista' and is iteelf the predicata.
 'The doctrize of suppositio, es of divars other 'properties of farms', has happily fallen into oblivion; but for the benefit of any one who wishes to underatand the phramo auppositio materialis it may be worth while to add a note on it. Afl perta of apeech were said to have signification; then, as counds posesming rignification, they ecquired properties which did not belong to them as mere counds. Thewe properfies were not the same for every part of speech. Suppoatio belonged to mbetantives denoting substances, copulatio to verbe and adjectives. Subetantiality and edjectivality were auppoeed to be characters of the thinge aignified; the adjective coupled come acjectival with mome cubotantival thing, the rubotantive 'put' the latter 'under' the former (o. Prantl, Geachichte der Logik, vol. II. Abechn. xv. Anm. 67; vol. III. xvii. 59). So far, the sence of suppositio neems to be active; bat it in defined as acceptio termini subatantioi pro aliquo; and here the sense is pasaive: the 'supposition' of a term is 'being pat' for momething. It was then eaid iteelf supponerv pro aliquo (cf. Prantl, wol. III. xvii 61, 201 : Sanderson's Compendium Logicae Arist, Lib. IL c. 2); and the ame term had different linds of 'supposition' according to what it 'stood for'; e. R. in 'Homo eat animal', homo stands for all men, and this is the suppositio naturalis of a common term ; in 'Homo currit', it atanda for some individual, and this is suppositio personalis. Now as a sound having signiscation, the term was diatinguished into the cound as matter, and the aignification as form; and when a predication what true of a term as annd

[^7]: or in respect of its matter, 20 in 'Homo eat diryllebum', it was said to be by suppositio matarialis: when in respect of what it igniled, by ouppositio formalio. There can be suppositio materialis of any part of apeech, but formalis only of aubatantives; for only a subatantive, or subatantival phrase (hase onim significat rem ut oubsitemiem at ordinabilem oub alio, V. Prantl, vol. III. xvii 60) can have ouppositio formalis. Cf. p. 140, infra.
 ${ }^{2}$ Computation, or Logic, c. il \& 4.

 - Wo can talk in English of the name of a person, thing, place, river, tec.; it is less natural to apeat of the name of a quality, or to call a descriptive phnae, like 'the only man who eacaped from the alaughter of Cavagnari' mivaion', a name; while verbe and adjectives, which can be;

[^8]: ${ }^{1}$ Or have existad or will exint.
 'It wrald be posible in ordinary speech to talk of a man's 'conception' of Gibraltar, or his 'ides' of it, in dietinction from the rock itself; but comerpt in Logic signifes properly something universal. The quention however in this peragreph is a general one concerning the relation of what are cometimes called 'ideas in the mind', to things, whether or not these sre 'idess of individuals '.
 soming

[^9]: ${ }^{1}$ The term Aumanity bes of course other meanings, viz mankind collectivaly, and also kindlinesp; in the tert it means the human natare common to all men.

[^10]: ${ }^{1}$ The meaning of attributive may, howerer, be incapable of oxplanation without reference to that in the nature of the anbjecta whereto the qualitiea belong which makes them susceptible of these qualities. Thus neither silk nor oloth could be red untem they bad toritice; neither a man nor a company could be insolvent anleat capeble of having debta. Cf. p. 98 , n. 1, in ${ }^{\prime}$ It may be added that tarms like fother or musician are adjectival in mense, and would by some be clased as attribative; for though they are gubatan 1 tiven, and are predicated of concreta thinga, triey do iot primerily aignify the concrete things of which they are gredicated. Cf. pp. 140-142, infra. \rightarrow Eogte; I. II. 4.

[^11]: ${ }^{1}$ King Lear, Act iv. 7 1. 18.

 - Adjectives can indeed be used as aubjecta, e.g. Beati immaculati in vis, where it is pomible to take either term as predicate. In many languages the article is generally necemary in order to make an adjective do duty an a subatantive.

[^12]: ' Excopt so far as they are combined into a term whowe whole meaning is aingalar : o. g. Aret is general, but thefirat Fharaoh is aingalar.

[^13]: ${ }^{1}$ This formula, 'Everything is eithar 4 or not-A,' is cometimen given as the 'Law of Extluded Middle': The 'Law of Excluded Middle ' meens that of two contradictory propositions one or other mast be true; they cannot both be false, and therefore any third or middle course between accepting one and eccepting the other is ercluded. It bea been asked whether either of sach contradictory propositions as Virtwe is triangular and Virtue is not triangular need be accepted; the former is clearly falee, but the latter does not reem true. The answer is that if any one were to emert that virtue is triangalar (as the Pythagoreans hold justice to have the nature of a equere) we ahould be right to contradict him; but that no one who realize virtue to be incapable of any apatial charactor at all would ever pat to himself the altermatives, 'is virtue triangular or ia it not?' and that to one who, not realizing this, eseerted it to be triangular, the proper contradiction is that it has no figure. The case therefore furnimbee no exception to the troth of the Law of Excluded Middle, provided the alternatives are not at the outaet realized as noneence; but no one to whom they are nonmenee would expect to tent by them the ralidity of the lawe of thought : for talking nonsense is not thinking. The objeotion to atating the Law of Excluded Middle in the form 'Evergthing is either A or not- A is this, that it seems to manction the formation of noneensical contradictories, such as we have examined, no leas than of contradictories that are retional. Cf. aloo Bradley, Logic, I. v. \$5 23, 24.

 - Stock, Deductive Logic, § 188.

[^14]: ${ }^{1}$ Cf. next page.
 The old Greek proverb will illostrate the point hero-lootol piv ydp dindir, wavtoduriér di cacul.

[^15]: 2 The genus within which any attribute falls, or the subjects susceptible of some attribute within that genus, may be called with de Morgan (Formal Logic, p. 41) is 'limited universe'; thus blwe is a predicste in the oniverne of colour, or of coloured objecta: prudent in the univerte of human character. A positive term and ite corresponding negative (a.g. blue and not-blae) may then be aaid to divide between them not indeed the whole universe, but the limited aniverse or whole of thinge which constitates the genus to which they belong; the members of this limited universe have a ponitive common charactor, which gives the negative term a positive meaning: whereas if we consider the whole univeree, there is no positive character common to all things incladed in it, except the character of being -- which, a A ristotle pointed out, considered in itself and not as realized in come apecial mode of being, is not a vignificant term. Cf. de Interp. iii. $16{ }^{\text {b }} 22$. Such a 'limited niverse is somotimes called an 'universe of discourse'.

[^16]: ${ }^{1}$ This is not a complete atatoment of the meanings in which, according to Aristotlo, a predicate may be anid to belong to a subject raff aird; but it is, I think, a meflloient acconnt of the sense in which the exprestion is used in this connerion.
 -This is the trae meaning of the statement in Cat. iii. $1^{\circ} 10$ bras irropou

 quoted es equiralent to the Dictwm de Omni it Nullo. Cf. infra, c. xiv. p. 275 n.

 - But there are concrete thingo denominated from prodicates in rome other category than that of rabatance; e. g. a threahold in a concrete thing, bat in calling it a threabold I do not give its subatance: to do that, I ahould have to any that it whe stone. It is a threahold becanse it is a atone in - cartain eitwation.

[^17]: ${ }^{1}$ As a mattor of fact, however, the category of relation is not equally ezoluded by the others; and Xenoarates is said to have reduced them all to Babotance and Belation. In doing this he wonld not have effected a real implification, any more than if they were all redoced to Being ; for time, plece, action, \& $c_{\text {. }}$, all involve ementinlly different hinds of relation; and mere relation, which is not any deflnite tind of relation, is almost as barren a conception an mere being. Aristotle probably erectod relational predicates into a reparate class because they appear to tell us leas than others what a aubject in 'gix feet high' would be in the category of noasp: 'taller than his neighbour' in that of wpor ri ; it give more information about what a man is to eay that he in aix feet high, than that he in taller then his neighbour. The latter predicato may change when hin neighboar changes; the former can only change by a change in the man himself. The former involve relation aleo; bot the latter is more plainly and purely relational.

[^18]: ${ }^{\prime}$ Cf. Ar. Met. A. vii, and Apelt, Beitrdge sur Geschichfe der griechischen Philonophie, III. Dis Kategoricendehre des Arietoteles. In the expremion yirn rè sarmpptier, 'hinds of predicate,' earmpapia refers no doubt to the predicates of thingo, these predicates falling under the kinds enumersted, not to the heads or most general predicates under which these fall. Some interpreters have therefore held that the concrete individual is not in any cytegory cince it is naver properly a predicate (cf. Cat. v. gag6 ánd miv
 what the whole doctrine of that treative impliea, that the concrete individual is in the category of aubotance; it in cortainly one of the 'Kinds of being': The account in the text eccordingly followe the implications of the expremion xim rivp 8orwy in this point of discrepancy between the two.

[^19]: 'The former was maid to maintain the erintence of wniomalia ante swm, the latter of unisersalia in re: where the res is a concrete individual.
 ${ }^{1}$ Cf. Ar. Phye. a. vii. 101" 8-12.

[^20]:

 - In the foregoing criticiom I am particularly indebted to lectures of Profeneor Cook Wilson.

[^21]: ${ }^{1}$ Cf. Met. M. viii. 1034° 5-8; and v. Bonits, Index Arist. a. o. vin, 788e 52-58.
 one cannot really support any statement on the point except by reference to his whole discanaion.

[^22]: 'If is to be ohaerved that the prodicate of the xame pmponition may determine its subject in more than one category. In the proposition - The other disciple did outron Peter the predicate is in the cumpory of time, for the past in a time and the event is referred to the past: und of action, for running is an activity : and of relation, for faster than Puter" is a relation. But of course, if wre distinguisis theme different elenurnts in the preatiate, we can refer them. considered separately, to differen: categories. ${ }^{3}$ It is not necesary, however, to hold that Aristotle's int of eategories is complete.

[^23]: ${ }^{2}=$ flret and second substance.
 I It is not meant that collective terms are in the category of State.

 - Except as terms in a derivative category involve terms in those from which it is derived.

[^24]: ${ }^{1}$ To use a phrase of Mr. F. H. Bradley's, it is the 'what' and not the "that " of things which we have to consider.

[^25]: ${ }^{1}$ Cf.e. g. J. Grote, Erploratio Philosophies, Pt. I, p.60-a work and by an author lem known than they deserve to be; the expressions 'knowledge of acquaintance' and 'knowledge about ' are borrowed thence.

[^26]: ${ }^{1}$ Concepta do not necemarily realize thin last requirement; but whereas the indiridual cannot be completely known, a concept might be underatood completely.

 Or doee it (as come have beld) exist apart at once from particular thinge and from our minde?

 - Supra, p. 41.

[^27]: ${ }^{1}$ This does not of conrse mean inaide our akulls.
 T The word thing here is ased first of the individual, the arbject of predication, then of the nnivernal, the character predicated. It hae been ueed already in both these mansee. The English idiom allows both nees-we mey say, for example, 'sbout that thing I know nothing'; and it may be worth while to use the word clovely together in both senees, in order to direct notice to the ambiguity.

[^28]: ${ }^{2}$ But cf p. 62, n. 1, inf. The Porphyrian list of predicables will be considered later.
 ${ }^{3}$ And therefore, of conra, neither of anything of which the other cannot be predicated.
 "Only if it is a predicate which from its nature can belong to no more than one individual, ase.g. the attribrtee of God.

[^29]: 'The subject being, it must be remombered, an 'universal', not an individual. I cannot apeak of yelping as an attribute common to Tray, but I can rpeak of it as an attribute common to the dog-i. e. belonging to the dog in overy inatance. Aristotle cometimes spoke of an attribute peculiar to an individual, and not to a kind or aniversal, as a property ; and aleo of attributes peculiar to ane out of a certain definite number of kinds, and therefore serving to diatinguich it from them (though found perhapa again ontaide their namber) as relatively properties; thus it is a property of man relatively to any quadruped to go on two lege; bat 40 aleo does a bird. He reoogrized that this vee of the term 'property' whe not the same as that given in the text, and not (in his view) so proper a ase. Cf. Top. c. i.
 ${ }^{3}$ Cf. Ar. Top. a. v. $102^{\text {h }} 4$ 14. Cf. Top. 6. i.

[^30]: Ar. Top. a. v. $102^{\mathrm{b}} 4$.

 - Coincident is really a better tranalation of oumpepinuos than accident.

[^31]: ${ }^{1}$ The illastration of this forms a conniderable part of what is called Indactive Logic; we shall find that many connexions are inductively eatablished whose necemity remains anconceived.

[^32]: ${ }^{1}$ So far as a cow is a body, and only a body can be knocked down, it must be allowed that the nature of a cow contributes something to the accident; but the mecond eentence will and without qualification.
 ${ }^{2}$ It in neceenary to my of the subject as ouch, in order to keep in view that it is not the individual, bat the unbject as momething of a kind, sbout which wo eat whether ite natare containg in any degree the ground of the predicate. To be knocked down by a looomotive may be an accident, as regardes cow es ach, i.e. eccow; but it would be absurd to any that the particalar cow contribated nothing to the accident, since it could not have been znocked down if it had not been there.

[^33]: ${ }^{1}$ e. g. Mill, Iogic, I. viii. 5.

 - On^{\prime} ' connotation' cf. infra, c. vi.

 That the parts of a defnition are one is a thing on which Aristotle froquently inaiste. and ange that the main problem about definition is to ahow how that can be. Cf. e. g. Met. Z. хii, H. vi.

[^34]: ${ }^{1}$ Though the relation of a species to individuals is not the same with that of genus to species in all respects, yet what is said here upon the vice of calling the genus class in which species are included applies equally to the habit of calling the species a ales including individuals.

[^35]: 'i. e. the notion which the phrsee' to be included in a class' must bear in logio, if it is to be used in any applicable nonse at all. But oven a clane at achool is not a chance collection, but a collection of boys aupposed to share the same level of attainments.

[^36]: ${ }^{1}$ Cf. infra, c. v. p. 101.

[^37]: ${ }^{1}$ Aristotle woold exprem this by maging that ed λ 入upor may be rorpiferor, but rd $x^{\text {nepiē }}$ ivas is not ro rurpayimp ilsa-the green is equare, but greenness is not aquarenew; wheress triangalarity is threesided-rectilinesrAgurehood.

[^38]: ' v. Essay, Bk. III. c. iii. § 15.

[^39]: ${ }^{1}$ Yet where there are alternative modes of conetracting a figure (e. \boldsymbol{g}. an ellipae) it will be arbitrary which of them wo eolect to define it by; we can only any that the dofinition mont enable us to construct the figure.

[^40]: ${ }^{1}$ This mey seem incomaistent with the occurrence of the ao-alled 'allotropic forms of elements; but $2 a^{2}$ matter of fact, tho speculatione as to the arrangement of the stoms ind a molecule, to which the phonomens of allotropy have givem rise, confirm the remark in the tart, it is found necemery to acconnt for the divernity of properties in the allotropic forms by apporing that atoms indiatinguinhable in their own nature are capable of divere combinations; it is not the elementary manance, but the combination of atoms of the elementary subetance, to which the propertiee are now attributed; and that combination is not supposed the same in the allotropic forme, though the elementary subatance is.

[^41]: ${ }^{2}$ There is a suggestion in Aristotle's Topics of this point of view, for he allow that toun may mean a peculiarity that distingriehes an individual from othere; cf. the pessage quoted, p. 87, n. 1 supra and e. i. 129e 8-5. But his doctrine as a wholo implies that the sabject term is general.

 - In technical language, what is an infime opecies and what a specien mbalterna; it wes mid that a epecien subalterna ' preedicatar de differentibas opecio', an infma apeciea 'de differentibus namero tantam'. But it is clear that this does not help ne to solve the problem: how are we to dotermine whether men differ in namber only end not in kind ? It in no easier than to determine whether man or Zuln is the infima species; being in fact the ame problem rertated. Looked at from the other aide, the epecien enbalterne can of courne be called the gones ouballernum: cf. Crackenthorpe's Lagic, BEL L c. iv.

[^42]: 'Cf. Ar. Top. 6. v. 142b 22-29. But properties, according to Arintotle ($\Delta \mathrm{n}$. Poat. β. x), are defined by opecifying the wabjects in which they inhere, and the canese of their inherence in their subjecte.

[^43]: ${ }^{1}$ In Logic, if Divition is spoken of without any qualification, Logical Divicion is meant; though there are other operations of thought, to be mentioned later, to which the name Division is also spplied.

[^44]: ${ }^{1}$ Perhepe orchards (if they masy be beld to include all ground uned for raising fruit from permanent stoons) thould be divided according as they

[^45]: grow buah-fruit, tree-fruit, or bines ; and bine-orchardes might be subdivided into hop-gurds and vinejarde. Even then it in not clear where atrawberrygerdens would come. Such ere the practical difficultien of making a perfeot division. In the text nomething has been mecrifoed to compendiousneses, eleo nurnery-grounds, brick-fielda, and other rarieties of land dirtinguiahed acoording to ume would need to be included,

[^46]: ${ }^{1}$ Cf. S. H. Mellone, Introductory Text-book of Logic, c. vi. § 10, who points out that although divicion by dichotomy 'has been adopted by the medineval and formal logicians becsuse it appean to provide s theory of dirinion which does not make the procen depend entirely on the matter of our knowledge. as classification does', yet this sppearnce is illusory. I know on formal grounde that of any genus x the species either are or are not charscterized by any attribute a; but I cannot therefore divide x into the two apecies a and mot-n, cince in fact a may be an attribate never found in the genna at all. Every circle must be either rectilinear or not; but there are not two species of circle, the rectilinear and the non-rectilinear.

[^47]: 1 Thus in the Ardor Porphyriana the enumention of the irrona Socrates, Pleto, ac., in the inflms species man is no part of the logical division. Cf.

 individals aro meant auch things an are conatitated ach by peouliarities, the precise collection of which could never be the mme in any second particular; for the peculiaritios of Socrates oould never occur identically is any other particular individual.)

[^48]: ${ }^{1}$ Principtet of Science, c. xx. p. 689, 2nd ed.

[^49]: ${ }^{1}$ Phys. d. iii 2100 17-19. Cf. p. 118, eupra.

 - I do not winh to imply that wo may not 'intend' the mme by a term when it is sabject of a proponition, as when it is prodicate. But as in the subject the extension may be more prominent than the intention, while the predicate is alwaye undentood primarily in intencion, the expremion in the tert in leas ambipuous than if I mid ' What we mean by it in 4 proposition:. Cf. infra, c. ix.
 ${ }^{3}$ For another use of. p. 128 mpg , infra.

[^50]: ' Cr. p. 60, ampra
 2 And therefore the introduction of differentive into a division which are not differentiee of those before them is not rord rd bofbs, ef. oupra, p. 116. though they may atill be such of which only the genus from which we itarted is susceptible.

[^51]: ${ }^{1}$ There are, however, eminent names on the other vide, e.g. Mr. F. H. Bradley, Prof. Bomanquet, and R. L. Nettleahip. Cf. especially section xi of the 'Lectures on Logic' in The Philocophical Remaine of R. L. Netlieahip.

[^52]: ${ }^{1}$ Philowophical Remaine, i. p. 220. The italice are mine.
 ${ }^{2}$ Plat. Men. 71 D-72 D ; Ar. Pol. a. $\mathbf{~} \mathbf{i i i i}$. 1280 20-28.

[^53]: Bradley's Logio, p. 158

 - If intention and extension varied inversely, and by extonsion were meant the various individualn, then the intention of dodo ahould become infinite when the species became extibct. Perhape it might bo replied that pat es well as present individuals are included in the extemaion; bat if there never has boen nor can be a body moving freely in spece, that term at leant ehould have an inflnito intension.

[^54]: ${ }^{1}$ Mill moans that in the case of such terme as these, the sohoolmen spoke of attribute being connoted; but not that his use of the word commote conforme generally with that of the achoolmen : cf. infra, pp. 140-142.
 ${ }^{2}$ Mill ingtances 'slownem in a horse' as an attribute denoted by the word 'fault'. It is clear that if 'farlt' is connotative, 'virtue' should not have been given as an example of a non-connotative name. The italics in this quotation are his.

[^55]: ${ }^{1}$ i. a one of which we do not dirtingaigh and name sabordinate apecien

[^56]: ${ }^{1}$ I use the word attribute becanse Mill uses it; bat it inclodes ruch complex 'attribates' as a political conatitation. And what is maid in this paragraph is trie as wall of conareto termes long as they are genoral.

[^57]: ${ }^{1}$ The case of derivative names is, of course, different.
 ' Articulate soanda having eignification by convention.'-de Interp. ii. 16019.

[^58]: ' Cf. Prof. Bonanquet, Eematiols of Logic, Lect. V. § 6

[^59]: ${ }^{1}$ Vory often the form even of a proper name gives e clue to the nature or mationality or cex of the object denoted; and surnameo, so far ta they denote the members of one family, are not altogother equivocal. Every one known too how proper games come to ecquire a general meaning: Caciar is a familiar inatance; and we have all heard of a Daniel come to judgement, and that Capuam Bannibali Cannas fuises. The reador will enaly allow for all such considerations, none of which support the riew impogned in the text; but cs a proper name may be used withont any anch soquired aignifoation, the quetion has been argued independently of them.

[^60]: ${ }^{1}$ i.e to nee J. 8. Mill's terma, it denotea 'id pro quo rupponit', and connotes 'id quod appellet'. For appellatio cf. Prentl, vol. III. xvi. $\delta 9$ ('propietas cecundum quam significatum termini potent dici de aliquo mediante hoe varbo "eat"). Cf. aleo ib. xiz 875.

 Occam means that, e. g., mow can be referred to as albw, but not as albedo.

[^61]: 'The reasoning which would make all exclamations imply a judgement was oxtended to actions by Wollaston, when in his Religion of Nature Dolineated be regarded all wrongdoing as a particular mode of telling - lie.

[^62]: ${ }^{1}$ C. B. Calverley, Lines on the Bt. John's Wood $\mathrm{Om}_{\text {mione. }}$

[^63]: 'Bome writers have used the notion of a 'universe of discourse' to exprees the foregoing contention. In the whole universe fact and fable, saragea und Roumean's conception of aragee alike have their place; but I can make atatemente which are true about Rouseau's conception which wonld be faleo about aaragee themselves. It is said that theee are different 'univerven' of diecourse; and that propositions which do not aesert the existence of anything in the material universe may asert it in some other. 'The royal dregon of Ching hee five olawn' - I do not affirm ite existence in the universe of soology, bat in that of Chinese heraldic design. Cf. p. 82, D. 1, owpre

[^64]: ${ }^{1}$ ii. 15 8-9, $5.2 \times 11-14$

 - It in trae that a cingular term may appear as predicate of a judgoment, m , for example, if wo any 'Tho groatent opic poet is Homer' or 'The frot man wn Adam '. But in sach a case Aristotle regards the predicate as only
 means that the concrete individual does not really qualify or belong to what figures as its subject, but that becanse theme two come together, or becanes it befalls Homer to be the greatest opic poet, and Adam to have bean the firt man, therofore you can eay that one is the other, a you can aleo say that a grammarian is a murician when the two characters coincide in one individual, thongh 'musician' is not what 'being a grammarian ' is, any more than Homer is what baing the greateat opic poet is, or Adam what boing the firat man is. In fact, when wo enanciato euch judgemente a theos, we cannot help at the eame time thinting of the predicate as qualifed by what figures as arbject.

[^65]: ${ }^{1}$ The view that Reality is the oltimate metaphyrical anbject of judgement is of conrse familiar to all readers of Mr. F. H. Bradley's or Profemor Bomanquet's logical work.
 i.e. the logical mobject.

 - Bigwart has pointed out that the movement of thought in a judgement is different for a apeaker commanicating informstion and for his hearer. The speaker knows the whole fact, when he atarte putting forward one aspect of it in onuncisting the subject, and sapplementa it with the other by adding the predicate: if I say 'This book took a long time to write', the whole fact is prement to my mind in its onity before I begin epenking. To the hearer I present s subjeot of thought, 'this book' which awaite mpplementation: to him the predicate comee new information, which he has now to combine with the concept of the mbject hitherto formed by him. The jodgement in for him an act of ayatheais firot, and in retrospect, when ho bee completed it, of analyvis ; to the speaker it is an act of analyis firat, and in retroepect, when he has comploted it, a ayntheain by which he recovers the whole fact from which ho ctarted. V. Logic, § 5. 1 .

[^66]: ${ }^{1}$ The Aristotalian divinion (or rather Platonic-for it occare in Plato's Politicus) of political conetitutions is another oramplo in which differences not really quantitative have been presented under a quantitative form. Δ monarchy, an aristocracy, and a domocracy, though asid to diffor accordIng as power is in the hande of one man, of the fow, or of the many, really differ, as Ariatotic himself pointed ont, in quality or kind. It must bo added that Ariatotle does not put formard any puroly quantitative divinion of
 ré oi rett icaproo-siace of things some are univaral and some several), though in exponnding the syllogiem in the Prior Amelytice he often lays etrete on the quantitative implications of the contrant between univeral and particular jodgements.

[^67]: ${ }^{1} \Delta$ form lize 'Man is mortal' is clearly mivermel; but ropreeented in symbols it will not unsmbigronaly show its univerality.
 ${ }^{3}$ Cf. Bradley's Lagic, BIL I. c. i. $\$ \$ 8$ and 45. In the Table of Contents he expentr of 'collective' judgements in this sense.

[^68]: ${ }^{2}$ Cf. Bradley's Logic, Bk. L o. ii. $\oint 45$.

[^69]: ${ }^{1}$ Or, an mome logicians would add, none. Such a view maken the universel judgement, however, parely hypothetical: cf . Loibnis, Nownowne Eepaic, IV. Ii 14; Bradley, Logic, Bk. I. c. ii. $\$ 8$ 48-6; Boanquet, Loyic, vol i. pp. 278-292; a. aleo Bradley, dppearones and Realily, p. 861.

[^70]: ${ }^{1}$ It will be remembered that in discosaing the ertension and intension of terms, it wa pointed out how the extension of a term meant, properly, sabordinsto torms conceptaally distingaimhed, and not morely the inatancee of a kind regaried as only nomerically dintinct. Thas in the extension of the term ahiling would be incladed ahillinge of different die or standard finenes; ; but the extension of the Queen Victoris Jubileo ehilling would not be sabdivided. At the me time it wan recognised that we may fir our attiontion sither on the common character which all shillinge of that issue have, or on the multitode of different shillinge having that character: for thinge of a kind are a one in many, or a many in one-one form in many instances, many individuals in one type. When we think of tho many more than of the one, we may be eaid to consider the torm in ite extencion; when of the one more than of the many, in ite intencion. And indeed individuale of a kind, in order to be dirtingaiahed at all in thought, most be concoptaslly diatinguiahed: whether only by number (en we might think of the finst, second, third, ecc. shilling struck from the die) or by pleoe (as wo

[^71]:
 סorot, diA' irepor powos. (About each Form then there is much that it is, but an infnite amonnt that it is not.... When we speak of not being, we speak, it seems, not of what ie contrary to being but only of what is different.')

[^72]: ${ }^{1}$ Buch jodgements, with an infinite term (df. p. 30, ouprs) for predicate, have been called infinite jodgements.

 - For any given rock, them are alternatives: for rocks collectively, they are three forms which are all realized: cf. p. 168.

[^73]: ${ }^{1}$ This oracle ahows that the ootward or grammatical form of a judgement is no are guide to the meaning; for it may be tranalated 'Croenas will croen the Halys and rain e great power, in which case it becomen categorical : the two tranalation are clearly different, though the eame Greek line covers both sensea.
 ${ }^{1}$ Cf. Mansel, Prolegomena Lagica, pp. 282, 251.

[^74]: ${ }^{1}$ Logic, Bk. I. c. ii. § 50 : cf. § 52.
 The reader must not suppose that these paragraphs deal at all complotely with the probleme raised by the hypothetical form of judgement. Nothing, for example, has been said about the quantity of hypothetical judge mente. It hea been urged by some that they are all univeral ; and doubtlose they imply an universal connexion comewhere. Yet they can clearly be made about individuals.

[^75]: ' This might be equslly expressed 'He either fcars his fate too mach. or denerves little': indeed in sense the alternative predicates are predicated of the came oubject, not (as in the proposition Either Tacitus was a slandever or Tiberius a villain) of different aubjecta. This afforde another example of the fact that the logical character of a judgement cennot almaga be inferred from the grammatical form of the proposition.

[^76]: ${ }^{3}$ Of course there is a digjunction in the facts, in the former case as well, so far as that a jear muat be either the 429th or the 427th or come olber number, from any point of time whence we choose to begin our reckoning:
 ${ }^{3}$ For the fuller treatment of this form of judgement aleo the reader is referred to more advanced worka.

[^77]: ${ }^{1}$ Except so far as in come subjecta, like arithmetic, a judgement is nearly alwaye made with consciouspes of its necemity: cf. infra, p. 175. Even here however I might eay, before I had made the calculation, that 87598 may be a equare number.

 - For the sake of brevity, I shall not throughout conoider negative ae well as affirmative judgements. It should be noted that the problematic affirmative ' X may be F ' is not contradioted by the problematic negative ' X may not be Y ', bot by the apodeictic ' X cannot be Y ': and aimilarly the problematic negative by the spodeictic affirmative.

[^78]: Soph. 259 z. ('All speech vanishes altogether if each thing be severed from overything else.')

[^79]: ${ }^{1}$ I have tranalated cognoscendi by 'acknowledging', bocanes in the full sence of knowledge I do not know a fact which I do not see in ite own nature to be necemary.

[^80]: ${ }^{1}$ We may call the necesaity of a judgement, which wo see to follow from certain grounda, bnt whowe grounds we cannot aftrm neceasarily, an hypothetical necesaity. The consequent of every hypothetical judgement is merted as bypothetically necemeary - if A is B, X is Y^{\prime} might be writton 'if A is B, X muat be Y '. When the grounde can be affirmed necesarily, then the judgement referred to them may be called spodeictically neceasary. It ahould, however, be noted that in the bypothetical judgement 'if A is B, \boldsymbol{X} is Y^{\prime}, we may or may not see that the consequent is involved in the condition; the connexion may be a bare fact for us, or one that we see to be necemary: and necemary, either immediately, or on further and anagnablo grounda.
 No truth is isolated: and there in none (not even such a trath a a $2 \times 2-4$) which would atill be equally true if all other thinge per imposeribits were different (e.g. if $2+2=5$ and $2 \times 8=7$). So far, no judgement is unmediated, or immediately neceseary. But there are judgementa whoee

[^81]: nocencty is meen in a particular case, as wo eee that 2×2 murt be 4 in a particular connting, though it is not seen to be anconnected with all other judgementa, but rather to be bound ap with other. And the matter of fact in which we find necemity might be something much more complex $-\underset{\sim}{a}$ far bigger ayatem - than the numerical relations of 2×2.

 Almont all; for e few judgements, such as formules for the finding of prime numbers, have been believed to be aniveral, and turned out to breat down for certain ralues. These were not apodeictic. If it had been seen that the formula must gield a prime for any ralae, it could not have broken down.

[^82]: ${ }^{1}$ There are other riews of haman freedom which make the futare acts of men as certain in themealves as any other.

[^83]: ${ }^{1}$ In this sonse, the region of concrete facts, where such ever-ahifting combinations are found, is sometimes called 'contingent' matter, as opposed to the 'neceasary matter' e.g. of mathematics: cf. p. 175, oupre.

[^84]: ${ }^{1}$ e.f.'A man msy all at every public-honse from John o' Groath to Land's End.'

[^85]: ${ }^{1}$ To say that an ovent is nncertain of coune often meane only that we are ancertain aboat it.

[^86]: ${ }^{1}$ Hence we cannot accept such a definition as Aldrich offers of modality: 'Modalis, quee oum Modo, h. e. vocabalo exprimente quo modo praedicatum inait subiecto.' Artis Logican Rudimenta, c. ii. § 2.1 (Mancol's ith ed., p. 47).

[^87]: ${ }^{1}$ Kritik of Pure Reamon, E.T. (Meiklejohn), p. 7.

 - In opealing of the connerion between the predicate and mbject an cogitated throngh identity, Kant means that the predicate concopt is identical with some part of the aubject concept: where it is cogitated without identity, the two concepte are quite dirtinct
 - Or ampliatioe.

[^88]: ${ }^{1}$ Synthetic of alementa, or analytic of a whole.
 ${ }^{3}$ Arbitrarily, not because there is no motive, but because there is no nocesity.

[^89]: ${ }^{1}$ Arbitrary becanes what we are defining is comething of our own institution, or becanse our so-called definition is a compromice of the natare explained pp. 85-88, awpra. In the atrict sense of definition, none is arbitrary : thinge are what they are.
 1.o. in Kantian lengrage, whether they are aynthetic a poweriori or a priori.

 In strictnes, of what would otherwise be the aubject: as the part excepted cannot be called part of the aubject of a judgement which exprealy does not epply to it.

[^90]: ${ }^{1}$ We have already meen, in discuaning the extenaion, or denotation, of terme, that confusion may arise between the relation of a generic concept to the more apecific concopta included under it and the relation of the univeral to the individaal. Bot in considering the distribation of terme, it is not alwaye necemary to bear in mind this diatinction. I may therefore my indifferently that a torm is uned with reference to its whole extension, or to all that it can denote, even if we reserve the latter expresion (denota. tion) to signify the individanas of which a term can be predicated.

[^91]: ' i.e denote anivocally: an equivocal tarm is to be regarded as a diferent term in each sense.
 T The proporition muat be taken to refer to European books and moveble type: the firt dated ermmplea being of 1454.

[^92]:

 (Aboperos, man, is an aniverial : whan I ay 'All men are animala ', I predicato of an univeral univernally; when I may' Some men are white ', I predicate of an univaral particularly, or in part. Aristotlo goea on to may, in the words quoted, that the predicate cannot be aimilarly talren nnivernuly (i.e not 'an an univernal", but 'in ite whole oxtension'\}. 'Bat in the case of the universal which is predicate, it is not true to predicate univeraslity; for no

[^93]: ${ }^{1}$ We might make them a present of certain forms which they appear to have overlooked. If the oxtencion of \boldsymbol{Y} be p, q, r, then ' $N_{0} X$ is any $\boldsymbol{Y}^{\text {' }}$ means ' No X is oither p or q or r '. But the parta of the extension are taken diajunctively: why ahould they not be taken together? Then we ahould have the forn ' No X in all Y '-meaning that no X is both p and q and r. So we might have 'Some X are not all Y '. It is true these formi are uneleas; and in that they, rosemble the affirmative forms 'All X are all Y ', and 'Some X are all Y '. But they have the adrantege over thoee of being trae. Cf. p. 204, e. 1 .

[^94]: ${ }^{1}$ Even when the predicate is known to be of the emence of the subject, we muat convert per accidens, if the predicate is the renus: e. g. 'all men aro animals' - 'some animals are men'. We cennot call enimal an accident of man, but we may an that it is an accident that an animal ahould be a man, in this sense, that the conditions necessary to the generation of an animal munt coincide with the apecial conditions necessary for the generation of a man, if the animal is to be s man. The expremion coincide is not strictly saitable (nor therefore can the relation of man to animal be atrictly called accidental), becane it is only in thought that the conditions necesary to the generation of an animal can be separated from the special condition neceasary to the generation of some particular speciea: there is no coincidence of independent eeries, as when one arries of eventa bringe a train to a point whither snother meries has brought a flood and wabed away the metale, and the reanlt is a 'railway accident'. Bat the umge is analogons.

 - Though cartain pernons on the Continent reem to believe otherwise.

[^95]: ${ }^{1}$ Jevons, in his Elementary Lesoone, calle it Immediato Inference by Privative Conception. Earlier writer dealt with it under the head of Equipollency of Propositions : of. Sanderson, II. 6 'Aequipollontis communiter sumpta est duaram propositionum, verbo tenng, quoquomodo digcrepantium omnimods in sensu conspiratio '.

[^96]: ${ }^{1}$ Contraposition hee not alwas been distingaished from convertion by negation: e. g. Wallis, II. 7.

[^97]: ${ }^{1}$ Cf. Bredley, loc. cit.

[^98]: ${ }^{1}$ Cf. infro, pp. 284, 257.

[^99]: ${ }^{2}$ Thomson, Lave of Thought, \& 55.

[^100]: 1. Marchall's Principlan of Economice, BL. IV. c. ix. \$4.
[^101]: ${ }^{1}$ Anal. Pri. a. i. 24b 18: of Top. a. i. $100^{\circ} 25$, where the ame definition recars, with the subatitution of did rôv rauives for rị raira alma.

 - 'Putting two and two together' is often a procem which leade people to conclasions of a highly conjectural charscter. In such cases, their reasoning doee not come under the Aristotelian defnition: for it is erpremly stated

 - Bradley's Logic, Bk. II. Pt. I. o. iv. \$ 10, et alioi.

 ग03 4

[^102]: 'i e. in a wider senee than it is ased in when the attributer of anything are distinguinhed from its substance or kind.

[^103]: ' By a domain here is meant a certain order or ayetem of relations, of a single hind: a we might call apace a domsin in which all material thinga are related, and time a domain in which all evente are related. The domain of aubject and attribute is far leas uniled than that of apece and time. A thing related to one other thing in apace, or an event related to one othor evont in time, is necessarily related in those ways to all other. But a term related to a accond torm in the domsin of subject and attributo is thereby necemarily rolated in that way only to thove farther torma, if any. to which the second is related in that manner (and not necesearily to all of them). The domain of aubject and attribate is, as it wera, a little sydem of relations ombrecing group after group of terms, but not necessarily connecting any of the termas of separate groupa; wheras time and space. Which connect group after group of events or objects, necomarily connect alco any two members of any two groupe. The word category might have been employed instesd of domain. in the Kantian sense of a principle of symhesis or rolation. But it whe employed on the leat page in the Ariatotelian sense of a kind of preticate as deterwined by the principle (or principles) of aywherie emplowed, and has been generally employed in the text in that seane; and it would have introdaced confacion either to employ it without notice in a different eense, or to interrapt the present aubject in order to point out the distinction between them.

[^104]: ${ }^{1}$ Not necessarily, becaume, as we shall soe, from two false premines may follpw a true conclasion. Bat a conclasion correctly drawn from faleo Phomimeq. implies ignornnce in the remeoner, though not igrorance of remonlpar:!

[^105]: ${ }^{1}$ Or rather, to be proved or dieprored: it was a thenia, which might form the rubject of debete between two parties; one of them, the oppagner, theld out'to the other, the upholder, various propositiona, which he anked him to admit, in hope to obtain admigions wherefrom there followed ayllogistically a conclasion contradictory of the themis of the upholder.

 - Theee expremions are baeed apon what occurs in the firn figure, where the major term in commonly of greator extension than the middle, and the middle than the minor: and the major premien, as compared with the minor, is a more general proposition. But being tranaferred to the other figuret, in which thoy cannot any longer be so interpreted, they mut be axplained genarilly es in the taxt: of infra, pp. 235 seq., where this is oxplained at length.

[^106]: ${ }^{1}$ Onleas a definite particular colour is meant.
 ${ }^{2}$ Terme, though thoy be general concrete tarma, like atateman or fiabmonger, may yet expresm only a special or 'abatract' aspect of the natare

[^107]: proper oubject of which to predicate attributes was in bis view oubrtance, and of which to predicate any genus, ite species or the saveral axamples of these. Where this order was inverted, the judgement did not state what ita subject was in its own nature, but to what it wes incident. Doubtloes this is often what wo want to state, as in such a judgement as "Tho composer whe Handel '; but in ayllogiom a term predicated of that to which another is rubject is not naturally made the anbject whereof to affirm or deny this last.

[^108]: 1 With actual terms, an onivernal proposition is often more natarally expresed withoat the use of the mark of quantity, $\Delta \|$ men or No colours. Where this is so, and the content makes it plain that the proposition is sonsm

[^109]: 'The earlient known work in which thene mood-names are found is by William Shyreewood (born in Durham, otadent in Oxford, tanght at Paris, died as Chancellor of Lincoln, 1249; v. Prantl, iii. 10, Abech. rvii. Anm. 29): 'Modi antem et eorum redactiones retinentar his veraibus-Berbars, \&\&.' (ib. Anm. 52). They poosed into general currency through the Summulae Logicales of Petrus Eispenas, efterwards Yope John XXI, who was long believed to be the author of them (c. 1226-1277), antil Prantl found them in the unpubliahed M8. of Willinm Shyreawood in the Library of Paris (vol. ii. p. 264). A somewhet similer memoria technica, but lem ingenious, because it embodiee only the form of the moode, and not the rulea for the

[^110]: ${ }^{2}$ The indirect moods of the firat are the mame as the moode of the foorth figure : cf. note, pp. 257-262, infra.

[^111]: ${ }^{1}$ Conversely, the middle term may be really the aame, though verbally different, in the two premisees; and then there is asyllogiam, e.g. Sauriant art eertebrate, and the crocodite is a lizard \therefore The crocodile ie wertabrata.

[^112]: ${ }^{1}$ This is cometimes expremed an follows: though the expression is apt to be misleading (cf. pp. 249, 250). It in eaid that the promisees asert agreement (or disagreement, if negative) between the major or minor, and the middle, terms ; that if the middle term be andistributed in both premimes, the major and minor may reapectivaly agree (or agree and digegreo) with a different part of its extention; and therefore we cannot tell that they agree (or dimgree) with one another. The vogue of anch langageg in perhapa to be traced to Locke: cf. e. g. Eseay, IV. xvii 4: 'It is by virtue of the perceived agreement of the intermediate ides with the extremea that the extromes are concluded to agree'; cf. albo Bacon, Noo. Org., Distrib. Operis, 'tametai enim nemini dubium ease posait quin, quas in medio termino conveniant, of ot inter se conveniant,' arc.

[^113]: ${ }^{1}$ For this depends on the distribation of terms in the premisees, which varies according to the figure: whether the conclusion is affrmative or negative depende on whether both promisees are afflrmetive or not, a point which can bo determined without anking where the middle term stands, i.e. what the figure is
 ${ }^{2}$ It is hardly necousery to give instances to ahow that these combinations of premimes are impomible: but a beginner ahould invent instances for himeolf, in order to beoome familiar with the meaning of the aymbols.

[^114]: ' e.f. from the premises Contemporary evidence is of great historical ralue, Tradition is nos (or Some inceriptions are not) contemporary evidence, it cannot be infarred that Tradition is not (or Some inecriptions are not) of great historical nalue ($A E, A O$): from the premimes Some pointed arches are (or are not) foum centrad, AI Gothic arches are pointed, it cannot be inferred that $\mathbf{A l l}$ Gofhic archey are (or are not) foumcentred (IA, OA).

[^115]: ${ }^{1}$ Prantl, i 570-574.

 - And by othera, e. g. Lambert of Aaxerre, thirteenth centary med, quoted Prantl, iii 80, Δ bechn. xvii. Anm. 121.

 riv drriorpodic ovג means 'when there is no natural, direct, or proper afllogism or conclacion'.

[^116]: mipor, ol $\mu \mathrm{i}$
 ȧriorpiфousu, it di oveptrunt oin dertorpiфn. What Aristotle mays here would cover the Bubaltern Moods (cf. p. 262, infru); but he had not got them in his mind; he would not have regarded them an drawing a different, but part of the mame, concluaion.

[^117]:

[^118]: ${ }^{1}$ It is poscible to velidate the moods Baroco and Bocardo by the direct method, if we employ the processes of permatation, and converion by negation. From Baroco we obtain a syllogism in Ferio, thna: Baroco, All P is M, Some S is not $M \therefore$ Some S in not P : Fario, No not- M is P. Some S is not $M . \therefore$ Some S is not P; from Bocardo we obtain a syllogiam in Darii : Hocardo, Some M is not P, All M is $S \therefore$ Some S is not P : Darii, $A l l \mid M$ in S, Some not-P is $M \therefore$ Some not- P is $S \therefore$ Some S is not P. Names have been given to the two moods in place of Beroco and Bocardo, by logicians who considered these methode of reduction to be prefersble, in which the procemes to be followed are indicated. These procesess havo been relegated to a note, and the names anppresed, because there is no parpose in bardening what may be called the mechanical part of the theory of ayllogiom with any freah refinementa. 'Barbara Celarent' may be retained and oxplained, on historical grounds; we need not add to it. On the other hend, the queation es to whether the imperfect moods need relideting, and if 10 , what is the post proper way of doing it, will be discussed in the next camporar
 :Though for Fig. 4 the ryllogiam which employe the contradictory of the original conclumion as one of ita premimes will yield a conclution contradicting the converse of one of the original promisses.

[^119]: 'I have quoted Zabarells's formulation of the Dictum de Omni, de Quarta Figura Syllogiemi Liber, Opera Iogica, Coloniae, 1597, p. 115 A. The words in equare bracketa are not his. There are numerous rariants of no particular importance. Crackenthorpe (III. 16, p. 202 in ed. of 1670) gives 'Quidquid affrmatur (n. negatar) univermaliter de aliquo, idem affirmatur (a. negaitur) etiam do omni de quo illud praedicatur? This form seems (ea Ransel

[^120]: ${ }^{1}$ Cf., e. g., Mill's Logic, II. c. uii. Mill's own wey of avoiding the charge is not very succemful.

 - Where general rules are mode by men, as in the case of lams, we can of course know them, in adrance of any knowledge about the particular acts

[^121]: either of them singly; all syllogiami in a sense preruppose it in the premissee taken together (though they do not presuppose a knowledge of it).
 ' The doctrine of the Posterior Analytics must in this reapect be taken as overriding the more formal and external treatment of ayllogim in the Prior.

[^122]: ${ }^{1}$ But we cannot give this reaeon for the equality of the units.
 ${ }^{1}$ Anal. Poat. a. xiv. 790 17. The rest of the chaptor is by no means all of it true.

[^123]: ${ }^{2}$ Or the exclasion of A as such from B as such, if the ayllogiam is negative.

[^124]: ${ }^{1}$ Cf. Heprel's Logic, § 185. E.T., p. 296: 'There in no more striking mark of the formalism and decay of Logic than the farourito category of the "mark"."

 - J. B. Mill (Logic, II. ii 4 and note) atrangely mixinterprets the marim Nots motas est nota rai ipoise. He understanda by ree ipeo the major term, and by note the minor; so that the whole, instend of meaning that what

[^125]: ${ }^{1}$ Cf. an article on ' What the Tortoise anid to Δ chilles ', by 'Lewis Casroll', in Mind, N. S. iv. 278 (April, 1885). It is obvious that the ralldity of the latter of these two ayllogirmg cannot require to be deduced from the principle which otands as major premise in the former. For if until that is done ite validity is doubtful, then the principle by which we are to eatabliah its validity is equally doubtful. Berides, what proves the validity of the former, or validating, oyllogiten ? The validity of a gyllogiem cannot be deduced from its oven major prewiss ; else the fact that all organiams are mortal would ahow that the syllogiom, of which that in the major premise is valid. If it be said that the validsting syllogism needs no proof of ita validity, the came can be maid of the ryllogism which it ralidates. But if it neede a proof, the ayllogism which validates if will need validating by another, and so ad infinifum. No form of inference can have ite validity quaranteed by another inference of the anme form with iteolf; for we shonld be involved at once in an inflite procesa
 ${ }^{2}$ Cf. Ar. Poat. An. B. vi. 92"11-16.
 ${ }^{2}$ e. g. Locke, Eseay, IV. xvi. 4.

[^126]: ${ }^{1}$ Cf. ouprs, p. 878

[^127]: ${ }^{1}$ e.g. in this gyllogiam in Peatino, 'No fragrant flowers are mearlot, Bome geraniama are ecarlet. \therefore Some geraniuma are not fragrant,' I think a man wonld probably subetitate in thought for the major its converse, 'No scarlet flowers are fragrant, and argue to himalf in Ferio. With auch a premise. where there is no priority as between the two accidenta, fragrant and coarlit, that is the more natare way to srgue. But this does not chow that all -yllogiama in Peatino ought to be thue treated.

 * Called by Arintotle direreyi cir ro didiveroo.

[^128]: ${ }^{1}$ It must not be forgotten that moat reasoning which explains facts through their caases is not ayllogistic at all ; bat if it is syllogistic, it will be in the flrit figure.

[^129]: ${ }^{\text {Hence }}$ the datement, frequently quoted from Iambert (Noucs Orponon, vol. ii. p. 189; Dianoiologits iv. $\$ 220$. Leiprig, 1764), that the second figare pointa us to the differences botween thinge: 'Die sweite Figur fohrt eaf den Unterschied der Dinge, and hebt dio Verwirrang in den Begrifon anf.'

[^130]: ${ }^{1}$ Cf. Bain's Logic, Dedwetion, p. 159 (od. 1870).

[^131]: ${ }^{1}$ It may be objected that it is only in some particular specimen that the coincidence of thees two charactera is ever actually realized, and thist therefore it is to a epecimen that wo must at bottom be reforring. Thie raises a queation that is not pecrliar to the third fgare. If I argue that the rhododendron is popular because it flowers brilliantly, it may be aid that this trath is only realized in particular shrube. The rolation of the univernal truth to partioular existence, here raised, is important; but it need not complicate the provent insue.
 ${ }^{1}$ Not alwaye, oven there; I may argue that all breeds of dog are domentionted, and some are anvage, and therefore mome domenticated breeds of animal aro sarge (Dimmig). Here I am apeating, and thinking, throughont not of individanl animals but of their kinde.

[^132]: ${ }^{1}$ This note may, of consea, be equally well regarded at a diecusaion of the indirect moods of the fint flyare. Bat if a new type of inference were involved in them, the erection of a fourth fgure would be juatified. As that is the queation under diecusion, it meome fairer to call them moode of the fourth figure at the outset.

[^133]: ${ }^{1}$ i.e. of Fapeamo and also Fresieon = Frisesomorum : v. Anal. Pri. a vii. 29-21-27.

 3 It woold complicate the illuatration too much to make the exception required by methylated apirite.

[^134]: ${ }^{1}$ This is the denial of s hypothetical judgement, but not iteelf hypothetical : being equivalent to meying 'It is not true that if', \&k.

[^135]: ${ }^{3}$ A namber of modern toxtbooks teech this doctrise For an older authority of. Zabarella, In Lib. Prior. Anal. Tabulas, p. 158, 'alllogiamua hypotheticus an valest necne cognobcitur per eive redactionem ad categoricum.' - Opers Logics, Coloniee, IS87.

[^136]: ${ }^{1}$ Had I written, for the case, all cases, the proporition would have been atill more absurd. But the contention ahould be examined in its atrongest form.

[^137]: ${ }^{1}$ The case of A is the case of B : the oxirting cane of A is the case of A : therefore the exiating cane of A is the caes of \dot{B}.
 ${ }^{1}$ It will be seen that in this minor premise not only is the moon 'subsumed' under the more general notion of a body rotating, \&c.: but

[^138]: ${ }^{1}$ The inference in a hypothetical argament might hence be called imomedicte; bat sach an exprestion would readily give rise to misunderatanding. It is immediate in the sence of having no trae middle term: and in this it difers from ayllogism ; it is aleo immediato in the nonse, that given the premiseen, nothing more is neoded in order that wo may see the necesity of the conclucion: and in this sense, ayllogiem, and indeed every otop of valid argument when fully etated, is immodiate. But it wes in yot another sense that the procemes of convertion, tc., were called immediate, and distingrished from oyllogism: vir that in them we passed from a single proposition to another inferred therofrom, without anything further being

[^139]: ${ }^{1}$ The argmonent may be valid even though the conclusion be false: the trath of the conclacion forther presuppotes that of the minor promien.

[^140]: ${ }^{1}$ It might be maid that we could give an unambiguons form to the argament by wriling it thus: ' A is either B only, or C only, or both B and C : it is B only \therefore it is neither C only, nor both B and C. But here there seems to be no inference; for if we already know that it is Bonly, we mus already know that it in not C. The inference resta npon the fnowledge that A is B, and that B and C are motoally oxclusive: if we aro doubtfal of the latter point, and only know that A is B, we cannot toll whether it is C or not : and this information is all that we have; we mand not subatituto for the minor premine " Δ is B^{\prime} \& different one, ' A is B only."

 - The anbenmption involved may be axpreased if we like in a eeparate

[^141]: 'scientific'); where it conid, the argement-an Aristotle recognives-in not really ralid; it may be true that perrona in a fever breathe rapidly, bat I cannot afely infer that a perion who breathes rapidly has fever (ib. 1857^{6} 19) ; there are, of conree, ay mptoms of diveese that are of doabtfol interpretation. The infimpun is mid to be a rhetorical demonstration, or rhetorical syllogiom (Rhes. a. i. $1855^{\circ} 6$, ii $1856^{\circ} 4$), becanse public apeaizer mate ase of the appeal to such probable premieen or sigan, and do not expect or provide more strictly demonatrative or acientific argaments. We might eay the mane of the enthymeme in the later cenve of the torm, in 20 far as it is not held necesary, except in the mort formal atatement of an argument, always to enunciate both premiesea and the concluaion. It in pomible that the later sense arose through mirinterprotation of the pamago in $\Delta \mathrm{mal}$. Pri.

 mean, that if I say ' Pittacus is generona, because he is ambitious', I only atate the sign : if I edd that the ambitions are generona, I make syllogism ; but this ayllogiam was implied all along, and is an intirnma becance of the character of the premimea, whether it be atated explicitly or only implied.
 ' This eremple in used in the Port Reyal Logic, Pt. III. c. riv.
 ' I am inclined to think it woald be foond that the major premiem in more

[^142]: frequently suppremed when the conclasion of the onthymeme is pat in the forefront, the minor when wo begin with a reason. If we begin with a reamon, we like to lay down a general principle.
 ${ }^{1}$ 'And this of Phocflides: The Lerians are bed men, not this one only and not that, but all of them except Procleas ; and he in a Lerian.'

 1. The torm enthymeme hae more commonly been applied to a ayllogism omitting one of the premivees, than to one omiting the concluaion. Sir W. Hamilton (Diecwasions, pp. 158-158) traces the antiquity of the non-Aristotelien use of the term. It goes back to the oldent of the commentatora,

 3n. Kansel's Aldrich, p. 97, note t: and Trendelenburg'a Elementa Logicen Aristotelicase, noto to 883 , citod by Mansel. The torm inxxipqua wis differently
 1820 16: it wis an amalt upon a ponition maintuined in diaputation by the respondent.

[^143]: ${ }^{1}$ So Minto taken it, Logic, Induction and Inductives, p. 224.

[^144]: ${ }^{1}$ The solution is easy unless we suppose that no Cretan ever apoke the trath; in which came the aitastion imagined contradicta the amomption which it makes.
 ${ }^{1}$ Cf. Lacian, Vit. Awct. $\$ 22$ (cited Mansel's Aldrich, p. 151).

[^145]: ${ }^{2}$ Some might maintain that it is never quite the aeme when the matter is different, any more than the nature of minn is quite the eame in any two individuals. I do not wiah to mbecribe to this viow; but even ite apholdere would admit that ench differencee may be negligible.

[^146]: t Though formally a true conclosion may be got from falee premisees, the ortor atill infects the mind, and will leed to s finse conclunion somewhere.

 - Cf. Logic, VL. i. and Autobiograpily, p. 285.

[^147]: ${ }^{1}$ Charnides 171 D.
 TThe popular antitheria between Dedactive snd Inductive Logio hes been so far avoided, and that deliberstely; we ahsll have to conader preeontly what the matme of the difference between deductive and inductive reasoning it; but it may be eaid at once thet it does not lie in wing the forms of inforence that sre commonly erpounded under the titles of Deductive and of Inductive Logic reppectively. For inductive reanoning unes form of inference with which tresties that would be oelled Deductive slweys deal; and trestines called Inductive diecus forms of inference which are oertainly deductive.

[^148]: ${ }^{1}$ Minto, Logic, Induction and Deductire, p. 248.

[^149]: ${ }^{1}$ Nes. Ory. I. 82

[^150]: ${ }^{1}$ Cf. Bagehot, Physice and Politica.
 e. Prantl, Geschichte der Logik, IIL. p. 8.

[^151]: ${ }^{1}$ Induction certainly starts in one eense, according to Ariatotle, with individuals; for it atarta with what we can percoive with the sencen, and only the individual asn be perceived: cf. e.g. An Poat. a. xviii 81b 5-9. But it may be eaid that what we apprehend in the individual is its character or type, and that it is to the indiridaal asesch and awch an individaal that we
 Aristotie describes a method of warahing for definitions-the example which he nees is meqaloquxia (magranimity)-in which the instances cited in aupport of the definition of myanoquxin are not cited an types at all. This has come traditionally to be called the method of obtaining definitione by induction; and the description of it seems beaed on thoee diecournes of Socrates to which Aristotle refers as imeneraoi λ óyos; but the term inay=y' does not occur in the pemage. Still in the argament from Example, or mapdoncyma, the instances appealed to is not cited as the specimen of a kind; and he calls this the rhetorical form of Indaction. Hence, though the statement in the tert is true, 0 far an concerns the proof by induction of the properties of nataral kinds (for in regard to that, Aristotlo's particulers are infimee opecies), it is difficult to maintain that he nover regards indaction as starting with individusin as such. How you are to tell what properties in a specimen are propertios of the apecies is a question which is dimerosed in the Topics; and certainly he would not have thought of proposing to prove that by a complete enameration. The apecies of a genas are limited in number, and can all be cited; but not so the indiridual members of a apecies. Cf. infra, PP. 356-857.

[^152]: - There are philonophers who would not agree with what has been said of the natare and grounda of oar assurance of the truth of mathematical principloa Some hold that they are only generalisations from experience, doriving their bigh degree of certitude from the great number and variety of the inetances in which they have been found to be true. This doctrine is maintained in a well-known parsage of Millis Logic, Bk. II. cc. v-vii, to whioh be refers in his Awlobiography as a crucial teat of his general philosophical position. For a partial exsmination of the paseage, crushing on far as it goes, see Jovons's Purt Logic and ohter Minor Works, pp. 204-221.

[^153]: ${ }^{1}$ I think this contrast is substantially true; though it is possible to bring many acientific inveatigationa to-day under one or other of the types of quertion which Aristotle easys we enquire into, yet looking to his exemples, one must confeas that (an is naturs) be put the problems of science to himself in a very different manner from that in which scientific men put

 - One science does often to some extent use the renulta of another. In particular, of coarse, all the other sciences reeolve all they can into terms of chomistry and physica. Yet looking (eay) to Physica, Chemistry, Phyoiology, and Political Economy, no one will deny that they murt continue to reat each in part on different principles, even if the later mentioned may bave to take note of some fecte whose erplanation involvee the principles of the earlier mentionel. Aristotls noted auch partial nae by one science of the reaults of another; though the atate of tho scioncesin his day provented

[^154]: ' rdros, loci, communes loci.

[^155]:
 ${ }^{3}$ e.g. Top. e. viii.

[^156]: ${ }^{1}$ It wes also given to Induction by simple enumeration-ie. to any attampt to prove a general proponition by merely citing a nomber of instances of ita truth ; but this is not is formally valid process.

[^157]: 'Therearemany very valaable romarks in Bacon's aocount of his 'Excloaiva' about the kind of instances which are of most evidential value (and he therofore calle them Prerogation Incances); but a diecnesion of them would hardly be relerant to the present argument.
 ${ }^{3}$ Nop. Org. I. 14.

[^158]: ${ }^{1}$ The second part of Jevons'a Pineiples of Science ought perhaps to have been included along with the four works mentioned above (cf. aloo Lotze' Logic, Bk. II. c. 7). Among contribatione on the pert of living writers to the criticism of Mill's doctrines (for the groat acceptance which his riews obtained bas made criticiem of him a prominent featore of ranch mbeequant writing on Induction) may be mentioned Bradley's Logic, Bk. II. Part iu. ce. 2 and 3 , and an excellent discussion in Professor Welton's Manmal of Lopie, vol. ii. $\$ 155$.

[^159]: ${ }^{1}$ Mill's Logic, III. iii. 8, concluding paragraph. Strictly epeaking. e single ingtance never is sufficient-if we had really to roly on it alone without help from conclanions alreedy drawn from other parts of our experience. Cf. Jevons, Pure Logic and other Minor Works, pp. 295-299; and also Lotze, Logic, § 252, 253.
 ? The third figare, when both premisses are singular propositions, may sonm to furnish an exception to this atatement, and it would hardly be asafficient answer to recall the fact that this is the inductive figare; for

[^160]: the queation is whether a syllogism can generslize, and it is hardly consistent with asying no, to add that it can only do so when ite charsoter is indoctive. But the statoment may ptand, because all conclacions in this figure are particular or contingent. We may aim at generalising-at finding a judgernent which is true universally; but we have failed, with auch premines, to do it.

[^161]: ${ }^{1}$ Troative, Of the Underatanding, Part III; and Enguiry coneerning Human Underatanding, \&\$ iv-viii.
 ${ }^{3}$ Logic, III. v. $6 . \quad{ }^{3}$ Ib. III. v. 3.

 - More precisely, when there is nothing preventing it: and by the notion of preventing. Mill presupposes the relation be is trying to explain; but if we are to aroid this petitio, we must interpret his statements as above.

[^162]: ${ }^{1}$ Cf. J. S. Mill's definition of Laws of Nature in the atrict sense as 'the foweat and cimpleat amamptions, which being granted, the whole existing order of nature would result' (Logic, III. iv. 1).

[^163]: ${ }^{1}$ Cf. a srii, infra; the non-reciprocating causal relations there discussed are all conditional

[^164]: 'Hence M. Poincare has recently asid that a physical law is a differential equation. Addrese on the Principles of Mathematical Phyevics, St. Lovis, U.SA, Sept, 1904: a the Momien, Jan. 1905, p. S.

[^165]: ${ }^{1}$ Cf. Poincaré, op, eit.

[^166]: ${ }^{1}$ The last ergument may be put in a way that will perhape to eome seem clearer as follows :

 1. An event which is equally comsistent with two hypothesen affords no ground for deciding between them.
 e. g. if A and B reop a common stock of boots, and each uses every pair indifferently, footprints that fit one of these pairs afford no ground for deciding whether \boldsymbol{A} or B hae pased that way.
 2. It is admitted by thoee who regard wniformity in nature asempirical, that antecedently to experience all isenes, to far at regularity and irregularity in the succesaion of evente are concerned, are equally probsble. By an ispue is meant a certain course of events, bowever long.
 3. These alternative isaces must be regarded as perfectly detached alter natives: i.e., antecedently to experience, the rejection of one imue would not give any groand for or againgt the rejection of any othor. To amame that it would is to asaume, antecedently to experience, the exintence of uch degree of uniformity as enables you to asy that if one apecific issue happens, snother must or cannot.
 4. That erente should occar with any epecifed degree of regularity down to the end of the year 2000 A.D., and with leen or no regularity, or in apparent conformity to different rulee, thenceforward, is one auch inene;
[^167]: i. a. one thing is called e cause on the ground of ite relation to another.

[^168]: ${ }^{1}$ It may be asid that an ovent of to-day mey be due partly to mome event that occurred a long time ago: for erample, s man may inherit a fortune on hie twents-first birthday in virtue of a will made before be was born. We chall see later that it is by no means always practically convenient to call the immediately preceding conditions the canea: and the remoter canoe may withont offence naurp the name. But the legatee becomes poneesed of his fortune because he has just attained the age of twenty-one to-day; and the will may be regarded as having initiated of perxintent legel poaition as regards the money; 00 that the rtatement in the text may be deemed sufficiently accurste in the content which it is intended to elncidste.

[^169]: ${ }^{1}$ I ase tho word phenomenon on acconnt of ite generality: an oent, lize the fall of a thonderbolt, may be called a (natural) phenomenon: or a thing, like the thanderbolt iteelf: or an attribute, lite the arlocity of its fall : or even a law, like gravitation. The word certainly does not mean in its current umge, as is nevertheless sometimes stated, anything that can be perceived by the eenses; it seems to be used to cover any particular thing. property, principle, or event which can be made matter of scientific invertigntion or aned in explaining. What is inventigated. It is convenient to have a comprehensive term of this hind, and the context will frequently indicate, 1 where neceeary, whether thing or property, event or principle, is meant.
 ${ }^{1}$ Cf. Porte, Sophialiei Elenchi, Appendiz D, p. 221.

[^170]: ${ }^{1}$ Logic, III. viii.
 ' a g, ib. § 8 init.

 - $\mathrm{Ib} . \$ 1$ inut.

[^171]: ${ }^{1}$ Mill's canon for the 'Joint Method' is by no means carefally worded (Zogic, III. riii. 4). It would be better if for 'the circumstance in which alone the two sets of instancee differ' we read 'the circumatance in which alone the second set of instances agrees to differ from the first set'. Note that Mill repreaents it as necesenry, under the terms of the Joint Mothod, to show of every other circumstance than that which is allegert is canee in the conclusion both that it is abeent in come instance where the phonomenon occnrs and that it is present in come instance where it does not. This is becsuse he develops it as an snawer to the objection, that althongh a circumstance b is sbsent in a particular instance of x there is no reseon why it should not canse x on another occasion. The difficultien created by the so-called Plurality of Causea will be considered lator. The point in the text here is, that it is quito posaible, and very common, to ahow that one circumstance is not the cause on one ground-sy that the phenomenon occurs without it, and another on another ground-ay that it occurs withont the phenomenon, and a third on a third ground-a that it is varisble while the phenomenon is conetant, all in the eme investigation.

[^172]: ${ }^{2}$ Of course this, like most maxime with regard to buman nature, is not an universal trath : what hind of mon hate thowe who have conforred a benefit on them woald be the next rabject for enquiry.

[^173]: ${ }^{1}$ Or, in another menes, illortrated in mort mathematical reasoning becanse the premiseen, without being more genoral than the conclasion, or giving the canse why it in true, are not besed upon an appeal to facte which might concoivaly have been otherwise: ef. p. 505, a. 2, infra.

[^174]: ${ }^{1}$ De Principiis atque Originibue, Ellia and Spedding's ed, III. p. 80.

[^175]: ${ }^{1}$ On there grounds of elimination Mill'g 'Inductive Methods' severally repose. The firnt is the foundation of his 'Method of Agreement', the second of his 'Method of Difference', the firat and eecond jointly of his 'Joint Method of Agreement and Difference', the third of his 'Mothod of Concomitant Variations', and the fourth of his 'Method of Reaidues'. All of them are quite general, and have been stated above in a why which only holde if in the caue we include everything necemary and nothing cuperfaona to the prodaction of the phenomenon in queation. The illustrations in the present chapter are not confined to that, the atrictent, sezse of case; ; but the important point involved will be considered later in Chapter mii, on Non-ruciprocating Causal Relations. Where the canse cought is a nonreciprocating casso, other prisciples call to be applied: a.g. we may my that ' Where the removal of one of a namber of conditiona is found to involve the comation of a phenomenon, though the other conditions may remain, but its reatoration is not found to involve the reatoration of the phenomenon in the abnence of thome other conditions, it may be called the cause of the phenomenon'. 'Cause ' here is clearly only a sine qua non, bat for varions reasons the indispensability of come particalar condition may be what we wish to sucertain. Lotse, in BL. II. a. vii. of his Lagic, hesded Unirwasl Inductions from Perreption, hae paid some attontion in \& 261 to the formulstion of principles of this kind, tating what degree of connexion between two olements C and E can be inforred from what kind of obervations with regerd to the circumetances of their occurrence. The eection is eminently worth consulting in referenoe to the nature of inductive reasoning; and tho principles in queation might all be called Topics of Canse, though some of them are doubtfal; just as Aristotle recognieed Topica which hold trae in application only for the moot pert. Hume too in Part III. $\oint \mathbf{x v}$. of his

[^176]: ${ }^{1}$ Cf. what Aristotle says of the asumption of the Law of Contradiction implied in all ryllogiems, An. Poat. a. xi. 77* 22-24.

 Mill, Logic, III. iii $\zeta 1$ med.

[^177]: ${ }^{1}$ i. e. special principles, or idnan dpxai Cf. supras p. 359.

[^178]: ${ }^{1}$ Mill deals with the subject of this chapter for the moet part in his Fourth Book, of Operations suboidiary to Induction. In the sense that the ressoning deacribed in the Third Book cannot be profitably performed till they have taken place, they may be called auboidiary; bot Indaction is perhape rather the whole procese of oliciting from facte the principlen that account for them than merely the form of reasoning involved therein; and theso operations certainly hold no anbordinate place in that proces.

[^179]: ${ }^{1}$ Logic, III, riv. 4

 - Facte, as we have meen, cannot prove an hypothesis by their agreement with it, except so far ase at the came time they diaprove its rivals by their dimareement.
 ${ }^{3}$ Cf. Newman's Parochial and Plain Sermone, vol. ii, Sermon xxix, on The Feast of S. Michaed and all Angels.
 - De Principice atque Originibus, Ellis and Spedding, III. p. 80.

[^180]: ${ }^{1}$ Origin of Species, c. xiv, 6th ed. p. 396. The italicm are mine.

 - Lotze would explain this by ssying thst our hypotheses must conform to our postalates. He drawi a diatinction (Logic, $\S 273$) between a pownlate as 'an aboolutely necemary earumption, without which the content of the obeerration with which we are dealing would contredict the lewa of our thought', sud an hypothesis as 'a conjecture, which seek to fll up tho postulate thus ebatractly stated by epecifying the concrete causes, forces, or procemes, out of which the given phenomenon really erose in this particular case, while in other oasee maybe the same postulate ir to be astisfled by atterly different though equivalent combinations of forces or active elements '. It should be edded, that in saging that hypotheses mast be thinkable consistently with the fundamental asoumptions of the science whioh maket if we are enlarging an well m reatricting the liberty of the mind in

[^181]: ${ }^{1}$ Upon the whole, because the historian han often to rediacover principlesconatitational, legal, eocial, or economic ; and bidory advances by changes in mon's way of conceiving the relations of past facts to one another as well as by changee in their view of what the facte were. Wo no longer believe in William Tell; but the Patriarchal Theory has aloo chagged oor views as to the relations between the individual and the State in ancient eociety.

[^182]: ${ }^{1}$ g. Noowm Organmm Renovatwm, Bk. II. c. iv: Philoeophy of Diecovery,

[^183]: ${ }^{1}$ Romanex, Darwin and after Danoin, i 285 at al.

 - The other prooem, of winthematical calculation, there reforred to, falls rether to be conaidered lator: as belonging to a atage of acience in which deductive reanoning playa a larger part than in the application of the roles discuseed in the lat chapter.

[^184]: ${ }^{1}$ The eleaticity of the air is employed slao in the telephone: but not continuoualy. It is hardly necemary for the present purpose to \mathbf{g}° into the detail of the apparatua.

 - Not in any branch of purely mathematical study; nor again in Logic.

[^185]: ${ }^{1}$ Let nobody object that in such a matter we must ank what experience teaches, and not what it is posaible to conceive. Experience can teach nothing inconceivable. All thinking is an attempt to make experience more intelligible, and so far as it is not intelligible, we asmame our account of it to be antrue. It is for this reason that we are slways recasting in thought the appearances which experience presenta. The very eearch for cand oonnexions is an example of this operation. It reate on the principle
 sosiri
 0 g

[^186]: that change is only intelligible if it embodies universal prinoiples of change: but these principlen are not presented to our obeervation. Therefore we believe that events occurred, which have not fallen within our experience: as Robinson Crasoe, seeing footprinta, concluded that men muat have been to the ialand whom he had not seen. And if we deny that the events 'experienced 'sre all that occur, on the ground that their succession would then be without principle and unintelligible, we mey equally deny that history can consist of streame of discontinuous events, even though these succeeded one another sccording to the most constant rules, on the ground thet such a aucoestion would be unintelligible.

[^187]: ${ }^{2}$ Besideo the formol and the eficient, Aristotle distinguished the materia! carse, or matter of which a thing is made, and the final canse, or purpose of ita being. These were all causes in the eense of boing necengary to the existence of what they are the cause of. Cf. e.g. Phyo. β. ini. 194 ${ }^{\circ} 16-195^{\circ} 8$.

[^188]: ' J. W. Cromyton : v. Danvin and after Danoin, iii. 170.

[^189]: ${ }^{1}$ The term whe introduced by Mill, who sometimes upeake as if he thought the Plurality of Canses more than an appearance: as if he thought that, in the otricteat sense of the term cause, the same phenomenon may have different csuses on different occations. The Plurality of Ceuses mutat be distinguiahed from the Compocition of Canses: which means that a complex phenomenon, which we call one, may be due to a number of canses acting logether on one occacion. Clearly none of these in the caune in the full sense, bat only part of the cause.

[^190]: ${ }^{1} O r$ 'phyiological inolstion'-i.e. that certain members of a apecies x which happen to exhibit some modification m are more fertile with one another than with the reat of the speciee in which this modification hee not appeared. This would prevent swamping by intercroasing, and es, for breeding purposes, isolate the new variety.

[^191]: ' We may point to facts from which it followe that we mast believe a proposition ; but we do not thereby oxplain the proponition. It is the thing believed, and not our believing, which muat be ahown to follow, if we are to say that we are finding an explanation.

[^192]: ${ }^{1}$ Elementary Lemons, XXV, 'New Edition,' p. 218: Principles of Science, 2nd ed. pp. 146-152.

[^193]: ${ }^{1}$ Probidantial Addrase at the Briteh Amociation, Cambridga, 1904, by the Bt. Hon. A. J. Balfour (Timee of Aug. 18). He illuatratee his statement by reference to two cases, the pertintent belief that the obemical elements will be found to have a common origin, and the persintent refacal to believe in

[^194]: ${ }^{1}$ Logic, III. iv. 1.' But cfi infra, p. 487, $\mathrm{n}, 8$.

[^195]: ${ }^{1}$ n. Maino's Eanly Imelitutions, pp. 197-205, from which the above example is abridged.
 ' Gooted Bomanea, Darwin and after Darwin, i 218.

[^196]: ${ }^{1}$ I add thewe words, because it is important to realise that an hypotheris is not really proved by merely explaining the facta. Bat many hypothenee ere provirionally accepted, which are not proved, on the ground thet they explain the facta, and without the performance of what would often be the impracticable teak of showing that no other hypotheais could equally well do 80.

[^197]: ${ }^{1}$ According to Aristotle, every body left to itself had a natural motion, dependent on ite own nature: that of the heavens was round a contro, that of earth and water to a centre, that of air and 6 re from a centre. The centre wha the centre of this globe, and 30 (on his riew) of the phyvical universe. Bodies need not be left to their own motion; s atone, for example. mey be thrown towards the alry; but in auch case their motion was not netural, but violent.
 ${ }^{1}$ Supra, c. x xi, p. 485.

[^198]: ${ }^{1}$ Strictly apeaking. that acceleration should not be the same at 1,000 feet from the earth and at 100 feet: and in virtue of atmospheric resintance a cricket-ball should not fall as far in a given time as a cannon-bell; but the theoretical differences woald bo so small as to eacape observation, and therefore the fact that acceleration is empirically found to be 82 feat per aecond for all bodies in the neighbourhood of the earth creates no difficulty. On the other hand, in the oecillstions of a pendulum, which vary in the plains and in the neighbourhood of monntaina, we do find evidence agreeable to the theory, of the aame kind se those minute differences mould afford if we could mearure them. The logical bearing of these considerations will be seen if it is remembered that a theory, though not proved by ite conformity with facts, is dieproved by any clearly eatablinhed unconformity.

[^199]: ${ }^{1} \mathrm{~J} .8$. Mill gave the name of 'homogeneous intermixture of offecta' to those cases where the joint effect of eoveral caused acting together is the sum (or difference) of their separste effecta, and differs in quantity only and not in quality from the effecte which the ame caucen would produce cingly; this happens, e.g., in the mechanical composition of forces-for which reason he spote aleo of Comporition of Carses in such a case. Whers the joint effect differs in quality from the enparate effects (and so cannot be calculated from anowledge of them) he called it heterogeneous or hetoropathic. He illuotrated this from ohemical combination, in which the chemsal properties of the compound (anlike its weight) are not homogeneous with thoe of ita constituents, and not deducible from them ; though he quite overlooked the fact that elemente were not the "cause' of a compound in his usasl senve of that term. Cf. Lopic, III. vi.

[^200]: ${ }^{2}$ Diecours de la Methode, Troisidme Partio.

[^201]:

[^202]: ${ }^{1}$ Nov. Org. I. 105. Cf. ampra, pp- 858, 884.
 : Homanes, Danein and after Darnein, ii. 282.
 '0. Jevons, Elmentary Leasone, pp. 221-222

[^203]: ${ }^{1}$ a. Darwin, Origin of Spacies, c. i, 6th ed p. 9.

[^204]: ${ }^{1}$ Cf. infro, pp. 547-549.
 Trwotice of Human Nature: Of Morale, Part J. § 1, Green and Groee's ed. Tol ii. p. 248.

[^205]: 'Romanee, Darwin and after Darwoim, i. 279.

[^206]: ${ }^{1}$ It was called by Aristotio rapribnyua: cf. Amal. Pri, β. xriv, Bhat. a. ii 1857b 25-36, and p. 501, infra.
 'Cuctom and M geth, p. 125, ed. 1901 ('The Silver Librery').

[^207]: ${ }^{1}$ I give in a note mother poesible explanation of the change that has taken place in the logieal use of the term analogy, bat one that reems to me lem likely than the foregoing. The 'rule of throe' is in s sense an argoment from analogy. Starting with the conception of an analogy, in the atriet coneo, it supplies from three given terms the fourth term which will complete the analogy. It is therefore an argument from the general conception or form of analogy to the sctual analogy (or complete terme of the analogy in a particular case. Now when I argue that bocaum a and b both exhibit the property x, and a exhibita besides the property y, therefore b will also oxhibit the property y, I may be anid to bo completing an analogy. The presence of x in a is to the presence of y in a, as is the presence of x in to that of y in b. In this caeo, the argoment would be from the oristence of an analogy to the fourth term of it. Bat if the looser unge of the term be interpreted thos, it beers leas rewemblance to the earlier anage than apon the interpretation in the text.

 - Metaphyaical criticiom could eacily nige dificaltien egranat the view that relations an anoh are extrinaic and attribates intrinaic to their aubject. But we are concerned here rother with a common why of regarding the matter than with ita altimato tenability; and I think we do commonly so regard it-
 - Logic, \$ 214.

[^208]: ${ }^{1}$ It in trae that the argament is already fonnd in ahortor form in the tenth book of the Republic; Rep. x. 597 C, Parm. 132 D-138 A.
 ' Cf. D. G. Ritchie, Plato, Pp. 108, 120. I have not reproduced the exact nee which he makes of the analogiea

[^209]: Apeaking generally; but of course we may mometimes fail at first to diacover the truly commensarate subject of a predicato ; as if one were to prove that the erternal anglee of a square wore equal to four right angles, when it is trae for any rectilinear figure. Here the number of siden, and the magnitade of the internal anglea, would be falsely included among the conditions on which the property depends.

[^210]: ${ }^{1}$ Mill, Logic, II. v-vii. Cf. Autobiography, p. 226.
 : Or for that matter, of any form of inferonce.

[^211]: ${ }^{1}$ Principles of Logic, p. 285. 'The procen is conntraction and the result an intuition, while the union of both is logieal demonatration.'
 ? Not that all dinjunctive argument involves that conception; bat only diajunctive argament spplied to the discovery of causea.

 J00EPT
 I. 1

[^212]: CY. Kant, Introduction to Logic, ii. 4 (T. K. Abbott's tr., p. 8), who givee a different eence to the term, bat notices this use of it

 - Logic, VI. vii-I.

[^213]: ${ }^{1}$ Mill gives to thin order of procedure the name of the 'Inverse Deductive, or Historical Method': by which he means the method appropriete to the stady of history. The Etitorical Method now however commonly mease interpreting present fecta in the light of their peet history.

 1 Jevons, EJementary Lesons in Logic, XXIX.

[^214]: ${ }^{1}$ The 'Porfectibilitarians', like Godwin, at the beginning of the lat centary, hold very nearly this.

[^215]: ${ }^{1}$ Cuotom and Myth, p. 1.

[^216]: ${ }^{1}$ Inetentice Onemeines, or E7ucmantion. Noo. Org. II. 24.

[^217]: ${ }^{1}$ Logic, p. 153, 8th ed.
 ${ }^{1}$ Soph. El. xvi. $175^{\circ} 23$.

 - $1 \mathrm{~b} .175^{\text {a }} 9$.
 - Ib. $175^{-14 .}$

[^218]: ${ }^{1}$ Eth. Nic. η. iii $1146^{\circ} 24$.
 ${ }^{3}$ Cf. de Morgan, Fomal Logic, p. 287. "There is no much thing as a clasaification of the ways in which men mag arrive at an error: it in mach to be doubted whether there ever can be'

 - Logic P. 159, 8th ed.

[^219]: ${ }^{1}$ a the Levis Carroll Picturo Book, edited by S. Dodgron Collingwood (London, 1899), pp. 260-267. (GK murt really fall to the right of C.)
 ' Let $\triangle B C D$ bo a square. Bisect $A B$ at E, and throagh E draw $E F$ at right angles to $A B$, and cutting $D C$ at F. Then $D P=P C$.
 ${ }^{\prime}$ From C draw $C Q=C B$. Join $4 G$, and bineot it at F, and from H drav $\boldsymbol{H K}$ at right angles to $\boldsymbol{\Delta} \boldsymbol{G}$.
 'Since AB, $1 G$ are not parallel, $E F, H K$ are nod

 parallel. Therefore they will moet if produced Produce EF, and let them meet at K. Join KD, KL. $K G$ and $K C$.
 'The trianglen $K A B, E O H$ are equal, becano $\Delta H=H G, H K$ is common, and the anglea at B ase right. Thereforo $K A=K G$.
 'The tringgles $K D F, K C F$ are equal, becanso $D F=$ $F C, F K$ is common,and the angles at F aro righo Theroforo $K D=K C$, and anglo $K D C=$ angle $K C D$.
 \cdot Also $D A=C B=C G$.
 'Hence the trianglea KDA, KCG have all their sides equal. Therefore tho angles KDA, $E C G$ are equal. Prom these equale tuke the equal anglea $K D C, X C D$. Therefore the remainder aro equal: i. o. the angle $G C D=$ the angle $A D C$. Bat $G C D$ is an obtuve angle, and $\triangle D C$ is a right angle.

 - Therafore an obtoes angle is sometimes $\mathbf{~}$ a right anglo.

 'Q.E. B.'

[^220]: ${ }^{1}$ Soph. El. ix, $\mathbf{x i}$.
 2. Poeto's ed of Sopi. ER., App. F, pp. 245-247.

[^221]: ${ }^{1}$ Thus the fallecy of Accident han practically been identifed with Socundum Quid by many writers: that of Consequent has, e. g. by do Morgan and Jevone, been explained as the simple affirmation of a conclusion which does not follow from the premises ' (de Morgan, Fonmal Logic, p. 267): divers forme of Ignoralio Elenchi have received special names: Whatoly bee explicitly included under fallacies, in deflance of hit own defnition, 'any false assamption employed at a Premisa' (Logic, 8th ed. p. 168: cf. def. on p. 158): Mill inclodes smong fallacies such sources of orror as Ma. obearration-i.e. mingling inference with the report of what is perceived (Logic, V. iv. 5); and his tiret great group of fallscies, to which he gives the title A priori Fallacien, or Pallecies of Simple Inspection, consiste of a number of marims which he conaiders erroneous (though it is not equally clear that they all are oo), such as that whst is inconcoivable cannot be true, that effecte must resemble their causea, that motion can only be produced by motion, that the same effect must alwage have the mane cauce (V. iii) ; in iv. 1, Fallecies of Simple Inapection are called 'Prejudioes, or preaumptions antecedent to sad superseding proof', and in ii. 2 they are oalled suppoeed connexions or repugnances betweem facta, 'edmitted, as the phrase is,' on their own evidence, or as aelf-ovident. Whately (op. cit. p. 208) apaskis of the fallacy of References, i. o. giving references in aupport of a otatemont to pasaget which do not really bear it out, in the truat that readers will not look up the references and discover this. Profeasor William James gives the name of the Paychologist's Fallecy to the miatake of supposing that a man who has a given peychioal experience knows it, when he has it, to be all that I an a paychologist know or believe it to be (Principles of Prychology. vol. i. p. 196). Locke's argsuenta ad otrecundiam, ad ignorantiam, ad hominem, which he opposen to an arymmentum ad iwdicium, might be called heads of falluciee (Eseay, IV. xvi. 10-22).

[^222]: ${ }^{1}$ Cf. expras pp. 107-109.

[^223]:

 from premiases really endoxical (i.e. probable or aupported by opinion, and allowble in non-scientific discuasion); but this can bardly be supposed to be deliberate. The expremion twice used in Soph. E7. i. (164" 23 ort μ ì oiy

 $\mu i v o v i d \nu d$) might perbape by itself be more naturally underotood to refor only to fallecions arguments, and not to include argamenta that have no fault exoept in the falaity of their premises.

[^224]: ${ }^{1}$ Many argamenta refersble to Ariatotle's headeof fallecy are not ejllogistic.
 ${ }^{3}$ Ar., Soph. EL iv. $165^{\circ} 89$.
 ${ }^{3}$ Quoted by Mustin, Jurieprwdence, i. 488.

[^225]: did not opear in Latin. Cf. Auguatine, de Cio. Dori, iii. $17{ }^{\text {' Cai mane de }}$ rerum futuro eventu conaulenti atis urbane Apollo aic smbiguum oraculom edidit, at, e daobas quicquid accidimet, ipte divinue haboretur: ait enim, Dico te Pyrrbe rincere powe Romanos: atgue jite sive Pyrrbus a Romania sive Romani a Pyrrbo vincerentar, securus fatidicus utrumlibet exspectaret eventam.' Cf. aloo Honry VI, Part 2, Act i. Se. 4, 11. 60-65.
 ${ }^{1}$ Rep. iv. 438 A aq.
 ${ }^{2}$ Td dizaceur $\mu \eta$ ypei申orra ppiфouy is an example of fallacy napd rip oiretary in Soph. El. iv. 166" 24 I do not know if the principle involved whe ever brought agininst Plato's argument.

[^226]: ${ }^{1}$ Cf. the fancy in Plato's Sympasimm, 189 D E.

[^227]: ' It illuastrates how much akin the different fallacies in dictione aro, and how the mame example may from different pointa of view be regarded an falling onder different beada, that any one who likea can call the ahownon'a trick, or othert where words like all and both figare eimilarly, fallacien of Equivocation. Aristotie does not give any anch inatances ander the heed of givengis or draipegis; it has been however done by divers writers, and if we look to the nature of the thought involved, justly. And the fallacies in queation might bave been defined above as ariting, when a conclucion is reached by taking those thinga togother which we are only ontitled to take eeparately, or vice verss (cf. Crackenthorpe, Logic, ed. quart. p. 858, oum quis ab is comiunctis arguat, quae eqparation perc ounh, mon coniuncta); for even where words are taizen together or separately in one part of the argument. which were intended to be taken eoparately or together in the other, it is only an this leads to our so taking what they aignify that fallecy remolte. Bnt ae this is reflected often in a definite combination and division of words. and as that probebly led to the erection of these a particular apecies of fallecy besed on ambiguous language, it reemed right to mako exprea mention of auch casea in describing them.
 ${ }^{3}$ Ar, Sifit EK iv. $166^{\circ} 1$.

[^228]: ${ }^{1}$ This erample was given me from personal recollection. Not unlike this fallecy, underniood as consinting in bating on a wrong empheais a conclusion not intended by the apeaker or writer, is the error of inforring from the atrees which a man lays on one element of a truth that he necesmarily overlooke another. It might be said to be Hegel's conception of the progrose of apecalative thought, that it advances by emphasising fint one and then the other side of a contrast in such a wiy that the emphanis on one leads to overiooking the other: until a now conception is reached which onites the twa. This indeed he contiders inevitable in the development of philowophy. Bat many writere have been erroneoualy interpreted, becauso it was thought that when they insisted upon one aspect of a truth they intended to deny eome other eapect. This error of interpretation bowever could hardly be clamod with fallacies in dictione, since the misinterprotation doee not arise through the doubtful atren-accentuation of particular worde.
 'A ledy once obeerved: 'The quertion is, is be a postor or an impontor?'
 ${ }^{8}$ p. 52 (Rontledge's ed., 'New Univeral Library,' p. 68).

[^229]: ${ }^{1}$ Nov. Org. I. 49. The falso ideas abo"t nature genernted through langanp Becon called idola fori. These falee ideas or idola wore clandied by his nccording as they had their mources in universal properties of homan nature in idiosyncrasies of the individual, in language, or in false theories of ocience and philoophy. The divinion was not logioally perfect, and the enumeration in each group is donbtless not completo. This illustraten is a parallel feld the difficalties above acknowledged to render a perfiect clagification of fallacios imprecticable. Becon himself calls attention to the parallel that exirat between his uadertaking and a clavification of fallacies: 'Dodrina enim de idolis similiter ae habet od intarpretationem natarme. sicut doetrina de eophiaticis alenchis ad dialacticam oulgarem' (I. 40). The 'interpretation of nature' involved more than reaconing; it required the une of the senses in obserrstion, the recording of facta, the formation of conceptions, or hypothesia, the invention of a nomenclature, \&c. There are obatacles in the way of the successful periormance of these operationa, no leas than of ressoning. The fallacies of the common Logic waylay in in the work of reasoning. His idola arise from circumstances that waylay ws in all theee task.
 ${ }^{3}$ Formal Logic, p. 244.

[^230]: ${ }^{1}$ The phraso is from Porto's ed. of Soph. E7. (o. p. 78) : cf. erp. his remartu on p. 158, from which the above interpretation and criticiam are borrowed.
 ${ }^{2}$ Soph. E7. Exiv.
 ${ }^{3}$ Op. cit. p. 158.

[^231]: ${ }^{2}$ Cf. Dicey, Law and Opinion in England, p. 487, on the extenaion of principlea to freah cacee in 'judge-made law'. Cf. aloo Ar., Beh. Nic. c. 14 1187 14-19.
 "Ar., Rhet β. xiv. 1401" 84, quoted by Poste, p. 117.

[^232]: ${ }^{2}$ Soph. EX. v. $167^{\circ} 11$.

 - The fallecy here lies in referring to men over eighty a proposition which is only true of men rimpliciter, viz that fow of them die over eighty. Solationa however are ponible, which would bring the argument nader other heads.
 - The qualification may consirt either in the presence of conditione not contemplated in making the statement, or in the absence of some that were contamplated (or at least that ought to have been contemplated). To argue that beocuso it is wrong to kill, e man should not fight for his country, is a can of the former wort; to argue that becanse wine is pernicioug therefore ite nee ahould be forbiddon (ff. de Morgen, Formol Logic, p. 251), of the letter. The former would be called the direet, and the latter the converso fallecy. Bat it is clear that there is no difference in principle between them.

[^233]: 1 Apol. 84 C, 85 B C. ${ }^{2}$ Lake riv. 1-6.
 ${ }^{2}$ Exh. Nic. γ. vii. 11140 81-25.
 admistion of the very thing propounded for debate at the outset-the mpob $1 \eta \mu$ a. The word patitio belonge to the terminology of diaputation. Where the quectioner cought his premienes in the admimions of the respondent He had no right to ant the reapondent to admit the direct contradictory of

[^234]: ${ }^{1}$ For the general atatement see Sir Henry Maine, Early Imatiutione, p. 64.

 1. p. 282, mpra.

 - Studies in Hegolian Coomology. 8 142. By punishment here is meant 'the infliction of pain on e person becanse he has done wrong' (\$ 187). And it is of corporal panishment that we most often hear this view exproved.
 - Danain and after Darnein, ii. 307.

[^235]: ${ }^{1}$ Cf. de Morgan, Budget of Peradantes, p. 827.
 ${ }^{2}$ James 8mith argred, not that 'if A is fales, B will be trae: but B is false, $\therefore \boldsymbol{A}$ is trae'; bat ' if A is trae, B will be false-(89 to whioh nothing was znown)- $\therefore 4$ is tras .

[^236]:
 on thir pasege.
 ${ }^{1}$ Nop. Org. I. 46. Beoon citom the atory in illuetration of one of the - Idola Tribas', the tendency to overlook or deepice facte which do not agree with an opinion which we have once adopted. J. S. Mill would call thie the fellecy of Non-obeerration (Syifen of Logic, V. iv).

[^237]: While he does include, under the name of the fallecy of the Consequent, the correaponding though not identical errors which may be committed in hypothetical rasconing. It may be noted that mah inferances would only not be fallecious where condition and consequent reciprocated-a rolation which corresponds to that of commengurato torme in an univernal affirmative judgement. Hence Ariatotle enge that the fallacy of the Consequent is a caee of that of Accident (Soph. El. vi. 168b 27). Under it in turn might be brought Pook hoc, propter hoc. If Goodwin Sands were asused by building Tentarden Bteeple, they would have appeared, as they did, $s 0$ soon as the teeple was buils; but they might equally have done m, if the building of the ateople had nothing to do with their appeerance.
 ${ }^{1}$ Cf. p. 486, mpra.
 'This falleoy is 'logical', or formal; it can be exprocsed in ejmbola. So can an argament in a dircle nometimes be; e.g. if it is of the form ' Δ is B, B is $C \therefore A$ in C : and B is C becanse A is C and B in A^{\prime}.

